

Credits

24 ways is the advent calendar for web
geeks. For twenty-four days each December
we publish a daily dose of web design and
development goodness to bring you all a
little Christmas cheer.

▪ 24 ways is brought to you by Perch CMS

▪ Produced by Drew McLellan, Brian Suda, Anna

Debenham and Owen Gregory.

▪ Designed by Paul Robert Lloyd.

▪ eBook published by edgeofmyseat.com and produced

by Rachel Andrew.

▪ Possible only with the help and dedication of our

authors.

2 24 ways 2014 edition

http://grabaperch.com/?ref=24w01
http://allinthehead.com/
http://suda.co.uk/
http://maban.co.uk/
http://maban.co.uk/
http://fullcreammilk.co.uk/
http://paulrobertlloyd.com/
http://edgeofmyseat.com
http://rachelandrew.co.uk/
http://24ways.org/authors/
http://24ways.org/authors/

2014

The web turned twenty-five and showed no
sign of settling down in semi-detached
suburbia. In October, HTML5 was released as
a W3C Recommendation. Back in May, 24
ways was very excited and grateful to win
the net award for best collaborative project
– a huge thank you to all our authors,
readers and supporters!

What It Takes to Build a Website .. 5

Dealing with Emergencies in Git ...23

JavaScript Modules the ES6 Way ...35

Developing Robust Deployment Procedures49

What Is Vagrant and Why Should I Care?..............................64

Don’t Push Through the Pain..83

Collaborative Responsive Design Workflows100

Websites of Christmas Past, Present and Future............109

Responsive Enhancement...122

2014

24 ways 2014 edition 3

Making Sites More Responsive, Responsibly....................134

Putting Design on the Map...149

Is Agile Harder for Agencies? ..164

The Introvert Owner’s Manual ...175

Five Ways to Animate Responsibly.......................................183

SEO in 2015 (and Why You Should Care)192

An Overview of SVG Sprite Creation Techniques...........205

Content Production Planning..226

A Holiday Wish..242

Why You Should Design for Open Source249

Meet for Learning...256

Naming Things...274

Integrating Contrast Checks in Your Web Workflow....290

Taglines and Truisms ...308

Cohesive UX ...315

4 24 ways 2014 edition

Drew McLellan 24ways.org/201401

1. What It Takes to Build a
Website

In 1994 we lost Kurt Cobain and got the
world wide web as a weird consolation prize.
In the years that followed, if you’d asked me
if I knew how to build a website I’d have said
yes, I know HTML, so I know how to build a
website. If you’d then asked me what it
takes to build a website, I’d have had to
admit that HTML would hardly feature.

Among the design nerdery and dev geekery it’s easy to

think that the nuts and bolts of building a page just need

to be multiplied up and Ta-da! There’s your website. That

can certainly be true with weekend projects and hackery

for fun. It works for throwing something together on

GitHub or experimenting with ideas on your personal site.

But what about working professionally on client projects?

The web is important, so we need to build it right.

What It Takes to Build a Website

24 ways 2014 edition 5

http://24ways.org/201401

It’s 2015 – your job involves people paying you money for

building websites. What does it take to build a website

and to do it right? What practices should we adopt to

make really great, successful and professional web

projects in 2015? I put that question to some friends and

24 ways authors to see what they thought.

GETTING THE TECH RIGHT

Inevitably, it all starts with the technology. We work in a

technical medium, after all. From Notepad and WinFTP

through to continuous integration and deployment – how

do you build sites?

Create a stable development environment

There’s little more likely to send a web developer into a

wild panic and a client into a wild rage than making a new

site live and things just not working. That’s why it’s

important to have realistic development and staging

environments that mimic the live server as closely as

possible.

Are you in the habit of developing new sites right on the

client’s server? Or maybe in a subfolder on your local

machine? It’s time to reconsider.

Charlie Perrins writes:

6 24 ways 2014 edition

Don’t work on a live server – this feels like one
of those gear-changing moments for a
developer’s growth. Build something that
works just as well locally on your own machine
as it does on a live server, and capture the
differences in the code between the local and
live version in a single config file. Ultimately, if
you can get all the differences between
environments down to a config level then
you’ll be in a really good position to automate
the deployment process at some point in the
future.

Anything that creates a significant difference between

the development and the live environments has the

potential to cause problems you won’t know about until

the site goes live – and at that point the problems are very

public and very embarrassing, not to mention

unprofessional.

A reasonable solution is to use a tool like MAMP PRO

which enables you to set up an individual local website for

each project you work on. Importantly, individual sites

give you both consistency of paths between development

and live, but also the ability to configure server options

(like PHP versions and configuration, for example) to

match the live site.

What It Takes to Build a Website

24 ways 2014 edition 7

http://www.mamp.info/en/mamp-pro/

Better yet is to use a virtual machine, managed with a tool

such as Vagrant. If you’re interested in learning more

about that, we have an article on that subject later in the

series.

Use source control

Trent Walton writes:

We use source control, and it’s become the
centerpiece for how we handle collaboration,
enhancements, and issues. It drives our
process.

I’m hoping by now that you’re either using source control

for all your work, or feeling a nagging guilt that you should

be. Be it Git, Mercurial, Subversion (name your poison), a

revision control system enables you to keep track of

changes, revert anything that breaks, and keep rolling

backups of your project.

The benefits only start there, and Charlie Perrins

recommends using source control “not just as a personal

backup of your code, but as a way to play nicely with other

developers.“

Noting the benefits when collaborating with other

developers, he adds:

8 24 ways 2014 edition

https://www.vagrantup.com
http://www.sitepoint.com/version-control-software-2014-what-options/

Graduating from being the sole architect of
your codebase to contributing to a shared
codebase is a huge leap for a developer.
Perhaps a practical way for people who tend to
work on their own to do that would be to
submit a pull request or a patch to an open
source project or plugin.”

Richard Rutter of Clearleft sees clear advantages for the

client, too. He recommends using source control

“preferably in some sort of collaborative environment

that you can open up or hand over to the client” – a

feature found with hosted services such as GitHub.

If you’d like to hone your Git skills, Emma Jane Westby

wrote Git for Grown-ups in last year’s 24 ways.

Don’t repeat, automate!

Tim Kadlec is a big proponent of automating your build

process:

What It Takes to Build a Website

24 ways 2014 edition 9

http://clearleft.com
http://github.com
http://24ways.org/2013/git-for-grownups/

I’ve been hammering that home to every client
I’ve had this year. It’s amazing how many
companies don’t really have a formal build/
deployment process in place. So many issues
on the web (performance, accessibility, etc.)
can be greatly improved just by having a layer
of automation involved.

For example, graphic editing software spits out
ridiculously bloated images. Very frequently,
that’s what ends up getting put on a site. If you
have a build process, you can have the
compression automated and start seeing
immediate gains for no effort. On a recent
project, they were able to shave around 1.5MB
from their site weight simply by automating
compression.

Once you have your code in source control, some of that

automation can be made easier. Brian Suda writes:

We have a few bash scripts that run on git
commit: they compile the less, jslint and
remove white-space, basically the 3 Cs,
Compress, Concatenate, Combine. This is now
part of our workflow without even realising it.

10 24 ways 2014 edition

One great way to get started with a build process is to use

a tool like Grunt, and a great way to get started with

Grunt is to read Chris Coyier’s Grunt for People Who

Think Things Like Grunt are Weird and Hard.

Tim reinforces:

Issues like [image compression] — or simple
accessibility issues like alt tags on images —
should never be able to hit a live server. If you
can detect it, you can automate it. And if you
can automate it, you can free up time for
designers and developers to focus on more
challenging — and interesting — problems.

A clear call to arms to tighten up and formalise

development and deployment practices. The less that has

to be done manually or is susceptible to change, the less

that can go wrong when a site is built and deployed. Any

procedures that are automated are no longer dependant

on a single person’s knowledge, making it easier to build

your team or just cope when someone important is out of

the office or leaves.

If you’re interested in kicking the FTP habit and

automating your site deployments, we have an article

later in the series just for you.

What It Takes to Build a Website

24 ways 2014 edition 11

http://24ways.org/2013/grunt-is-not-weird-and-hard/
http://24ways.org/2013/grunt-is-not-weird-and-hard/

BUILD SYSTEMS, NOT SITES

One big theme arising this year was that of building

websites as systems, not as individual pages.

Brad Frost:

For me, teams making websites in 2015
shouldn’t be working on just-another-
redesign redesign. People are realizing that in
order to make stable, future-friendly, scalable,
extensible web experiences they’re going to
need to think more systematically. That means
crafting deliberate and thoughtful design
systems. That means establishing front-end
style guides. That means killing the out-dated,
siloed, assembly-line waterfall process and
getting cross-disciplinary teams working
together in meaningful ways. That means
treating development as design. That means
treating performance as design. That means
taking the time out of the day to establish the
big picture, rather than aimlessly crawling
along quarter by quarter.

Designer and developer Jina Bolton also advocates the

use of style guides, and recommends making the guide a

project deliverable:

12 24 ways 2014 edition

http://bradfrost.com/blog/post/atomic-web-design/
http://bradfrost.com/blog/post/atomic-web-design/
http://24ways.org/2011/front-end-style-guides/
http://24ways.org/2011/front-end-style-guides/
http://bradfrost.com/blog/post/development-is-design/
http://bradfrost.com/blog/post/performance-as-design/

Consider adding on a style guide/UI library to
your project as a deliverable for maintainability
and thinking through all UI elements and
components.

Val Head agrees: “build and maintain a style guide for

each project” she wrote. On the subject of approaching a

redesign, she added:

A UI inventory goes a long way to helping get
your head around what a design system needs
in the early stages of a redesign project.

So what about that old chestnut, responsive web design?

Should we be making sites responsive by default? How

about mobile first?

Richard Rutter:

Think mobile first unless you have a very good
reason not to. Remember to take the client
with you on this principle, otherwise it won’t
work as a convincing piece of design.

Trent Walton adds:

The more you can test and sort of skew your
perception for what is typical on the web, the
better. 4k displays hooked up to 100Mbps
connections can make one extremely
unsympathetic.

What It Takes to Build a Website

24 ways 2014 edition 13

The value of testing with real devices is something Ruth

John appreciates. She wrote:

I still have my own small device lab at home,
even though I work permanently for a well-
established company (which has a LOT of
devices at its disposal) – it just means I can get
a good overview of how things are looking
during development.

And speaking of systems, Mark Norman Francis

recommends the use of measuring tools to aid the design

process; “[U]se analytics and make decisions from actual

data” he suggests, rather than relying totally on intuition.

Tim Kadlec adds a word on performance planning:

I think having a performance budget in place
should now be a given on any project. We’ve
proven pretty conclusively through a hundred
and one case studies that performance matters.
And over the last year or so, we’ve really seen a
lot of great tools emerge to help track and
enforce performance budgets. There’s not
really a good excuse for not using one any
more.

It’s clear that in the four years since Ethan Marcotte’s

Responsive Web Design article the diversity of screen

sizes, network connection speeds and input methods has

14 24 ways 2014 edition

http://alistapart.com/article/responsive-web-design

only increased. New web projects should presume visitors

will be using anything from a watch up to a big screen

desktop display, and from being offline, through to GPRS,

3G and fast broadband.

Will it take more time to design and build for those

constraints? Yes, it most likely will. If Internet Explorer is

brave enough to ask to be your default browser, you can

be brave enough to tell your client they need to build

responsively.

WORKING COLLABORATIVELY

A big part of delivering a successful website project is how

we work together, both as a design team and a wider

project team with the client.

Val Head recommends an open line of communication:

Keep conversations going. With clients, with
teammates. Talking is so important with the
way we work now. A good team conversation
place, like Slack, is slowly becoming invaluable
for me too.

Ruth John agrees:

What It Takes to Build a Website

24 ways 2014 edition 15

http://slack.com

We’ve recently opened up our lines of
communication by using Slack. It has
transformed the way we work. We’re easily
more productive and collaborative on projects,
as well as making it a lot easier for us all to
work remotely (including freelancers).

She goes on to point out how tools can be combined to

ease team communication without adding further

complications:

We have a private GitHub organisation (which
everyone who works with us is granted access
to), which not only holds all our project code
but also a team wiki. This has lots of
information to get you set up within the team,
as well as coding guidelines and best practices
and other admin info, like contact numbers/
emails for the team.

Small-A agile is also the theme of the day, with Mark

Norman Francis suggesting an approach of “small

iterations with constant feedback around individual

features, not spec-it-all-first”. He also encourages you to

review as you go, at each stage of the project:

16 24 ways 2014 edition

Always reflect on what went well and what
went badly, and how you can learn from that,
even if not Doing Agile™. Ultimately “best
practices” should come from learning lessons
(both good and bad).

Richard Rutter echoes this, warning against working in

isolation from the client for too long:

Avoid big reveals. Your engagement with the
client should be participatory. In business no
one likes surprises.

This experience rings true for Ruth John who

recommends involving real users in the feedback loop, not

just the client:

We also try and get feedback on what we’re
building as soon and as often as we can with
our stakeholders/clients and real users.

We should also remember that our role is to serve the

client’s needs, not just bill them for whatever we can.

Brian Suda adds:

Don’t sell clients on things they don’t need.
We can spout a lot of jargon and scare clients
into thinking you are a god. We can do things
few can now, but you can’t rip people off
because they are unknowledgeable.

What It Takes to Build a Website

24 ways 2014 edition 17

But do clients know what they’re getting, even when they

see it? Trent Walton has an interesting take:

We focus on prototypes over image-based
comps at all costs, especially when meetings
are involved. It’s much easier to assess a
prototype, and too often with image-based
comps, discussions devolve into how
something might feel when actually live, or
how a layout could change to fit a given
viewport.

Val Head also likes to get work into the browser:

Sketch design ideas with any software you like,
but get to the browser as soon as possible.

Beyond your immediate team, Emma Jane Westby has

advice for looking further afield:

Invest time into building relationships within
your (technical) community. You never know
when you might be able to lend a hand; or
benefit from someone who’s able to lend
theirs.

And when things don’t go according to plan, Brian Suda

has the following advice:

18 24 ways 2014 edition

http://24ways.org/2009/make-your-mockup-in-markup/

If something doesn’t work out, be professional
and don’t burn bridges. It will always come
back to you.

The best work comes from working collaboratively, not

just as a team within an agency or department, but with

the client and stakeholders too. If doing your job and

chucking it over the fence ever worked, it certainly

doesn’t fly any more. You can work in isolation, but doing

really great work requires collaboration.

THE BUSINESS END

When you’re building sites professionally, every team

member has to think about the business aspects.

Estimating time, setting billing rates, and establishing

deliverables are all part of the job.

In 2008, Andrew Clarke gave us the Contract Killer

sample contract we could use to establish a working

agreement for a web design project. Richard Rutter

agrees that contracts are still an essential part of

business:

They are there for both parties’ protection.
Make sure you know what will happen if you
decide you don’t want to work with the client
any more (it happens) and, of course, what
circumstances mean they can stop taking your
services.

What It Takes to Build a Website

24 ways 2014 edition 19

http://24ways.org/2008/contract-killer/

Having a contract is one thing, but does it adequately

protect both you and the client? Emma Jane Westby

adds:

Find a good IP lawyer/legal counsel. I routinely
had an IP lawyer read all of my contracts to find
loopholes I wouldn’t have noticed. I didn’t
always change the contract, but at least I knew
what might come back to bite me.

So, you have a contract in place, and know what the

project is. Brian Suda recommends keeping track of time

and making sure you bill fairly for the hours the project

costs you:

If I go to a meeting and they are 15 minutes
late, the billing clock has already started. They
can’t expect me to be in the 1h meeting and not
bill for the extra 15–30 minutes they wasted. It
goes both ways too. You need to do your best to
respect their deadlines and time frame – this is
always hard to get right.

As ever, it’s good business to do good business. Perhaps

we can at last shed the old image of web designers being

snowboarding layabouts and demonstrate to clients that

we care as much about conducting professional business

as they do.

20 24 ways 2014 edition

TIME TO REVIEW

It’s a lot to take in. Some of these ideas and practices will

be familiar, others new and yet to be evaluated. The web

moves at a fast pace, and we need to be constantly

reexamining our tools, techniques and working practices.

The most important thing is not to blindly adopt any and

all suggestions, but to carefully look at what the benefits

might be and decide how they apply to your work.

Could you benefit from more formalised development and

deployment procedures? Would your design projects run

more smoothly and have a longer maintainable life if you

approached the solution as a componentised system

rather than a series of pages? Are your teams structured

in a way that enables the most fluid communication, or

are there changes you could make? Are your billing

procedures and business agreements serving you and

your clients in the best way possible?

The new year is a good time to look at your working

practices and see what can be improved, and maybe this

time next year you’ll look back and think “thank goodness

we don’t work like that any more”.

What It Takes to Build a Website

24 ways 2014 edition 21

ABOUT THE AUTHOR

Drew McLellan is lead developer on your favourite small CMS,

Perch. He is Director and Senior Developer at UK-based web

development agency edgeofmyseat.com, and formerly Group

Lead at the Web Standards Project. When not publishing 24

ways, Drew keeps a personal site covering web development

issues and themes, takes photos and tweets a lot.

22 24 ways 2014 edition

http://grabaperch.com/
http://allinthehead.com/
http://flickr.com/drewm/
http://twitter.com/drewm

Emma Jane Westby 24ways.org/201402

2. Dealing with
Emergencies in Git

The stockings were hung by the chimney
with care,
In hopes that version control soon would be
there.

This summer I moved to the UK with my partner, and the

onslaught of the Christmas holiday season began around

the end of October (October!). It does mean that I’ve had

more than a fair amount of time to come up with horrible

Git analogies for this article. Analogies, metaphors, and

comparisons help the learner hook into existing mental

models about how a system works. They only help,

however, if the learner has enough familiarity with the

topic at hand to make the connection between the old and

new information.

Let’s start by painting an updated version of Clement

Clarke Moore’s Christmas living room. Empty stockings

are hung up next to the fireplace, waiting for Saint

Dealing with Emergencies in Git

24 ways 2014 edition 23

http://24ways.org/201402
http://www.poetryfoundation.org/poem/171924
http://www.poetryfoundation.org/poem/171924

Nicholas to come down the chimney and fill them with

small treats. Holiday treats are scattered about. A bowl of

mixed nuts, the holiday nutcracker, and a few clementines.

A string of coloured lights winds its way up an evergreen.

Perhaps a few of these images are familiar, or maybe

they’re just settings you’ve seen in a movie. It doesn’t

really matter what the living room looks like though. The

important thing is to ground yourself in your own

experiences before tackling a new subject. Instead of

trying to brute-force your way into new information, as an

adult learner constantly ask yourself: ‘What is this like?

What does this remind me of? What do I already know

that I can use to map out this new territory?’ It’s okay if

the map isn’t perfect. As you refine your understanding of

a new topic, you’ll outgrow the initial metaphors,

analogies, and comparisons.

With apologies to Mr. Moore, let’s give it a try.

GETTING INTERRUPTED IN GIT

When on the roof there arose such a clatter!

You’re happily working on your software project when all

of a sudden there are freaking reindeer on the roof!

Whatever you’ve been working on is going to need to wait

while you investigate the commotion.

24 24 ways 2014 edition

If you’ve got even a little bit of experience working with

Git, you know that you cannot simply change what you’re

working on in times of emergency. If you’ve been doing

work, you have a dirty working directory and you cannot

change branches, or push your work to a remote

repository while in this state.

Up to this point, you’ve probably dealt with emergencies

by making a somewhat useless commit with a message

something to the effect of ‘switching branches for a sec’.

This isn’t exactly helpful to future you, as commits should

really contain whole ideas of completed work. If you get

interrupted, especially if there are reindeer on the roof,

the chances are very high that you weren’t finished with

what you were working on.

You don’t need to make useless commits though. Instead,

you can use the stash command. This command allows

you to temporarily set aside all of your changes so that

you can come back to them later. In this sense, stash is

like setting your book down on the side table (or pushing

the cat off your lap) so you can go investigate the noise on

the roof. You aren’t putting your book away though, you’re

just putting it down for a moment so you can come back

and find it exactly the way it was when you put it down.

Let’s say you’ve been working in the branch waiting-for-st-

nicholas, and now you need to temporarily set aside your

changes to see what the noise was on the roof:

Dealing with Emergencies in Git

24 ways 2014 edition 25

$ git stash

After running this command, all uncommitted work will be

temporarily removed from your working directory, and

you will be returned to whatever state you were in the

last time you committed your work.

With the book safely on the side table, and the cat safely

off your lap, you are now free to investigate the noise on

the roof. It turns out it’s not reindeer after all, but just

your boss who thought they’d help out by writing some

code on the project you’ve been working on. Bless. Rolling

your eyes, you agree to take a look and see what kind of

mischief your boss has gotten themselves into this time.

You fetch an updated list of branches from the remote

repository, locate the branch your boss had been working

on, and checkout a local copy:

$ git fetch

$ git branch -r

$ git checkout -b helpful-boss-branch origin/

helpful-boss-branch

You are now in a local copy of the branch where you are

free to look around, and figure out exactly what’s going

on.

26 24 ways 2014 edition

You sigh audibly and say, ‘Okay. Tell me what was

happening when you first realised you’d gotten into a

mess’ as you look through the log messages for the

branch.

$ git log --oneline

$ git log

By using the log command you will be able to review the

history of the branch and find out the moment right

before your boss ended up stuck on your roof.

You may also want to compare the work your boss has

done to the main branch for your project. For this article,

we’ll assume the main branch is named master.

$ git diff master

Looking through the commits, you may be able to see that

things started out okay but then took a turn for the worse.

CHECKING OUT A SINGLE COMMIT

Using commands you’re already familiar with, you can

rewind through history and take a look at the state of the

code at any moment in time by checking out a single

commit, just like you would a branch.

Dealing with Emergencies in Git

24 ways 2014 edition 27

Using the log command, locate the unique identifier

(commit hash) of the commit you want to investigate. For

example, let’s say the unique identifier you want to

checkout is 25f6d7f.

$ git checkout 25f6d7f

Note: checking out '25f6d7f'.

You are in 'detached HEAD' state. You can look around,

make experimental changes and commit them, and you can

discard any commits you make in this state without

impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you

create, you may do so (now or later) by using @-b@ with

the checkout command again. Example:

$ git checkout -b new_branch_name

HEAD is now at 25f6d7f... Removed first paragraph.

This is usually where people start to panic. Your boss

screwed something up, and now your HEAD is detached.

Under normal circumstances, these words would be a

very good reason to panic.

Take a deep breath. Nothing bad is going to happen. Being

in a detached HEAD state just means you’ve temporarily

disconnected from a known chain of events. In other

28 24 ways 2014 edition

words, you’re currently looking at the middle of a story (or

branch) about what happened – and you’re not at the

endpoint for this particular story.

Git allows you to view the history of your repository as a

timeline (technically it’s a directed acyclic graph). When you

make commits which are not associated with a branch,

they are essentially inaccessible once you return to a

known branch. If you make commits while you’re in a

detached HEAD state, and then try to return to a known

branch, Git will give you a warning and tell you how to

save your work.

$ git checkout master

Warning: you are leaving 1 commit behind, not connected

to

any of your branches:

7a85788 Your witty holiday commit message.

If you want to keep them by creating a new branch, this

may be a good time to do so with:

$ git branch new_branch_name 7a85788

Switched to branch 'master'

Your branch is up-to-date with 'origin/master'.

So, if you want to save the commits you’ve made while in a

detached HEAD state, you simply need to put them on a

new branch.

Dealing with Emergencies in Git

24 ways 2014 edition 29

$ git branch saved-headless-commits 7a85788

With this trick under your belt, you can jingle around in

history as much as you’d like. It’s not like sliding around on

a timeline though. When you checkout a specific commit,

you will only have access to the history from that point

backwards in time. If you want to move forward in history,

you’ll need to move back to the branch tip by checking out

the branch again.

$ git checkout helpful-boss-branch

You’re now back to the present. Your HEAD is now

pointing to the endpoint of a known branch, and so it is no

longer detached. Any changes you made while on your

adventure are safely stored in a new branch, assuming

you’ve followed the instructions Git gave you. That wasn’t

so scary after all, now, was it?

Back to our reindeer problem.

If your boss is anything like the bosses I’ve worked with,

chances are very good that at least some of their work is

worth salvaging. Depending on how your repository is

structured, you’ll want to capture the good work using

one of several different methods.

Back in the living room, we’ll use our bowl of nuts to

illustrate how you can rescue a tiny bit of work.

30 24 ways 2014 edition

SAVING JUST ONE COMMIT

About that bowl of nuts. If you’re like me, you probably

had some favourite kinds of nuts from an assorted

collection. Walnuts were generally the most satisfying to

crack open. So, instead of taking the entire bowl of nuts

and dumping it into a stocking (merging the stocking and

the bowl of nuts), we’re just going to pick out one nut from

the bowl. In Git terms, we’re going to cherry-pick a

commit and save it to another branch.

First, checkout the main branch for your development

work. From this branch, create a new branch where you

can copy the changes into.

$ git checkout master

$ git checkout -b rescue-the-boss

From your boss’s branch, helpful-boss-branch locate the

commit you want to keep.

$ git log --oneline helpful-boss-branch

Let’s say the commit ID you want to keep is e08740b. From

your rescue branch, use the command cherry-pick to

copy the changes into your current branch.

$ git cherry-pick e08740b

If you review the history of your current branch again, you

will see you now also have the changes made in the

commit in your boss’s branch.

Dealing with Emergencies in Git

24 ways 2014 edition 31

At this point you might need to make a few additional

fixes to help your boss out. (You’re angling for a bonus out

of all this. Go the extra mile.) Once you’ve made your

additional changes, you’ll need to add that work to the

branch as well.

$ git add [filename(s)]

$ git commit -m "Building on boss's work to improve

feature X."

Go ahead and test everything, and make sure it’s perfect.

You don’t want to introduce your own mistakes during the

rescue mission!

UPLOADING THE FIXED BRANCH

The next step is to upload the new branch to the remote

repository so that your boss can download it and give you

a huge bonus for helping you fix their branch.

$ git push -u origin rescue-the-boss

CLEANING UP AND GETTING BACK TO WORK

With your boss rescued, and your bonus secured, you can

now delete the local temporary branches.

$ git branch --delete rescue-the-boss

$ git branch --delete helpful-boss-branch

And settle back into your chair to wait for Saint Nicholas

with your book, your branch, and possibly your cat.

32 24 ways 2014 edition

$ git checkout waiting-for-st-nicholas

$ git stash pop

Your working directory has been returned to exactly the

same state you were in at the beginning of the article.

HAVING FUN WITH ANALOGIES

I’ve had a bit of fun with analogies in this article. But

sometimes those little twists on ideas can really help

someone pick up a new idea (git stash: it’s like when

Christmas comes around and everyone throws their

fashion sense out the window and puts on a reindeer

sweater for the holiday party; or git bisect: it’s like

trying to find that one broken light on the string of

Christmas lights). It doesn’t matter if the analogy isn’t

perfect. It’s just a way to give someone a temporary hook

into a concept in a way that makes the concept accessible

while the learner becomes comfortable with it. As the

learner’s comfort increases, the analogies can drop away,

making room for the technically correct definition of how

something works.

Or, if you’re like me, you can choose to never grow old and

just keep mucking about in the analogies. I’d argue it’s a

lot more fun to play with a string of Christmas lights and

some holiday cheer than a directed acyclic graph anyway.

Dealing with Emergencies in Git

24 ways 2014 edition 33

ABOUT THE AUTHOR

Emma Jane Westby is an author, an educator, and a part-time

beekeeper. Her latest videos, Collaborating with Git: Crafting

Workflows at the Command Line, are now available from

O’Reilly. You can follow her adventures on Twitter at

@emmajanehw.

34 24 ways 2014 edition

http://gitforteams.com
http://shop.oreilly.com/product/0636920034872.do
http://shop.oreilly.com/product/0636920034872.do
http://twitter.com/emmajanehw

Jack Franklin 24ways.org/201403

3. JavaScript Modules the
ES6 Way

JavaScript admittedly has plenty of flaws,
but one of the largest and most prominent is
the lack of a module system: a way to split
up your application into a series of smaller
files that can depend on each other to
function correctly.

This is something nearly all other languages come with

out of the box, whether it be Ruby’s require, Python’s

import, or any other language you’re familiar with. Even

CSS has @import! JavaScript has nothing of that sort,

and this has caused problems for application developers

as they go from working with small websites to full client-

side applications. Let’s be clear: it doesn’t mean the new

module system in the upcoming version of JavaScript

won’t be useful to you if you’re building smaller websites

rather than the next Instagram.

JavaScript Modules the ES6 Way

24 ways 2014 edition 35

http://24ways.org/201403

Thankfully, the lack of a module system will soon be a

problem of the past. The next version of JavaScript,

ECMAScript 6, will bring with it a full-featured module

and dependency management solution for JavaScript. The

bad news is that it won’t be landing in browsers for a while

yet – but the good news is that the specification for the

module system and how it will look has been finalised. The

even better news is that there are tools available to get it

all working in browsers today without too much hassle. In

this post I’d like to give you the gift of JS modules and

show you the syntax, and how to use them in browsers

today. It’s much simpler than you might think.

WHAT IS ES6?

ECMAScript is a scripting language that is standardised

by a company called Ecma International. JavaScript is an

implementation of ECMAScript. ECMAScript 6 is simply

the next version of the ECMAScript standard and, hence,

the next version of JavaScript. The spec aims to be fully

comfirmed and complete by the end of 2014, with a target

initial release date of June 2015. It’s impossible to know

when we will have full feature support across the most

popular browsers, but already some ES6 features are

landing in the latest builds of Chrome and Firefox. You

shouldn’t expect to be able to use the new features across

browsers without some form of additional tooling or

library for a while yet.

36 24 ways 2014 edition

http://www.ecma-international.org/

THE ES6 MODULE SPEC

The ES6 module spec was fully confirmed in July 2014, so

all the syntax I will show you in this article is not expected

to change. I’ll first show you the syntax and the new APIs

being added to the language, and then look at how to use

them today. There are two parts to the new module

system. The first is the syntax for declaring modules and

dependencies in your JS files, and the second is a

programmatic API for loading in modules manually. The

first is what most people are expected to use most of the

time, so it’s what I’ll focus on more.

Module syntax

The key thing to understand here is that modules have

two key components. First, they have dependencies. These

are things that the module you are writing depends on to

function correctly. For example, if you were building a

carousel module that used jQuery, you would say that

jQuery is a dependency of your carousel. You import these

dependencies into your module, and we’ll see how to do

that in a minute. Second, modules have exports. These are

the functions or variables that your module exposes

publicly to anything that imports it. Using jQuery as the

example again, you could say that jQuery exports the $

function. Modules that depend on and hence import

jQuery get access to the $ function, because jQuery

exports it.

JavaScript Modules the ES6 Way

24 ways 2014 edition 37

Another important thing to note is that when I discuss a

module, all I really mean is a JavaScript file. There’s no

extra syntax to use other than the new ES6 syntax. Once

ES6 lands, modules and files will be analogous.

NAMED EXPORTS

Modules can export multiple objects, which can be either

plain old variables or JavaScript functions. You denote

something to be exported with the export keyword:

export function double(x) {

return x + x;

};

You can also store something in a variable then export it.

If you do that, you have to wrap the variable in a set of

curly braces.

var double = function(x) {

return x + x;

}

export { double };

A module can then import the double function like so:

import { double } from 'mymodule';

double(2); // 4

38 24 ways 2014 edition

Again, curly braces are required around the variable you

would like to import. It’s also important to note that from

'mymodule' will look for a file called mymodule.js in the

same directory as the file you are requesting the import

from. There is no need to add the .js extension.

The reason for those extra braces is that this syntax lets

you export multiple variables:

var double = function(x) {

return x + x;

}

var square = function(x) {

return x * x;

}

export { double, square }

I personally prefer this syntax over the export function

…, but only because it makes it much clearer to me what

the module exports. Typically I will have my export {…}

line at the bottom of the file, which means I can quickly

look in one place to determine what the module is

exporting.

A file importing both double and square can do so in just

the way you’d expect:

import { double, square } from 'mymodule';

double(2); // 4

square(3); // 9

JavaScript Modules the ES6 Way

24 ways 2014 edition 39

With this approach you can’t easily import an entire

module and all its methods. This is by design – it’s much

better and you’re encouraged to import just the functions

you need to use.

DEFAULT EXPORTS

Along with named exports, the system also lets a module

have a default export. This is useful when you are working

with a large library such as jQuery, Underscore, Backbone

and others, and just want to import the entire library. A

module can define its default export (it can only ever have

one default export) like so:

export default function(x) {

return x + x;

}

And that can be imported:

import double from 'mymodule';

double(2); // 4

This time you do not use the curly braces around the

name of the object you are importing. Also notice how you

can name the import whatever you’d like. Default exports

are not named, so you can import them as anything you

like:

import christmas from 'mymodule';

christmas(2); // 4

40 24 ways 2014 edition

The above is entirely valid.

Although it’s not something that is used too often, a

module can have both named exports and a default

export, if you wish.

One of the design goals of the ES6 modules spec was to

favour default exports. There are many reasons behind

this, and there is a very detailed discussion on the ES

Discuss site about it. That said, if you find yourself

preferring named exports, that’s fine, and you shouldn’t

change that to meet the preferences of those designing

the spec.

Programmatic API

Along with the syntax above, there is also a new API being

added to the language so you can programmatically

import modules. It’s pretty rare you would use this, but

one obvious example is loading a module conditionally

based on some variable or property. You could easily

import a polyfill, for example, if the user’s browser didn’t

support a feature your app relied on. An example of doing

this is:

if(someFeatureNotSupported) {

System.import('my-polyfill').then(function(myPolyFill)

{

// use the module from here

});

}

JavaScript Modules the ES6 Way

24 ways 2014 edition 41

https://esdiscuss.org/topic/moduleimport#content-0
https://esdiscuss.org/topic/moduleimport#content-0

System.import will return a promise, which, if you’re not

familiar, you can read about in this excellent article on

HTMl5 Rocks by Jake Archibald. A promise basically lets

you attach callback functions that are run when the

asynchronous operation (in this case, System.import), is

complete.

This programmatic API opens up a lot of possibilities and

will also provide hooks to allow you to register callbacks

that will run at certain points in the lifetime of a module.

Those hooks and that syntax are slightly less set in stone,

but when they are confirmed they will provide really

useful functionality. For example, you could write code

that would run every module that you import through

something like JSHint before importing it. In development

that would provide you with an easy way to keep your

code quality high without having to run a command line

watch task.

HOW TO USE IT TODAY

It’s all well and good having this new syntax, but right now

it won’t work in any browser – and it’s not likely to for a

long time. Maybe in next year’s 24 ways there will be an

article on how you can use ES6 modules with no extra

work in the browser, but for now we’re stuck with a bit of

extra work.

42 24 ways 2014 edition

http://www.html5rocks.com/en/tutorials/es6/promises/
http://www.html5rocks.com/en/tutorials/es6/promises/

ES6 module transpiler

One solution is to use the ES6 module transpiler, a

compiler that lets you write your JavaScript using the ES6

module syntax (actually a subset of it – not quite

everything is supported, but the main features are) and

have it compiled into either CommonJS-style code

(CommonJS is the module specification that NodeJS and

Browserify use), or into AMD-style code (the spec

RequireJS uses). There are also plugins for all the popular

build tools, including Grunt and Gulp.

The advantage of using this transpiler is that if you are

already using a tool like RequireJS or Browserify, you can

drop the transpiler in, start writing in ES6 and not worry

about any additional work to make the code work in the

browser, because you should already have that set up

already. If you don’t have any system in place for handling

modules in the browser, using the transpiler doesn’t really

make sense. Remember, all this does is convert ES6

module code into CommonJS- or AMD-compliant

JavaScript. It doesn’t do anything to help you get that

code running in the browser, but if you have that part

sorted it’s a really nice addition to your workflow. If you

would like a tutorial on how to do this, I wrote a post back

in June 2014 on using ES6 with the ES6 module transpiler.

JavaScript Modules the ES6 Way

24 ways 2014 edition 43

https://github.com/esnext/es6-module-transpiler
https://github.com/esnext/es6-module-transpiler#build-tools
https://github.com/esnext/es6-module-transpiler#build-tools
http://javascriptplayground.com/blog/2014/06/es6-modules-today/

SystemJS

Another solution is SystemJS. It’s the best solution in my

opinion, particularly if you are starting a new project from

scratch, or want to use ES6 modules on a project where

you have no current module system in place. SystemJS is a

spec-compliant universal module loader: it loads ES6

modules, AMD modules, CommonJS modules, as well as

modules that just add a variable to the global scope

(window, in the browser).

To load in ES6 files, SystemJS also depends on two other

libraries: the ES6 module loader polyfill; and Traceur.

Traceur is best accessed through the bower-traceur

package, as the main repository doesn’t have an easy to

find downloadable version. The ES6 module load polyfill

implements System.import, and lets you load in files using

it. Traceur is an ES6-to-ES5 module loader. It takes code

written in ES6, the newest version of JavaScript, and

transpiles it into ES5, the version of JavaScript widely

implemented in browsers. The advantage of this is that

you can play with the new features of the language today,

even though they are not supported in browsers. The

drawback is that you have to run all your files through

Traceur every time you save them, but this is easily

automated. Additionally, if you use SystemJS, the Traceur

compilation is done automatically for you.

44 24 ways 2014 edition

https://github.com/systemjs/systemjs
https://github.com/ModuleLoader/es6-module-loader/tree/v0.9.4
https://github.com/google/traceur-compiler/
https://github.com/jmcriffey/bower-traceur

All you need to do to get SystemJS running is to add a

<script> element to load SystemJS into your webpage. It

will then automatically load the ES6 module loader and

Traceur files when it needs them. In your HTML you then

need to use System.import to load in your module:

<script>

System.import('./app');

</script>

When you load the page, app.js will be asynchronously

loaded. Within app.js, you can now use ES6 modules.

SystemJS will detect that the file is an ES6 file,

automatically load Traceur, and compile the file into ES5

so that it works in the browser. It does all this dynamically

in the browser, but there are tools to bundle your

application in production, so it doesn’t make a lot of

requests on the live site. In development though, it makes

for a really nice workflow.

When working with SystemJS and modules in general, the

best approach is to have a main module (in our case app.js)

that is the main entry point for your application. app.js

should then be responsible for loading all your

application’s modules. This forces you to keep your

application organised by only loading one file initially, and

having the rest dealt with by that file.

SystemJS also provides a workflow for bundling your

application together into one file.

JavaScript Modules the ES6 Way

24 ways 2014 edition 45

https://github.com/systemjs/systemjs#es6-systemregister-compilation
https://github.com/systemjs/systemjs#es6-systemregister-compilation

CONCLUSION

ES6 modules may be at least six months to a year away (if

not more) but that doesn’t mean they can’t be used today.

Although there is an overhead to using them now – with

the work required to set up SystemJS, the module

transpiler, or another solution – that doesn’t mean it’s not

worthwhile. Using any module system in the browser,

whether that be RequireJS, Browserify or another

alternative, requires extra tooling and libraries to support

it, and I would argue that the effort to set up SystemJS is

no greater than that required to configure any other tool.

It also comes with the extra benefit that when the syntax

is supported in browsers, you get a free upgrade. You’ll be

able to remove SystemJS and have everything continue to

work, backed by the native browser solution.

If you are starting a new project, I would strongly

advocate using ES6 modules. It is a syntax and

specification that is not going away at all, and will soon be

supported in browsers. Investing time in learning it now

will pay off hugely further down the road.

FURTHER READING

If you’d like to delve further into ES6 modules (or ES6

generally) and using them today, I recommend the

following resources:

46 24 ways 2014 edition

▪ ECMAScript 6 modules: the final syntax by Axel

Rauschmayer

▪ Practical Workflows for ES6 Modules by Guy Bedford

▪ ECMAScript 6 resources for the curious JavaScripter

by Addy Osmani

▪ Tracking ES6 support by Addy Osmani

▪ ES6 Tools List by Addy Osmani

▪ Using Grunt and the ES6 Module Transpiler by Thomas

Boyt

▪ JavaScript Modules and Dependencies with jspm by

myself

▪ Using ES6 Modules Today by Guy Bedford

JavaScript Modules the ES6 Way

24 ways 2014 edition 47

http://www.2ality.com/2014/09/es6-modules-final.html
http://guybedford.com/practical-workflows-for-es6-modules
http://addyosmani.com/blog/ecmascript-6-resources-for-the-curious-javascripter/
http://addyosmani.com/blog/tracking-es6-support/
https://github.com/addyosmani/es6-tools
http://www.thomasboyt.com/2013/06/21/es6-module-transpiler
http://javascriptplayground.com/blog/2014/11/js-modules-jspm-systemjs/
http://guybedford.com/es6-modules-today

ABOUT THE AUTHOR

Jack Franklin is a developer, speaker and author who blogs at

javascriptplayground.com and has authored “Beginning jQuery”.

Jack works as an engineer at GoCardless and is also a Google

Developer Expert for the Chrome HTML 5 platform. He tweets

as @jack_franklin and spends far too much time thinking about

JavaScript.

48 24 ways 2014 edition

http://javascriptplayground.com
http://twitter.com/jack_franklin

Rachel Andrew 24ways.org/201404

4. Developing Robust
Deployment Procedures

Once you have developed your site, how do
you make it live on your web hosting? For
many years the answer was to log on to your
server and upload the files via FTP. Over
time most hosts and FTP clients began to
support SFTP, ensuring your files were
transmitted over a secure connection. The
process of deploying a site however
remained the same.

There are issues with deploying a site in this way. You are

essentially transferring files one by one to the server

without any real management of that transfer. If the

transfer fails for some reason, you may end up with a site

that is only half updated. It can then be really difficult to

work out what hasn’t been replaced or added, especially

where you are updating an existing site. If you are

updating some third-party software your update may

include files that should be removed, but that may not be

Developing Robust Deployment Procedures

24 ways 2014 edition 49

http://24ways.org/201404

obvious to you and you risk leaving outdated files littering

your file system. Updating using (S)FTP is a fragile process

that leaves you open to problems caused by both

connectivity and human error. Is there a better way to do

this?

You’ll be glad to know that there is. A modern professional

deployment workflow should have you moving away from

fragile manual file transfers to deployments linked to code

committed into source control.

THE BENEFITS OF GOOD PRACTICE

You may never have experienced any major issues while

uploading files over FTP, and good FTP clients can help.

However, there are other benefits to moving to modern

deployment practices.

No surprises when you launch

If you are deploying in the way I suggest in this article you

should have no surprises when you launch because the

code you committed from your local environment should

be the same code you deploy – and to staging if you have a

staging server. A missing vital file won’t cause things to

start throwing errors on updating the live site.

50 24 ways 2014 edition

Being able to work collaboratively

Source control and good deployment practice makes

working with your clients and other developers easy.

Deploying first to a staging server means you can show

your client updates and then push them live. If you

subcontract some part of the work, you can give your

subcontractor the ability to deploy to staging, leaving you

with the final push to launch, once you know you are

happy with the work.

Having a proper backup of site files with access to them
from anywhere

The process I will outline requires the use of hosted,

external source control. This gives you a backup of your

latest commit and the ability to clone those files and start

working on them from any machine, wherever you are.

Being able to jump back into a site quickly when the
client wants a few changes

When doing client work it is common for some work to be

handed over, then several months might go by without

you needing to update the site. If you don’t have a good

process in place, just getting back to work on it may take

several hours for what could be only a few hours of work

in itself. A solid method for getting your local copy up to

date and deploying your changes live can cut that set-up

time down to a few minutes.

Developing Robust Deployment Procedures

24 ways 2014 edition 51

THE TOOL CHAIN

In the rest of this article I assume that your current

practice is to deploy your files over (S)FTP, using an FTP

client. You would like to move to a more robust method of

deployment, but without blowing apart your workflow

and spending all Christmas trying to put it back together

again. Therefore I’m selecting the most straightforward

tools to get you from A to B.

Source control

Perhaps you already use some kind of source control for

your sites. Today that is likely to be Git but you might also

use Subversion or Mercurial. If you are not using any

source control at all then I would suggest you choose Git,

and that is what I will be working with in this article.

When you work with Git, you always have a local

repository. This is where your changes are committed.

You also have the option to push those changes to a

remote repository; for example, GitHub. You may well

have come across GitHub as somewhere you can go to

download open source code. However, you can also set up

private repositories for sites whose code you don’t want

to make publicly accessible.

A hosted Git repository gives you somewhere to push

your commits to and deploy from, so it’s a crucial part of

our tool chain.

52 24 ways 2014 edition

A deployment service

Once you have your files pushed to a remote repository,

you then need a way to deploy them to your staging

environment and live server. This is the job of a

deployment service.

This service will connect securely to your hosting, and

either automatically (or on the click of a button) transfer

files from your Git commit to the hosting server. If files

need removing, the service should also do this too, so you

can be absolutely sure that your various environments

are the same.

Tools to choose from

What follows are not exhaustive lists, but any of these

should allow you to deploy your sites without FTP.

HOSTED GIT REPOSITORIES

▪ GitHub

▪ Beanstalk

▪ Bitbucket

STANDALONE DEPLOYMENT TOOLS

▪ Deploy

▪ dploy.io

▪ FTPloy

Developing Robust Deployment Procedures

24 ways 2014 edition 53

https://github.com/
http://beanstalkapp.com/
https://bitbucket.org/
http://deployhq.com
http://dploy.io/
https://ftploy.com/

I’ve listed Beanstalk as a hosted Git repository, though it

also includes a bundled deployment tool. Dploy.io is a

standalone version of that tool just for deployment. In this

tutorial I have chosen two separate services to show how

everything fits together, and because you may already be

using source control. If you are setting up all of this for the

first time then using Beanstalk saves having two accounts

– and I can personally recommend them.

PUTTING IT ALL TOGETHER

The steps we are going to work through are:

1. Getting your local site into a local Git repository

2. Pushing the files to a hosted repository

3. Connecting a deployment tool to your web hosting

4. Setting up a deployment

Get your local site into a local Git repository

Download and install Git for your operating system.

Open up a Terminal window and tell Git your name using

the following command (use the name you will set up on

your hosted repository).

> git config --global user.name "YOUR NAME"

Use the next command to give Git your email address.

This should be the address that you will use to sign up for

your remote repository.

54 24 ways 2014 edition

http://beanstalkapp.com/
http://git-scm.com/downloads

> git config --global user.email "YOUR EMAIL ADDRESS"

Staying in the command line, change to the directory

where you keep your site files. If your files are in /Users/

rachel/Sites/mynicewebite you would type:

> cd /Users/rachel/Sites/mynicewebsite

The next command tells Git that we want to create a new

Git repository here.

> git init

We then add our files:

> git add .

Then commit the files:

> git commit -m “Adding initial files”

The bit in quotes after -m is a message describing what

you are doing with this commit. It’s important to add

something useful here to remind yourself later why you

made the changes included in the commit.

Your local files are now in a Git repository! However,

everything should be just the same as before in terms of

working on the files or viewing them in a local web server.

The only difference is that you can add and commit

changes to this local repository.

Developing Robust Deployment Procedures

24 ways 2014 edition 55

Want to know more about Git? There are some excellent

resources in a range of formats here.

Setting up a hosted Git repository

I’m going to use Atlassian Bitbucket for my first example

as they offer a free hosted and private repository.

Create an account on Bitbucket. Then create a new empty

repository and give it a name that will identify the

repository easily.

Click Getting Started and under Command Line select “I

have an existing project”. This will give you a set of

instructions to run on the command line. The first

instruction is just to change into your working directory

as we did before. We then add a remote repository, and

run two commands to push everything up to Bitbucket.

cd /path/to/my/repo

git remote add origin https://myuser@bitbucket.org/

myname/24ways-tutorial.git

git push -u origin --all

git push -u origin --tags

When you run the push command you will be asked for

the password that you set for Bitbucket. Having entered

that, you should be able to view the files of your site on

Bitbucket by selecting the navigation option Source in the

sidebar.

56 24 ways 2014 edition

http://www.git-tower.com/learn/
http://www.git-tower.com/learn/
https://bitbucket.org/

You will also be able to see commits. When we initially

committed our files locally we added the message “Adding

initial files”. If you select Commits from the sidebar you’ll

see we have one commit, with the message we set locally.

You can imagine how useful this becomes when you can

look back and see why you made certain changes to a

project that perhaps you haven’t worked on for six

months.

Before working on your site locally you should run:

> git pull

in your working directory to make sure you have all of the

most up-to-date files. This is especially important if

someone else might work on them, or you just use

multiple machines.

You then make your changes and add any changed or

modified files, for example:

> git add index.php

Commit the change locally:

> git commit -m “updated the homepage”

Then push it to Bitbucket:

> git push origin master

If you want to work on your files on a different computer

you clone them using the following command:

Developing Robust Deployment Procedures

24 ways 2014 edition 57

> git clone https://myuser@bitbucket.org/myname/

24ways-tutorial.git

You then have a copy of your files that is already a Git

repository with the Bitbucket repository set up as a

remote, so you are all ready to start work.

Connecting a deployment tool to your repository and
web hosting

The next step is deploying files. I have chosen to use a

deployment tool called Deploy as it has support for

Bitbucket. It does have a monthly charge – but offers a

free account for open source projects.

Sign up for your account then log in and create your first

project. Select Create an empty project. Under Configure

Repository Details choose Bitbucket and enter your

username and password.

If Deploy can connect, it will show you your list of

projects. Select the one you want.

The next screen is Add New Server and here you need to

configure the server that you want to deploy to. You might

set up more than one server per project. In an ideal world

you would deploy to a staging server for your client

preview changes and then deploy once everything is

signed off. For now I’ll assume you just want to set up your

live site.

58 24 ways 2014 edition

http://deployhq.com

Give the server a name; I usually use Production for the

live web server. Then choose the protocol to connect

with. Unless your host really does not support SFTP

(which is pretty rare) I would choose that instead of FTP.

You now add the same details your host gave you to log in

with your SFTP client, including the username and

password. The Path on server should be where your files

are on the server. When you log in with an SFTP client and

you get put in the directory above public_html then you

should just be able to add public_html here.

Once your server is configured you can deploy. Click

Deploy now and choose the server you just set up. Then

choose the last commit (which will probably be selected

for you) and click Preview deployment. You will then get a

preview of which files will change if you run the

deployment: the files that will be added and any that will

be removed. At the very top of that screen you should see

the commit message you entered right back when you

initially committed your files locally.

If all looks good, run the deployment.

You have taken the first steps to a more consistent and

robust way of deploying your websites. It might seem like

quite a few steps at first, but you will very soon come to

realise how much easier deploying a live site is through

this process.

Developing Robust Deployment Procedures

24 ways 2014 edition 59

YOUR NEW PROCEDURE STEP BY STEP

1. Edit your files locally as before, testing them through a

web server on your own computer.

2. Commit your changes to your local Git repository.

3. Push changes to the remote repository.

4. Log into the deployment service.

5. Hit the Deploy now button.

6. Preview the changes.

7. Run the deployment and then check your live site.

TAKING IT FURTHER

I have tried to keep things simple in this article because so

often, once you start to improve processes, it is easy to

get bogged down in all the possible complexities. If you

move from deploying with an FTP client to working in the

way I have outlined above, you’ve taken a great step

forward in creating more robust processes. You can

continue to improve your procedures from this point.

Staging servers for client preview

When we added our server we could have added an

additional server to use as a staging server for clients to

preview their site on. This is a great use of a cheap VPS

server, for example. You can set each client up with a

60 24 ways 2014 edition

subdomain – clientname.yourcompany.com – and this

becomes the place where they can view changes before

you deploy them.

In that case you might deploy to the staging server, let the

client check it out and then go back and deploy the same

commit to the live server.

Using Git branches

As you become more familiar with using Git, and

especially if you start working with other people, you

might need to start developing using branches. You can

then have a staging branch that deploys to staging and a

production branch that is always a snapshot of what has

been pushed to production. This guide from Beanstalk

explains how this works.

Automatic deployment to staging

I wouldn’t suggest doing automatic deployment to the live

site. It’s worth having someone on hand hitting the button

and checking that everything worked nicely. If you have

configured a staging server, however, you can set it up to

deploy the changes each time a commit is pushed to it.

If you use Bitbucket and Deploy you would create a

deployment hook on Bitbucket to post to a URL on Deploy

when a push happens to deploy the code. This can save

you a few steps when you are just testing out changes.

Developing Robust Deployment Procedures

24 ways 2014 edition 61

http://guides.beanstalkapp.com/version-control/branching-best-practices.html

Even if you have made lots of changes to the staging

deployment, the commit that you push live will include

them all, so you can do that manually once you are happy

with how things look in staging.

Further Reading

▪ The tutorials from Git Client Tower, already mentioned

in this article, are a great place to start if you are new to

Git.

▪ A presentation from Liam Dempsey showing how to

use the GitHub App to connect to Bitbucket

▪ Try Git from Code School

▪ The Git Workbook a self study guide to Git from Lorna

Mitchell

GET SET UP FOR THE NEW YEAR

I love to start the New Year with a clean slate and

improved processes. If you are still wrangling files with

FTP then this is one thing you could tick off your list to

save you time and energy in 2015. Post to the comments

if you have suggestions of tools or ideas for ways to

enhance this type of set-up for those who have already

taken the first steps.

62 24 ways 2014 edition

http://www.git-tower.com/learn/
http://www.slideshare.net/liamdempsey/using-the-github-app-to-connect-to-bitbucket
http://www.slideshare.net/liamdempsey/using-the-github-app-to-connect-to-bitbucket
https://www.codeschool.com/courses/try-git
https://leanpub.com/gitworkbook

ABOUT THE AUTHOR

Rachel Andrew is a Director of edgeofmyseat.com, a UK web

development consultancy and creators of the small content

management system, Perch. She is the author of a number of

books, most recently The Profitable Side Project Handbook and

CSS3 Layout Modules, and is a regular columnist for A List

Apart.

When not writing about business and technology on her blog at

rachelandrew.co.uk or speaking at conferences, you will usually

find Rachel running up and down one of the giant hills in Bristol.

Developing Robust Deployment Procedures

24 ways 2014 edition 63

http://grabaperch.com
http://rachelandrew.co.uk/books
http://rachelandrew.co.uk/books/the-profitable-side-project
http://rachelandrew.co.uk/books/css3-layout-modules
http://alistapart.com/author/rachelandrew
http://alistapart.com/author/rachelandrew
http://rachelandrew.co.uk
http://lanyrd.com/profile/rachelandrew/

Darren Beale 24ways.org/201405

5. What Is Vagrant and
Why Should I Care?

If you run a web server, a database server
and your scripting language(s) of choice on
your main machine and you have not yet
switched to using virtualisation in your
workflow then this essay may be of some
value to you.

I know you exist because I bump into you daily:

freelancers coming in to work on our projects; internet

friends complaining about reinstalling a development

environment because of an operating system upgrade;

fellow agency owners who struggle to brief external help

when getting a particular project up and running; or even

hardcore back-end developers who “don’t do ops” and

prefer to run their development stack of choice locally.

There are many perfectly reasonable arguments as to why

you may not have already made the switch, from being

simply too busy, all the way through to a distrust of the

new. I’ll admit that there are many new technologies or

workflows that I hear of daily and instantly disregard

64 24 ways 2014 edition

http://24ways.org/201405

because I have tool overload, that feeling I get when I hear

about a new shiny thing and think “Well, what I do now

works – I’ll leave it for others to play with.” If that’s you

when it comes to Vagrant then I hope you’ll hear me out.

The business case is compelling enough for you to make

that switch; as a bonus it’s also really easy to get going.

In this article we’ll start off by going through the high

level, the tools available and how it all fits together. Then

we’ll touch on the justification for making the switch,

providing a few use cases that might resonate with you.

Finally, I’ll provide a very simple example that you can

follow to get yourself up and running.

WHAT?

You already know what virtualisation is. You use the

ability to run an operating system within another

operating system every day. Whether that’s Parallels or

VMware on your laptop or similar server-based tools that

drive the ‘cloud’, squeezing lots of machines on to physical

hardware and making it really easy to copy servers and

even clusters of servers from one place to another. It’s an

amazing technology which has changed the face of the

internet over the past fifteen years.

Simply put, Vagrant makes it really easy to work with

virtual machines. According to the Vagrant docs:

What Is Vagrant and Why Should I Care?

24 ways 2014 edition 65

https://docs.vagrantup.com/v2/why-vagrant/

If you’re a designerdesigner, Vagrant will automatically
set everything up that is required for that web
app in order for you to focus on doing what you
do best: design. Once a developer configures
Vagrant, you don’t need to worry about how to
get that app running ever again. No more
bothering other developers to help you fix your
environment so you can test designs. Just
check out the code, vagrant up, and start
designing.

While I’m not sure I agree with the implication that all

designers would get others to do the configuring, I think

you’ll agree that the “Just check out the code… and start

designing” premise is very compelling.

You don’t need Vagrant to develop your web applications

on virtual machines. All you need is a virtualisation

software package, something like VMware Workstation

or VirtualBox, and some code. Download the half-

gigabyte operating system image that you want and install

it. Then download and configure the stack you’ll be

working with: let’s say Apache, MySQL, PHP. Then install

some libraries, CuRL and ImageMagick maybe, and finally

configure the ability to easily copy files from your

machine to the new virtual one, something like Samba, or

install an FTP server. Once this is all done, copy the code

over, import the database, configure Apache’s virtual host,

restart and cross your fingers.

66 24 ways 2014 edition

http://www.vmware.com/uk/products/workstation/features.html
https://www.virtualbox.org

If you’re a bit weird like me then the above is pretty easy

to do and secretly quite fun. Indeed, the amount of traffic

to one of my more popular blog posts proves that a lot of

people have been building themselves development

servers from scratch for some time (or at least trying to

anyway), whether that’s on virtual or physical hardware.

Or you could use Vagrant. It allows you, or someone else,

to specify in plain text how the machine’s virtual

hardware should be configured and what should be

installed on it. It also makes it insanely easy to get the

code on the server. You check out your project, type

vagrant up and start work.

WHY?

It’s worth labouring the point that Vagrant makes it really

easy; I mean look-no-tangle-of-wires-or-using-vim-and-

loads-of-annoying-command-line-stuff easy to run a

development environment.

That’s all well and good, I hear you say, but there’s a steep

learning curve, an overhead to switch. You’re busy and

this all sounds great but you need to get on; you’ve got a

career to build or a business to run and you don’t have

time to learn new stuff right now.

In short, what’s the business case?

What Is Vagrant and Why Should I Care?

24 ways 2014 edition 67

http://bealers.com/2006/03/building-a-php-development-server-from-scratch/

The business case involves saved time, a very low barrier

to entry and the ability to give the exact same

environment to somebody else.

Getting your first development virtual machine running

will take minutes, not counting download time. Seriously,

use pre-built Vagrant files and provisioners (we’ll touch on

this below) and you can start developing immediately.

Once you’ve finished developing you can check in your

changes, ask a colleague or freelancer to check them out,

and then they run the code on the exact same machine –

even if they are on the other side of the world and

regardless of whether they are on Windows, Linux or

Apple OS X.

The configuration to build the machine isn’t a huge binary

disk image that’ll take ages to download from Git; it’s two

small text files that can be version controlled too, so you can

see any changes made to the config and roll back if

needed.

No more ‘It works for me’ reports; no ‘Oh, I was using PHP

5.3.3, not PHP 5.3.11’ – you’re both working on exact

same copies of the development environment. With a

tested and verified provisioning file you’ll have the

confidence that when you brief your next freelancer in to

your team there won’t be that painful to and fro of getting

68 24 ways 2014 edition

the system up and running, where you’re on a Skype call

and they are uttering the immortal words, ‘It still doesn’t

work’. You know it works because you can run it too.

This portability becomes even more important when

you’re working on larger sites and systems. Need a load

balancer? Multiple front-end servers and a clustered

database back-end? No problem. Add each server into the

same Vagrant file and a single command will build all of

them. As you’ll know if you work on larger, business

critical systems, keeping the operating systems in sync is a

real problem: one server with a slightly different library

causing sporadic and hard to trace issues is a genuine time

black hole. Well, the good news is that you can use the

same provisioning files to keep test and production

machines in sync using your current build workflow.

Let’s also not forget the most simple use case: a single

developer with multiple websites running on a single

machine. If that’s you and you switch to using Vagrant-

managed virtual machines then the next time you upgrade

your operating system or do a fresh install there’s no

chance that things will all stop working. The server config

is all tucked away in version control with your code. Just

pull it down and carry on coding.

What Is Vagrant and Why Should I Care?

24 ways 2014 edition 69

OK, GOT IT. SHOW ME ALREADY

If you want to try this out you’ll need to install the latest

VirtualBox and Vagrant for your platform. If you already

have VMware Workstation or another supported

virtualisation package installed you can use that instead

but you may need to tweak my Vagrant file below.

Depending on your operating system, a reboot might also

be wise.

Note: the commands below were executed on my

MacBook, but should also work on Windows and Linux. If

you’re using Windows make sure to run the command

prompt as Administrator or it’ll fall over when trying to

update the hosts file.

As a quick sanity check let’s just make sure that we have

the vagrant command in our path, so fire up a terminal

and check the version number:

$ vagrant -v

Vagrant 1.6.5

We’ve one final thing to install and that’s the vagrant-

hostsupdater plugin. Once again, in your terminal:

$ vagrant plugin install vagrant-hostsupdater

Installing the 'vagrant-hostsupdater' plugin. This can

take a few minutes...

Installed the plugin 'vagrant-hostsupdater (0.0.11)'!

Hopefully that wasn’t too painful for you.

70 24 ways 2014 edition

https://www.virtualbox.org
https://www.vagrantup.com
https://github.com/cogitatio/vagrant-hostsupdater
https://github.com/cogitatio/vagrant-hostsupdater

There are two things that you need to manage a virtual

machine with Vagrant:

1. a Vagrant file: this tells Vagrant what hardware to spin

up

2. a provisioning file: this tells Vagrant what to do on the

machine

To save you copying and pasting I’ve supplied you with a

simple example (ZIP) containing both of these. Unzip it

somewhere sensible and in your terminal make sure you

are inside the Vagrant folder:

$ cd where/you/placed/it/24ways

$ ls -l

-rw-r--r--@ 1 bealers staff 11055 9 Nov 09:16

bealers-24ways.md

-rw-r--r--@ 1 bealers staff 118152 9 Nov 10:08

it-works.png

drwxr-xr-x 5 bealers staff 170 8 Nov 22:54 vagrant

$ cd vagrant/

$ ls -l

-rw-r--r--@ 1 bealers staff 1661 8 Nov 21:50

Vagrantfile

-rwxr-xr-x@ 1 bealers staff 3841 9 Nov 08:00

provision.sh

What Is Vagrant and Why Should I Care?

24 ways 2014 edition 71

http://bealers.com/24ways.zip
http://bealers.com/24ways.zip

The Vagrant file tells Vagrant how to configure the virtual

hardware of your development machine. Skipping over

some of the finer details, here’s what’s in that Vagrant file:

www.vm.box = "ubuntu/trusty64"

Use Ubuntu 14.04 for the VM’s OS. Vagrant will only

download this once. If another project uses the same OS,

Vagrant will use a cached version.

www.vm.hostname = "bealers-24ways.dev"

Set the machine’s hostname. If, like us, you’re using the

vagrant-hostsupdater plugin, this will also get added to

your hosts file, pointing to the virtual machine’s IP

address.

www.vm.provider :virtualbox do |vb|

vb.customize ["modifyvm", :id, "--cpus", "2"]

end

Here’s an example of configuring the virtual machine’s

hardware on the fly. In this case we want two virtual

processors.

Note: this is specific for the VirtualBox provider, but you

could also have a section for VMware or other supported

virtualisation software.

www.vm.network "private_network", ip: "192.168.13.37"

72 24 ways 2014 edition

This specifies that we want a private networking link

between your computer and the virtual machine. It’s

probably best to use a reserved private subnet like

192.168.0.0/16 or 10.0.0.0/8

www.vm.synced_folder "../", "/var/www/24ways",

owner: "www-data", group: "www-data"

A particularly handy bit of Vagrant magic. This maps your

local 24ways parent folder to /var/www/24ways on the

virtual machine. This means the virtual machine already

has direct access to your code and so do you. There’s no

messy copying or synchronisation – just edit your files and

immediately run them on the server.

www.vm.provision :shell, :path => "provision.sh"

This is where we specify the provisioner, the script that

will be executed on the machine.

If you open up the provisioner you’ll see it’s a bash script

that does things like:

▪ install Apache, PHP, MySQL and related libraries

▪ configure the libraries: set permissions, enable logging

▪ create a database and grant some access rights

▪ set up some code for us to develop on; in this case, fire

up a vanilla WordPress installation

To get this all up and running you simply need to run

Vagrant from within the vagrant folder:

What Is Vagrant and Why Should I Care?

24 ways 2014 edition 73

$ vagrant up

You should now get a Matrix-like stream of stuff shooting

up the screen. If this is the first time Vagrant has used this

particular operating system image – remember we’ve

specified the latest version of Ubuntu – it’ll download the

disc image and cache it for future reuse. Then all the

packages are downloaded and installed and finally all our

configuration steps occur incluing the download and

configuration of WordPress.

Halfway through proceedings it’s likely that the process

will halt at a prompt something like this:

==> www: adding to (/etc/hosts) : 192.168.13.37

bealers-24ways.dev # VAGRANT:

2dbfbced1b1e79d2a0942728a0a57ece (www) /

899bd80d-4251-4f6f-91a0-d30f2d9918cc

Password:

You need to enter your password to give vagrant sudo

rights to add the IP address and hostname mapping to

your local hosts file.

Once finished, fire up your browser and go to

http://bealers-24ways.dev. You should see a default

WordPress installation. The username for wp-admin is

admin and the password is 24ways.

74 24 ways 2014 edition

If you take a look at your local filesystem the 24ways

folder should now look like:

$ cd ../

$ ls -l

-rw-r--r--@ 1 bealers staff 13074 9 Nov 10:14

bealers-24ways.md

drwxr-xr-x 21 bealers staff 714 9 Nov 10:06 code

drwxr-xr-x 3 bealers staff 102 9 Nov 10:06 etc

-rw-r--r--@ 1 bealers staff 118152 9 Nov 10:08

it-works.png

drwxr-xr-x 5 bealers staff 170 9 Nov 10:03

vagrant

-rwxr-xr-x 1 bealers staff 1315849 9 Nov 10:06

wp-cli

$ cd vagrant/

$ ls -l

What Is Vagrant and Why Should I Care?

24 ways 2014 edition 75

-rw-r--r--@ 1 bealers staff 1661 9 Nov 09:41

Vagrantfile

-rwxr-xr-x@ 1 bealers staff 3836 9 Nov 10:06

provision.sh

The code folder contains all the WordPress files. You can

edit these directly and refresh that page to see your

changes instantly.

Staying in the vagrant folder, we’ll now SSH to the machine

and have a quick poke around.

$ vagrant ssh

Welcome to Ubuntu 14.04.1 LTS (GNU/Linux

3.13.0-39-generic x86_64)

* Documentation: https://help.ubuntu.com/

System information as of Sun Nov 9 10:03:38 UTC 2014

System load: 1.35 Processes: 102

Usage of /: 2.7% of 39.34GB Users logged in: 0

Memory usage: 16% IP address for eth0:

10.0.2.15

Swap usage: 0%

Graph this data and manage this system at:

https://landscape.canonical.com/

Get cloud support with Ubuntu Advantage Cloud Guest:

http://www.ubuntu.com/business/services/cloud

0 packages can be updated.

76 24 ways 2014 edition

0 updates are security updates.

vagrant@bealers-24ways:~$

You’re now logged in as the Vagrant user; if you want to

become root this is easy:

vagrant@bealers-24ways:~$ sudo su -

root@bealers-24ways:~#

Or you could become the webserver user, which is a good

idea if you’re editing the web files directly on the server:

root@bealers-24ways:~# su - www-data

www-data@bealers-24ways:~$

www-data’s home directory is /var/www so we should be

able to see our magically mapped files:

www-data@bealers-24ways:~$ ls -l

total 4

drwxr-xr-x 1 www-data www-data 306 Nov 9 10:09 24ways

drwxr-xr-x 2 root root 4096 Nov 9 10:05 html

www-data@bealers-24ways:~$ cd 24ways/

www-data@bealers-24ways:~/24ways$ ls -l

total 1420

-rw-r--r-- 1 www-data www-data 13682 Nov 9 10:19

bealers-24ways.md

drwxr-xr-x 1 www-data www-data 714 Nov 9 10:06 code

drwxr-xr-x 1 www-data www-data 102 Nov 9 10:06 etc

-rw-r--r-- 1 www-data www-data 118152 Nov 9 10:08

it-works.png

What Is Vagrant and Why Should I Care?

24 ways 2014 edition 77

drwxr-xr-x 1 www-data www-data 170 Nov 9 10:03

vagrant

-rwxr-xr-x 1 www-data www-data 1315849 Nov 9 10:06

wp-cli

We can also see some of our bespoke configurations:

www-data@bealers-24ways:~/24ways$ cat /etc/php5/

mods-available/siftware.ini

upload_max_filesize = 15M

log_errors = On

display_errors = On

display_startup_errors = On

error_log = /var/log/apache2/php.log

memory_limit = 1024M

date.timezone = Europe/London

www-data@bealers-24ways:~/24ways$ ls -l /etc/apache2/

sites-enabled/

total 0

lrwxrwxrwx 1 root root 43 Nov 9 10:06

bealers-24ways.dev.conf -> /var/www/24ways/etc/

bealers-24ways.dev.conf

If you want to leave the server, simply type Ctrl+D a few

times and you’ll be back where you started.

www-data@bealers-24ways:~/24ways$ logout

root@bealers-24ways:~# logout

vagrant@bealers-24ways:~$ logout

Connection to 127.0.0.1 closed.

$

You can now halt the machine:

78 24 ways 2014 edition

$ vagrant halt

==> www: Attempting graceful shutdown of VM...

==> www: Removing hosts

BONUS LEVEL

The example I’ve provided isn’t very realistic. In the real

world I’d expect the Vagrant file and provisioner to be

included with the project and for it not to create the

directory structure, which should already exist in your

project. The same goes for the Apache VirtualHost file.

You’ll also probably have a default SQL script to populate

the database.

As you work with Vagrant you might start to find bash

provisioning to be quite limiting, especially if you are

working on larger projects which use more than one

server. In that case I would suggest you take a look at

Ansible, Puppet or Chef. We use Ansible because we like

YAML but they all do the same sort of thing. The main

benefit is being able to use the same Vagrant provisioning

scripts to also provision test, staging and production

environments using your build workflows.

Having to supply a password so the hosts file can be

updated gets annoying very quicky so you can give

Vagrant sudo rights:

$ sudo visudo

What Is Vagrant and Why Should I Care?

24 ways 2014 edition 79

http://www.ansible.com/home
http://puppetlabs.com
https://www.getchef.com/chef/
http://www.yaml.org

Add these lines to the bottom (Shift+G then i then Ctrl+V

then Esc then :wq)

Cmnd_Alias VAGRANT_HOSTS_ADD = /bin/sh -c echo "*" >>

/etc/hosts

Cmnd_Alias VAGRANT_HOSTS_REMOVE = /usr/bin/sed -i -e /*/

d /etc/hosts

%staff ALL=(root) NOPASSWD: VAGRANT_HOSTS_ADD,

VAGRANT_HOSTS_REMOVE

Vagrant caches the operating system images that you

download but it’ll download the installed software

packages every time. You can get around this by using a

plugin like vagrant-cachier or, if you’re really keen,

maintain local Apt repositories (or whatever the

equivalent is for your server architecture).

At some point you might start getting a large number of

virtual machines running on your poor hardware all at the

same time, especially if you’re switching between projects

a lot and each of those projects use lots of servers. We’re

just getting to that stage now, so are considering a

medium-term move to a containerised option like Docker,

which seems to be maturing now.

If you are keen not to use any command line tools

whatsoever and you’re on OS X then you could check out

Vagrant Manager as it looks quite shiny.

80 24 ways 2014 edition

https://github.com/fgrehm/vagrant-cachier
https://www.docker.com
http://vagrantmanager.com

Finally, there are a huge amount of resources to give you

pre-built Vagrant machines from the likes of VVV for

Wordpress, something similar for Perch, PuPHPet for

generating various configurations, and a long list of pre-

built operating systems at VagrantBox.es.

WRAPPING UP

Hopefully you can now see why it might be worthwhile to

add Vagrant to your development workflow. Whether

you’re an agency drafting in freelancers or a one-person

band running lots of sites on your laptop using MAMP or

something similar.

Vagrant makes it easy to launch exact copies of the same

machine in a repeatable and version controlled way. The

learning curve isn’t too steep and, once configured, you

can forget about it and focus on getting your work done.

What Is Vagrant and Why Should I Care?

24 ways 2014 edition 81

https://github.com/Varying-Vagrant-Vagrants/VVV
https://github.com/PerchCMS/perch-vagrant
https://puphpet.com
http://www.vagrantbox.es

ABOUT THE AUTHOR

Darren Beale is a Linux sysadmin and backend developer in

Shropshire who these days spends most of his time in cashflow

projections and talking to the clients of his agency, Siftware.

His dream is to retire to the woods and make furniture all day

but until he can find a well paying consulting gig doing this I’m

afraid we’re stuck with him.

Darren tweets and blogs about things like business, self-funded

product development and chainsaws.

82 24 ways 2014 edition

http://siftware.com
https://twitter.com/bealers
http://bealers.com

Carolyn Wood 24ways.org/201406

6. Don’t Push Through the
Pain

In 2004, I lost my web career. In a single
day, it was gone. I was in too much pain to
use a keyboard, a Wacom tablet (I couldn’t
even click the pen), or a trackball. Switching
my mouse to use my left (non-dominant)
hand only helped a bit; then that hand went,
too. I tried all the easy-to-find equipment
out there, except for expensive gizmos with
foot pedals. I had tingling in my
fingers—which, when I was away from the
computer, would rhythmically move as if
some other being controlled them. I worried
about Parkinson’s because the movements
were so dramatic. Pen on paper was painful.
Finally, I discovered one day that I couldn’t
even turn a doorknob.

Don’t Push Through the Pain

24 ways 2014 edition 83

http://24ways.org/201406

The only highlight was that I couldn’t dust, scrub, or

vacuum. We were forced to hire someone to come in once

a week for an hour to whip through the house. You can

imagine my disappointment.

My injuries had gradually slithered into my life without

notice. I’d occasionally have sore elbows, or my wrist

might ache for a day, or my shoulders feel tight. But

nothing to keyboard home about. That’s the critical bit of

news. One day, you’re pretty fine. The next day, you don’t

have your job—or any job that requires the use of your

hands and wrists.

I had to walk away from the computer for over four

months—and partially for several months more. That’s

right: no income. If I hadn’t found a gifted massage

therapist, the right book of stretches, the equipment I

should have been using all along, and learned how to pay

attention to my body—even just a little bit more—I quite

possibly wouldn’t be writing this article today. I wouldn’t

be writing anything, anywhere.

Most of us have heard of (and even claimed to have read

all of) Mihaly Csikszentmihalyi, author of Flow: The

Psychology of Optimal Experience, who describes the state

of flow—the place our minds go when we are fully

engaged and in our element. This lovely state of highly

focused activity is deeply satisfying, often creative, and

quite familiar to many of us on the web who just can’t quit

84 24 ways 2014 edition

http://www.ted.com/talks/mihaly_csikszentmihalyi_on_flow?language=en

until the copy sings or the code is untangled or we get our

highest score yet in Angry Birds. Our minds may enter

that flow, but too often as our brains take flight, all else

recedes. And we leave something very important behind.

Our bodies.

My body wasn’t made to make the same minute

movements thousands of times a day, most days of the

year, for decades, and neither was yours. The wear and

tear sneaks up on you, especially if you’re the obsessive

perfectionist that we all pretend not to be. Oh? You’re not

obsessed? I wasn’t like this all the time, but I remember

sitting across from my husband, eating dinner, and I didn’t

hear a word he said. I’d left my brain upstairs in my office,

where it was wrestling in a death match with the box

model or, God help us all, IE 5.2. I was a writer, too, and I

was having my first inkling that I was a content strategist.

Work was exciting. I could sit up late, in the flow, fingers

flying at warp speed. I could sit until those wretched birds

outside mocked me with their damn, cheerful “Hurray, it’s

morning!” songs. Suddenly, while, say, washing dishes, the

one magical phrase that captured the essence of a voice

or idea would pop up, and I would have mowed down

small animals and toddlers to get to my computer and

hammer out that website or article, to capture that

thought before it escaped. Note my use of the word

hammer. Sound at all familiar?

Don’t Push Through the Pain

24 ways 2014 edition 85

But where was my body during my work? Jaw jutting

forward to see the screen, feet oddly positioned—and

then left in place like chunks of marble—back

unsupported, fingers pounding the keys, wrists and arms

permanently twisted in unnatural angles that we thought

were natural. And clicking. Clicking, clicking, clicking that

mouse. Thumbing tiny keyboards on phones. A lethal little

gesture for tiny little tendons. Though I was fine from, say

1997 to 2004, by the end of 2004 this behavior

culminated in disaster. I had repetitive stress injuries, aka

repetitive motion injuries. As the Apple site says, “A brief

exposure to these conditions would not cause harm. But a

prolonged exposure may, in some people, result in

reduced ability to function.” I’ll say.

I frantically turned to people on lists and forums. “Try a

track ball.” Already did that. “Try a tablet.” Worse. One

person wrote, “I still come here once in a while and can

type a couple sentences, but I’ve permanently got

thoracic outlet syndrome and I’ll never work again.” Oh,

beauteous web, oh, long-distance friends, farewell.

THE WRIST BONE’S CONNECTED TO THE BRAIN
BONE

That variation on the old song tells part of the story. Most

people (and many of their physicians) believe that tingling

fingers and aching wrists MUST be carpel tunnel

syndrome. Nope. If your neck juts forward, it tenses and

86 24 ways 2014 edition

http://www.apple.com

stays tense the entire time you work in that position.

Remember how your muscles felt after holding a landline

phone with your neck tilted to one side for a long client

meeting? Regrettable. Tensing your shoulders because

your chair’s not designed properly puts you at risk for

thoracic outlet syndrome, a career-killer if ever there was

one. The nerves and tendons in your neck and shoulder

refer down your arms, and muscles swell around nerves,

causing pain and dysfunction. Your elbows have a tendon

that is especially vulnerable to repetitive movements

(think tennis elbow). Your wrists are performing

something akin to a circus act with one thousand shows a

day.

So, all the fine tendons and ligaments in your fingers have

problems that may not start at your wrists at all. Though

some people truly do have carpal tunnel syndrome, my

finger and wrist problems weren’t solved by heavily

massaging my fingers (though, that was helpful, too) or my

wrists. They were fixed by work on my neck, upper back,

shoulders, arms, and elbows. This explains why many

people have surgery for carpal tunnel syndrome and just

months later say, “What?! How can I possibly have it

again? I had an operation!” Well, fellow buckaroo, you

may never have had carpel tunnel syndrome. You may

have had—or perhaps will have—one long disaster area

from your neck to your fingertips.

Don’t Push Through the Pain

24 ways 2014 edition 87

HOW TO CRAWL BACK

Before trying extreme measures, you may be able to

function again even if you feel hopeless. I managed to

heal, and so have others, but I’ll always be at risk.

As Jen Simmons, of The Web Ahead podcast and other

projects told me, “It took a long time to injure myself. It

took a long time to get back to where I was. My right arm

between my elbow and wrist would start aching

intermittently. Eventually, my arm even ached at night. I

started each day with yesterday’s pain.” Simple measures,

used consistently, helped her back.

1. Massage therapy

I don’t remember what the rest of the world is like, but in

Portland, Oregon, we have more than one massage

therapy college. (Of course we do.) I saw a former teacher

at the most respected school. This is not your “It was all so

soothing. Why, I fell asleep!” massage. This is “Holy crap,

he’s grinding his elbow into my armpit!“ massage therapy,

with the emphasis on therapy. I owe him everything.

Make sure you have someone who really knows what

they’re doing. Get many referrals. Try a question, “Does

my psoas muscle affect my back?” If they can’t answer it,

flee. Regularly see the one you choose and after a while,

depending on how injured you are, you may be able to

taper off.

88 24 ways 2014 edition

https://twitter.com/jensimmons
http://www.thewebahead.net

2. Change your equipment

You may need to be hands-on with several pieces of

equipment before you find the ones that don’t cause more

pain. Many companies have restocking fees, charges to

ship the equipment you want to return, and other retail

atrocities. Always be sure to ask what the return policies

are at any company before purchasing.

MICE

You may have more success than I did with equipment

such as the Wacom tablet. Mine came with a pen, and it

hurt to repetitively click it. Trackballs are another option

but, for many, they are better at prevention than recovery.

But let’s get to the really effective stuff. One of the

biggest sources of pain is using your mouse. One major

reason is that your hand and wrist are in a perpetually

unnatural position and you’re also moving your arm quite

a bit. Each time you move the mouse, it is placing stress on

your neck, shoulders and arms, because you need to lift

them slightly in order to move the mouse and you need to

angle your wrist. You may also be too injured to use the

trackpad all the time, and this mouse, the vertical mouse is

a dandy preventative measure, too. Shaking up your

patterns is a wise move. I have long fingers, not especially

thin, yet the small size works best for me. (They have

larger choices available.) What?! A sideways mouse? Yep.

All the weight of your hand will be resting on it in the

Don’t Push Through the Pain

24 ways 2014 edition 89

http://www.kinesis-ergo.com/shop/verticalmouse-4-small/

handshake position. Your forearms aren’t constantly

twisting over hill and dale. You aren’t using any muscles in

your wrist or hand. They are relaxing. You’ll adapt in a day,

and oh, oh, what a relief it is.

KEYBOARDS

I really liked doing business with the people at Kinesis-

Ergo. (I’m not affiliated with them in any way.) They have

the vertical mouse and a number of keyboards. The one

that felt the most natural to me, and, once again, it only

takes a day to adapt, is the Freestyle2 for the Mac. They

have several options. I kept the keyboard halves attached

to each other at first, and then spread them apart a little

more. I recommend choosing one that slants and can

separate. You can adjust the angle. For a little extra, they’ll

make sure it’s all set up and ready to go for you. I’m

guessing that some Googling will find you similar

equipment, wherever you live.

Warning: if you use the ergonomic keyboards, you may

have fewer USB ports. The laptop will be too far away to

see unless you find a satisfactory setup using a stand. This

is the perfect excuse for purchasing a humongous display.

You may not look cool while jetting coast to coast in your

skinny jeans and what appears to be the old-time

orthopedic shoe version of computing gear. But once you

90 24 ways 2014 edition

http://www.kinesis-ergo.com
http://www.kinesis-ergo.com
http://www.kinesis-ergo.com/shop/freestyle2-for-mac/

have rested and used many of these suggestions

consistently, you may be able to use your laptop or other

device in all its lovely sleekness during the trip.

OTHER DOOHICKIES

The Kinesis site and The Human Solution have a wide

selection of ergonomic products: standing desks,

ergonomically correct chairs, and, yes, even things with

foot pedals. Explore!

3. Stop clicking, at least for a while

Use keyboard shortcuts, but use them slowly. This is not

the time to show off your skillz. You’ll be sort of like a

recovering alcoholic, in that you’ll be a recovering

repetitive stress survivor for the rest of your life, once you

really injure yourself. Always be vigilant. There’s also a bit

of software sold by The Human Solution and other places,

and it was my salvation. It’s called the McNib for Macs,

and the Nib for PCs. (I’ve only used the McNib.) It’s for

click-free mousing. I found it tricky to use when writing

markup and code, but you may become quite adept at it. A

little rectangle pops up on your screen, you mouse over it

and choose, let’s say, “Double-click.” Until you change that

choice, if you mouse over a link or anything else, it will

double-click it for you. All you do is glide your mouse

around. Awkward for a day or two, but you’ll pick it up

quickly. Though you can use it all day for work, even if you

Don’t Push Through the Pain

24 ways 2014 edition 91

http://www.thehumansolution.com/
http://www.thehumansolution.com/click-less.html
http://www.thehumansolution.com/click-less.html

just use this for browsing LOLcats or Gary Vaynerchuk’s

YouTube videos, it will help you by giving your fingers a

sweet break.

But here’s the sad news. The developer who invented this

died a few years ago. (Yes, I used to speak to him on the

phone.) While it is for sale, it isn’t compatible with Mac OS

X Lion or anything subsequent. PowerPC strikes again.

His site is still up. Demos for use with older software can

be downloaded free at his old site, or at The Human

Solution. Perhaps an enterprising developer can invent

something that would provide this help, without

interfering with patents. Rumor has it among ergonomic

retailers (yes, I’m like a police dog sniffing my way to a

criminal once I head down a trail) that his company was

purchased by a company in China, with no update in sight.

4. Use built-in features

That little microphone icon that comes up alongside the

keyboard on your iPhone allows you to speak your

message instead of incessantly thumbing it. I believe it

works in any program that uses the keyboard. It’s not Siri.

She’s for other things, like having a personal relationship

with an inanimate object. Apple even has a good section

on ergonomics. You think I’m intense about this subject?

To improve your repetitive stress, Apple doesn’t want you

92 24 ways 2014 edition

https://www.youtube.com/user/GaryVaynerchuk
https://www.youtube.com/user/GaryVaynerchuk
http://www.aerobicmouse.com
http://apple.com/about/ergonomics/rmi_defs.html
http://apple.com/about/ergonomics/rmi_defs.html

to use oral contraceptives, alcohol, or tobacco, to which I

say, “Have as much sex, bacon, and chocolate as possible

to make up for it.”

Apple’s info even has illustrations of things like a faucet

dripping into what is labeled a bucket full of “TRAUMA.”

Sounds like upgrading to Yosemite, but I digress.

5. Take breaks

If it’s a game or other non-essential activity, take a break

for a month. Fine, now that I’ve called games non-

essential, I suppose you’ll all unfollow me on Twitter.

6. Whether you are sore or not, do stretches throughout
the day

This is a big one. Really big. The best book on the subject

of repetitive stress injuries is Conquering Carpal Tunnel

Syndrome and Other Repetitive Strain Injuries: A Self-Care

Program by Sharon J. Butler. Don’t worry, most of it is

illustrations. Pretend it’s a graphic novel.

I’m notorious for never reading instructions, and who on

earth reads the introduction of a book, unless they wrote

it? I wrote a book a long time ago, and I bet my house,

husband, and life savings that my own parents never read

the intro. Well, I did read the intro to this book, and you

should, too. Stretching correctly, in a way that doesn’t

further hurt you, that keeps you flexible if you aren’t

Don’t Push Through the Pain

24 ways 2014 edition 93

http://www.selfcare4rsi.com/products.html

injured, that actually heals you, calls for precision. Read

and you’ll see. The key is to stretch just until you start to

feel the stretch, even if that’s merely a tiny movement.

Don’t force anything past that point. Kindly nurse yourself

back to health, or nurture your still-healthy body by

stretching. Over the following days, weeks, months, you’ll

be moving well past that initial stretch point.

The book is brimming with examples. You only have to

pick a few stretches, if this is too much to handle. Do it

every single day. I can tell you some of the best ones for

me, but it depends on the person. You’ll also discover in

Butler’s book that areas that you think are the problem

are sometimes actually adjacent to the muscle or tendon

that is the source of the problem. Add a few stretches or

two for that area, too.

But please follow the instructions in the introduction. If

you overdo it, or perform some other crazy-ass hijinks, as I

would be tempted to do, I am not responsible for your

outcome. I give you fair warning that I am not a healthcare

provider. I’m just telling you as a friend, an untrained one,

at that, who has been through this experience.

7. Follow good habits

Develop habits like drinking lots of water (which helps

with lactic acid buildup in muscles), looking away from the

computer for twenty seconds every twenty to thirty

94 24 ways 2014 edition

minutes, eating right, and probably doing everything else

your mother told you to do. Maybe this is a good time to

bring up flossing your teeth, and going outside to play

instead of watching TV. As your mom would say, “It’s a

beautiful day outside, what are you kids doing in here?”

8. Speak instead of writing, if you can

Amber Simmons, who is very smart and funny, once

tweeted in front of the whole world that, “@carywood is a

Skype whore.” I was always asking people on Twitter if we

could Skype instead of using iChat or exchanging emails. (I

prefer the audio version so I don’t have to, you know, do

something drastic like comb my hair.) Keyboarding is

tough on hands, whether you notice it or not at the time,

and when doing rapid-fire back-and-forthing with people,

you tend to speed up your typing and not take any breaks.

This is a hand-killer. Voice chats have made such a

difference for me that I am still a rabid Skype whore. Wait,

did I say that out loud?

Speak your text or emails, using Dragon Dictate or other

software. In about 2005, accessibility and user experience

design expert, Derek Featherstone, in Canada, and I, at

home, chatted over the internet, each of us using a

different voice-to-text program. The programs made so

many mistakes communicating with each other that we

began that sort of endless, tearful laughing that makes

you think someone may need to call an ambulance. This

Don’t Push Through the Pain

24 ways 2014 edition 95

http://www.nuance.com/dragon/index.htm
http://www.simplyaccessible.com

type of software has improved quite a bit over the years,

thank goodness. Lack of accessibility of any kind isn’t

funny to Derek or me or to anyone who can’t use the web

without pain.

9. Watch your position

For example, if you lift up your arms to use the computer,

or stare down at your laptop, you’ll need to rearrange

your equipment. The internet has a lot of information

about ideal ergonomic work areas. Please use a keyboard

drawer. Be sure to measure the height carefully so that

even a tented keyboard, like the one I recommend, will fit.

I also recommend getting the version of the Freestyle

with palm supports. Just these two measures did much to

help both Jen Simmons and me.

10. If you need to take anti-inflammatories, stop
working

If you are all drugged up on ibuprofen, and pounding and

clicking like mad, your body will not know when you are

tired or injuring yourself. I don’t recommend taking these

while using your computing devices. Perhaps just take it

at night, though I’m not a fan of that category of

medications. Check with your healthcare provider. At

least ibuprofen is an anti-inflammatory, which may help

you. In contrast, acetaminophen (paracetamol) only

makes your body think it’s not in pain. Ice is great, as is

96 24 ways 2014 edition

switching back and forth between ice and heat. But again,

if you need ice and ibuprofen you really need to take a

major break.

11. Don’t forget the rest of your body

I’ve zeroed in on my personal area of knowledge and

experience, but you may be setting yourself up for

problems in other areas of your body. There’s what is

known to bad writers as “a veritable cornucopia” of

information on the web about how to help the rest of your

body. A wee bit of research on the web and you’ll discover

simple exercises and stretches for the rest of your

potential catastrophic areas: your upper back, your lower

back, your legs, ankles, and eyes. Do gentle stretches,

three or four times a day, rather than powering your way

through. Ease into new equipment such as standing desks.

Stretch those newly challenged areas until your body

adapts. Pay attention to your body, even though I too

often forget mine.

12. Remember the children

Kids are using equipment to play highly addictive games

or to explore amazing software, and if these call for

repetitive motions, children are being set up for future

injuries. They’ll grab hold of something, as parents out

there know, and play it 3,742 times. That afternoon.

Perhaps by the time they are adults, everything will just

Don’t Push Through the Pain

24 ways 2014 edition 97

be holograms and mind-reading, but adult fingers and

hands are used for most things in life, not just computing

devices and phones with keyboards sized for baby

chipmunks.

I’LL BE WATCHING YOU

Quickly now, while I (possibly) have your attention. Don’t

move a muscle. Is your neck tense? Are you unconsciously

lifting your shoulders up? How long since you stopped

staring at the screen? How bright is your screen? Are you

slumping (c’mon now, ‘fess up) and inviting sciatica

problems? Do you have to turn your hands at an angle

relative to your wrist in order to type? Uh-oh. That’s a bad

one. Your hands, wrists, and forearms should be one

straight line while keyboarding. Future you is begging you

to change your ways. Don’t let your #ThrowbackThursday

in 2020 say, “Here’s a photo from when I used to be able

to do so many wonderful things that I can’t do now.” And,

whatever you do, don’t try for even a nanosecond to push

through the pain, or the next thing you know, you’ll be an

unpaid extra in The Expendables 7.

98 24 ways 2014 edition

ABOUT THE AUTHOR

Carolyn Wood is a writer, editor, and content strategist who

often starts her work with individuals and companies all the

way back at “Who are you, really?” so they’ll speak with a clear,

true voice. She was also Editor of Digital Web Magazine and

then on the staff of A List Apart for three years as acquisitions

editor. Carolyn also helped create The Manual, where she was

Editor in Chief for the first year, and did the same for Codex,

journal of typography, with John Boardley. She does

experimental writing at inthespacebetween.com. She loves

both laughing and taking a stand.

Don’t Push Through the Pain

24 ways 2014 edition 99

http://www.pixelingo.com
http://www.digital-web.com
http://www.alistapart.com
http://themanual.org
http://www.ilovetypography.com
http://inthespacebetween.com

Sibylle Weber 24ways.org/201407

7. Collaborative
Responsive Design
Workflows

Much has been written about workflow and
designer-developer collaboration in web
design, but many teams still struggle with
this issue; either with how to adapt their
internal workflow, or how to communicate
the need for best practices like mobile first
and progressive enhancement to their
teams and clients. Christmas seems like a
good time to have another look at what
doesn’t work between us and how we can
improve matters.

WHY IS IT SO DIFFICULT?

We’re still beginning to understand responsive design

workflows, acknowledging the need to move away from

static design tools and towards best practices in

development. It’s not that we don’t want to change – so

why is it so difficult?

100 24 ways 2014 edition

http://24ways.org/201407

Changing the way we do something that has become

routine is always problematic, even with small things, and

the changes today’s web environment requires from web

design and development teams are anything but small.

Although developers also have a host of new skills to learn

and things to consider, designers are probably the ones

pushed furthest out of their comfort zones: as well as

graphic design, a web designer today also needs an

understanding of interaction design and ergonomics,

because more and more websites are becoming tools

rather than pages meant to be read like a book or

magazine. In addition to that there are thousands of

different devices and screen sizes on the market today

that layout and interactions need to work on.

These aspects make it impossible to design in a static

design tool, so beyond having to learn about new aspects

of design, the designer has to either learn how to code or

learn to work with a responsive design tool.

WHY DO IT

That alone is enough to leave anyone overwhelmed, as

learning a new skill takes time and slows you down in a

project – and on most projects time is in short supply. Yet

we have to make time or fall behind in the industry as

Collaborative Responsive Design Workflows

24 ways 2014 edition 101

http://www.smashingmagazine.com/2014/05/23/next-generation-responsive-web-design-tools-webflow-edge-reflow-macaw/

others pitch better, interactive designs. For an efficient

workflow, both designers and developers must familiarise

themselves with new tools and techniques.

A designer has to be able to play with ideas, make small

adjustments here and there, look at the result, go back to

the settings and make further adjustments, and so on. You

can only realistically do that if you are able to play with all

the elements of a design, including interactivity,

accessibility and responsiveness.

Figuring out the right breakpoints in a layout is one of the

foremost reasons for designing in a responsive design

tool. Even if you create layouts for three viewport sizes

(i.e. smartphone, tablet and the most common desktop

size), you’d only cover around 30% of visitors and you

might miss problems like line breaks and padding at other

viewport sizes.

Another advantage is consistency. In static design tools

changes will not be applied across all your other layouts. A

developer referring back to last week’s comps might work

with outdated metrics. Furthermore, you cannot easily

test what impact changes might have on previously

designed areas. In a dynamic design tool such changes will

be applied to the entire design and allow you to test

things in site areas you had already finished.

102 24 ways 2014 edition

http://www.w3counter.com/globalstats.php

No static design tool allows you to do this, and having

somebody else produce a mockup from your static

designs or wireframes will duplicate work and is

inefficient.

HOW TO DO IT

When working in a responsive design tool rather than in

the browser, there is still the question of how and when to

communicate with the developer. I have found that

working with Sass in combination with a visual style guide

is very efficient, but it does need careful planning:

fundamental metrics for padding, margins and font sizes,

but also design elements like sliders, forms, tabs, buttons

and navigational elements, should be defined at the

beginning of a project and used consistently across the

site. Working with a grid can help you develop a

consistent design language across your site.

Create a visual style guide that shows what the elements

look like and how they behave across different screen

sizes – and when interacted with. Put all metrics on

paddings, margins, breakpoints, widths, colours and so on

in a text document, ideally with names that your

developer can use as Sass variables in the CSS. For

example:

$padding-default-vertical: 1.5em;

Collaborative Responsive Design Workflows

24 ways 2014 edition 103

Developers, too, need an efficient workflow to keep code

maintainable and speed up the time needed for more

complex interactions with an eye on accessibility and

performance. CSS preprocessors like Sass allow you to

work with variables and mixins for default rules, as well as

style sheet partials for different site areas or design

elements. Create your own boilerplate to use for your

projects and then update your variables with the

information from your designer for each individual

project.

HOW TO GET BUY-IN

One obstacle when implementing responsive design,

accessibility and content strategy is the logistics of

learning new skills and iterating on your workflow.

Another is how to sell it. You might expect everyone on a

project (including the client) to want to design and

develop the best website possible: ultimately, a great site

will lead to more conversions. However, we often hear

that people find it difficult to convince their teammates,

bosses or clients to implement best practices.

Why is that? Well, I believe a lot of it is down to how we

sell it. You will have experienced this yourself: some

people you trust to know what they are talking about, and

others you don’t. Think about why you trust that first

person but don’t buy what the other one is telling you. It is

likely because person A has a self-assured, calm and

104 24 ways 2014 edition

assertive demeanour, while person B seems insecure and

apologetic. To sell our ideas, we need to become person A!

For a timid designer or developer suffering from imposter

syndrome (like many of us do in this industry) that is a

difficult task. So how can we become more confident in

selling our expertise?

Write

We need to become experts. And I mean not just in

writing great code or coming up with beautiful designs

but at explaining why we’re doing what we’re doing. Why

do you code this way or that? Why is this the best layout?

Why does a website have to be accessible and responsive?

Write about it. Putting your thoughts down on paper or

screen is a really efficient way of getting your head

around a topic and learning to make a case for something.

You may even find that you come up with new ideas as you

are writing, so you’ll become a better designer or

developer along the way.

Talk

Then, talk about it. Start out in front of your team, then do

a lightning talk at a web event near you, then a longer talk

or workshop. Having to talk about a topic is going to help

you put into spoken words the argument that you’ve

previously put together in writing. Writing comes more

easily when you’re starting out but we use a different

Collaborative Responsive Design Workflows

24 ways 2014 edition 105

register when writing than talking and you need to learn

how to speak your case. Do the talk a couple of times and

after each talk make adjustments where you found it

didn’t work well. By this time, you are more than ready to

make your case to the client. In fact, you’ve been ready

since that first talk in front of your colleagues ;)

Pitch

Pitches used to be based on a presentation of static

layouts for for three to five typical pages and three

different designs. But if we want to sell interactivity,

structure, usability, accessibility and responsiveness, we

need to demonstrate these things and I believe that it can

only do us good. I have seen a few pitches sitting in the

client’s chair and static layouts are always sort of dull.

What makes a website a website is the fact that I can

interact with it and smooth interactions or animations add

that extra sparkle.

I can’t claim personal experience for this one but I’d be

bold and go for only one design. One demo page matching

the client’s corporate design but not any specific page for

the final site. Include design elements like navigation,

photography, typefaces, article layout (with real content),

sliders, tabs, accordions, buttons, forms, tables (yes,

tables) – everything you would include in a style tiles

document, only interactive. Demonstrate how the

elements behave when clicked, hovered and touched, and

106 24 ways 2014 edition

how they change across different screen sizes. You may

even want to demonstrate accessibility features like

tabbed navigation and screen reader use.

Obviously, there are many approaches that will work in

different situations but don’t give up on finding a process

that works for you and that ultimately allows you to build

delightful, accessible, responsive user experiences for the

web. Make time to try new tools and techniques and don’t

just work on them on the side – start using them on an

actual project. It is only when we use a tool or process in

the real world that we become true experts. Remember

your driving lessons: once the instructor had explained

how to operate the car, you were sent to practise driving

on the road in actual traffic!

Collaborative Responsive Design Workflows

24 ways 2014 edition 107

ABOUT THE AUTHOR

Sibylle Weber is a front-end developer and designer living in

Munich. After being a marketing manager in e-commerce she

moved to the production side of the web where she is an

evangelist for usability, accessibility and responsive design.

108 24 ways 2014 edition

http://twitter.com/sibweber

Josh Emerson 24ways.org/201408

8. Websites of Christmas
Past, Present and Future

THE
WEBSITES OF CHRISTMAS PAST

The first website was created at CERN. It was
launched on 20 December 1990 (just in time
for Christmas!), and it still works today,
after twenty-four years. Isn’t that
incredible?!

Why does this website still work after all this time? I can

think of a few reasons.

First, the authors of this document chose HTML. Of

course they couldn’t have known back then the extent to

which we would be creating documents in HTML, but

HTML always had a lot going for it. It’s built on top of plain

text, which means it can be opened in any text editor, and

it’s pretty readable, even without any parsing.

Websites of Christmas Past, Present and Future

24 ways 2014 edition 109

http://24ways.org/201408
http://info.cern.ch/hypertext/WWW/TheProject.html
http://home.web.cern.ch/topics/birth-web

Despite the fact that HTML has changed quite a lot over

the past twenty-four years, extensions to the

specification have always been implemented in a

backwards-compatible manner. Reading through the

1992 W3C document HTML Tags, you’ll see just how it

has evolved. We still have h1 – h6 elements, but I’d not

heard of the <plaintext> element before. Despite being

deprecated since HTML2, it still works in several

browsers. You can see it in action on my website.

As well as being written in HTML, there is no run-time

compilation of code; the first website simply consists of

HTML files transmitted over the web. Due to its lack of

complexity, it stood a good chance of surviving in the

turbulent World Wide Web.

That’s all well and good for a simple, static website. But

websites created today are increasingly interactive. Many

require a login and provide experiences that are tailored

to the individual user. This type of dynamic website

requires code to be executed somewhere.

Traditionally, dynamic websites would execute such code

on the server, and transmit a simple HTML file to the user.

As far as the browser was concerned, this wasn’t much

different from the first website, as the additional

complexity all happened before the document was sent to

the browser.

110 24 ways 2014 edition

http://www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/Tags.html
https://www.joshemerson.co.uk/other/html-tags

Doing it all in the browser

In 2003, the first single page interface was created at

slashdotslash.com. A single page interface or single page

app is a website where the page is created in the browser

via JavaScript. The benefit of this technique is that, after

the initial page load, subsequent interactions can happen

instantly, or very quickly, as they all happen in the

browser.

When software runs on the client rather than the server,

it is often referred to as a fat client. This means that the

bulk of the processing happens on the client rather than

the server (which can now be thin).

A fat client is preferred over a thin client because:

▪ It takes some processing requirements away from the

server, thereby reducing the cost of servers (a thin server

requires cheaper, or fewer servers).

▪ They can often continue working offline, provided no

server communication is required to complete tasks after

initial load.

▪ The latency of internet communications is bypassed

after initial load, as interactions can appear near

instantaneous when compared to waiting for a response

from the server.

But there are also some big downsides, and these are

often overlooked:

Websites of Christmas Past, Present and Future

24 ways 2014 edition 111

http://slashdotslash.com
http://en.wikipedia.org/wiki/Fat_client

▪ They can’t work without JavaScript. Obviously

JavaScript is a requirement for any client-side code

execution. And as the UK Government Digital Service

discovered, 1.1% of their visitors did not receive

JavaScript enhancements. Of that 1.1%, 81% had

JavaScript enabled, but their browsers failed to execute it

(possibly due to dropping the internet connection). If you

care about 1.1% of your visitors, you should care about

the non-JavaScript experience for your website.

▪ The browser needs to do all the processing. This means

that the hardware it runs on needs to be fast. It also

means that we require all clients to have largely the same

capabilities and browser APIs.

▪ The initial payload is often much larger, and nothing will

be rendered for the user until this payload has been fully

downloaded and executed. If the connection drops at any

point, or the code fails to execute owing to a bug, we’re

left with the non-JavaScript experience.

▪ They are not easily indexed as every crawler now needs

to run JavaScript just to receive the content of the

website.

These are not merely edge case issues to shirk off. The

first three issues will affect some of your visitors; the

fourth affects everyone, including you.

112 24 ways 2014 edition

https://gds.blog.gov.uk/2013/10/21/how-many-people-are-missing-out-on-javascript-enhancement/
https://gds.blog.gov.uk/2013/10/21/how-many-people-are-missing-out-on-javascript-enhancement/

What problem are we trying to solve?

So what can be done to address these issues? Whereas fat

clients solve some inherent issues with the web, they

seem to create as many problems. When attempting to

resolve any issue, it’s always good to try to uncover the

original problem and work forwards from there. One of

the best ways to frame a problem is as a user story. A user

story considers the who, what and why of a need. Here’s a

template:

As a {who} I want {what} so that {why}

I haven’t got a specific project in mind, so let’s refer to the

who as user. Here’s one that could explain the use of thick

clients.

As a user I want the site to respond to my
actions quickly so that I get immediate
feedback when I do something.

This user story could probably apply to a great number of

websites, but so could this:

As a user I want to get to the content quickly,
so that I don’t have to wait too long to find out
what the site is all about or get the content I
need.

Websites of Christmas Past, Present and Future

24 ways 2014 edition 113

http://guide.agilealliance.org/guide/rolefeature.html

A better solution

How can we balance both these user needs? How can we

have a website that loads fast, and also reacts fast? The

solution is to have a thick server, that serves the complete

document, and then a thick client, that manages

subsequent actions and replaces parts of the page. What

we’re talking about here is simply progressive

enhancement, but from the user’s perspective.

The initial payload contains the entire document. At this

point, all interactions would happen in a traditional way

using links or form elements. Then, once we’ve

downloaded the JavaScript (asynchronously, after load)

we can enhance the experience with JavaScript

interactions. If for whatever reason our JavaScript fails to

download or execute, it’s no biggie – we’ve already got a

fully functioning website. If an API that we need isn’t

available in this browser, it’s not a problem. We just fall

back to the basic experience.

This second point, of having some minimum requirement

for an enhanced experience, is often referred to as cutting

the mustard, first used in this sense by the BBC News

team. Essentially it’s an if statement like this:

if('querySelector' in document

&& 'localStorage' in window

&& 'addEventListener' in window) {

// bootstrap the JavaScript application

}

114 24 ways 2014 edition

http://responsivenews.co.uk/post/18948466399/cutting-the-mustard
http://responsivenews.co.uk/post/18948466399/cutting-the-mustard

This code states that the browser must support the

following methods before downloading and executing the

JavaScript:

▪ document.querySelector (can it find elements by CSS

selectors)

▪ window.localStorage (can it store strings)

▪ window.addEventListener (can it bind to events in a

standards-compliant way)

These three properties are what the BBC News team

decided to test for, as they are present in their website’s

JavaScript. Each website will have its own requirements.

The last method, window.addEventListener is in

interesting one. Although it’s simple to bind to events on

IE8 and earlier, these browsers have very inconsistent

support for standards. Making any JavaScript-heavy

website work on IE8 and earlier is a painful exercise, and

comes at a cost to all users on other browsers, as they’ll

download unnecessary code to patch support for IE.

Websites of Christmas Past, Present and Future

24 ways 2014 edition 115

JavaScript API support by browser.

I discovered that IE8 supports 12% of the current

JavaScript APIs, while IE9 supports 16%, and IE10 51%. It

seems, then, that IE10 could be the earliest version of IE

that I’d like to develop JavaScript for. That doesn’t mean

that users on browsers earlier than 10 can’t use the

website. On the contrary, they get the core experience,

and because it’s just HTML and CSS, it’s much more likely

to be bug-free, and could even provide a better

experience than trying to run JavaScript in their browser.

They receive the thin client experience.

By reducing the number of platforms that our enhanced

JavaScript version supports, we can better focus our

efforts on those platforms and offer an even greater

116 24 ways 2014 edition

http://caniuse.com/#cats=JS%20API

experience to those users. But we can only do that if we

use progressive enhancement. Otherwise our website

would be completely broken for all other users.

So what we have is a thick server, capable of serving the

entire website to our users, complete with all core

functionality needed for our users to complete their

tasks; and we have a thick client on supported browsers,

which can bring an even greater experience to those

users.

This is all transparent to users. They may notice that the

website seems snappier on the new iPhone they received

for Christmas than on the Windows 7 machine they got

five years ago, but then they probably expected it to be

faster on their iPhone anyway.

Isn’t this just more work?

It’s true that making a thick server and a thick client is

more work than just making one or the other. But there

are some big advantages:

▪ The website works for everyone.

▪ You can decide when users get the enhanced

experience.

▪ You can enhance features in an iterative (or agile)

manner.

▪ When the website breaks, it doesn’t break down.

Websites of Christmas Past, Present and Future

24 ways 2014 edition 117

http://en.wikipedia.org/wiki/Agile_software_development

▪ The more you practise this approach, the quicker you

will become.

THE WEBSITES OF CHRISTMAS PRESENT

The best way to discover websites using this technique of

progressive enhancement is to disable JavaScript and see

if the website breaks. I use the Web Developer extension,

which is available for Chrome and Firefox. It lets me

quickly disable JavaScript.

Web Developer extension.

24 ways works with and without JavaScript. Try using the

menu icon to view the navigation. Without JavaScript, it’s

a jump link to the bottom of the page, but with JavaScript,

the menu slides in from the right.

118 24 ways 2014 edition

https://chrome.google.com/webstore/detail/web-developer/bfbameneiokkgbdmiekhjnmfkcnldhhm
https://addons.mozilla.org/en-US/firefox/addon/web-developer/
http://24ways.org/

24 ways navigation with JavaScript disabled.

24 ways navigation with working JavaScript.

Google search will also work without JavaScript. You

won’t get instant search results or any prerendering,

because those are enhancements.

Websites of Christmas Past, Present and Future

24 ways 2014 edition 119

https://www.google.co.uk
http://www.google.com/insidesearch/features/instant/about.html
https://developers.google.com/chrome/whitepapers/prerender

For a more app-like example, try using Twitter. Without

JavaScript, it still works, and looks nearly identical. But

when you load JavaScript, links open in modal windows

and all pages are navigated much quicker, as only the

content that has changed is loaded. You can read about

how they achieved this in Twitter’s blog posts Improving

performance on twitter.com and Implementing pushState

for twitter.com.

Unfortunately Facebook doesn’t use progressive

enhancement, which not only means that the website

doesn’t work without JavaScript, but it takes longer to

load. I tested it on WebPagetest and if you compare the

load times of Twitter and Facebook, you’ll notice that,

despite putting similar content on the page, Facebook

takes two and a half times longer to render the core

content on the page.

Facebook takes two and a half times longer to load than Twitter.

WEBSITES OF CHRISTMAS YET TO COME

Every project is different, and making a website that

enjoys a long life, or serves a larger number of users may

or may not be a high priority. But I hope I’ve convinced

120 24 ways 2014 edition

https://twitter.com/
https://blog.twitter.com/2012/improving-performance-on-twittercom
https://blog.twitter.com/2012/improving-performance-on-twittercom
https://blog.twitter.com/2012/implementing-pushstate-for-twittercom
https://blog.twitter.com/2012/implementing-pushstate-for-twittercom
http://www.webpagetest.org/

you that it certainly is possible to look to the past and

future simultaneously, and that there can be significant

advantages to doing so.

ABOUT THE AUTHOR

Josh Emerson is a front end developer working at Mendeley. He

cares about progressive enhancement and enjoys challenging

assumptions about user needs and device capabilities.

Websites of Christmas Past, Present and Future

24 ways 2014 edition 121

http://joshemerson.co.uk

Jeremy Keith 24ways.org/201409

9. Responsive
Enhancement

24 ways has been going strong for ten years.
That’s an aeon in internet timescales. Just
think of all the changes we’ve seen in that
time: the rise of Ajax, the explosion of
mobile devices, the unrecognisably changed
landscape of front-end tooling.

Tools and technologies come and go, but one thing has

remained constant for me over the past decade:

progressive enhancement.

Progressive enhancement isn’t a technology. It’s more like

a way of thinking. Instead of thinking about the specifics

of how a finished website might look, progressive

enhancement encourages you to think about the

fundamental meaning of what the website is providing. So

instead of thinking of a website in terms of its ideal state

in a modern browser on a nice widescreen device,

progressive enhancement allows you to think about the

core functionality in a more abstract way.

122 24 ways 2014 edition

http://24ways.org/201409

Once you’ve figured out what the core functionality is –

adding an item to a shopping cart, posting a message,

sharing a photo – then you can enable that functionality in

the simplest possible way. That usually means starting

with good old-fashioned HTML. Links and forms are often

all you need. Then, once you have the core functionality

working in a basic way, you can start to enhance to make a

progressively better experience for more modern

browsers.

The advantage of working this way isn’t just that your site

will work in older browsers (albeit in a rudimentary way).

It also ensures that if anything goes wrong in a modern

browser, it won’t be catastrophic.

There’s a common misconception that progressive

enhancement means that you’ll spend your time dealing

with older browsers, but in fact the opposite is true.

Putting the basic functionality into place doesn’t take very

long at all. And once you’ve done that, you’re free to

spend all your time experimenting with the latest and

greatest browser technologies, secure in the knowledge

that even if they aren’t universally supported yet, that’s

OK: you’ve already got your fallback in place.

The key to thinking about web development this way is

realising that there isn’t one final interface – there could

be many, slightly different interfaces depending on the

Responsive Enhancement

24 ways 2014 edition 123

properties and capabilities of any particular user agent at

any particular moment. And that’s OK. Websites do not

need to look the same in every browser.

Once you truly accept that, it’s an immensely liberating

idea. Instead of spending your time trying to make

websites look the same in wildly varying browsers, you

can spend your time making sure that the core

functionality of what you build works everywhere, while

providing the best possible experience for more capable

browsers.

Allow me to demonstrate with a simple example:

navigation.

STEP ONE: CORE FUNCTIONALITY

Let’s say we have a straightforward website about the

twelve days of Christmas, with a page for each day. The

core functionality is pretty clear:

1. To read about any particular day.

2. To browse from day to day.

The first is easily satisfied by marking up the text with

headings, paragraphs and all the usual structural HTML

elements. The second is satisfied by providing a list of

good ol’ hyperlinks.

124 24 ways 2014 edition

http://dowebsitesneedtolookexactlythesameineverybrowser.com/
http://dowebsitesneedtolookexactlythesameineverybrowser.com/

Now where’s the best place to position this navigation

list? Personally, I’m a big fan of the jump-to-footer

pattern. This puts the content first and the navigation

second. At the top of the page there’s a link with an href

attribute pointing to the fragment identifier for the

navigation.

<body>

<main role="main" id="top">

Menu

...

</main>

<nav role="navigation" id="menu">

...

Dismiss

</nav>

</body>

See the footer-anchor pattern in action.

Because it’s nothing more than a hyperlink, this works in

just about every browser since the dawn of the web.

Following hyperlinks is what web browsers were made to

do (hence the name).

STEP TWO: LAYOUT AS AN ENHANCEMENT

The footer-anchor pattern is a particularly neat solution

on small-screen devices, like mobile phones. Once more

screen real estate is available, I can use the magic of CSS

Responsive Enhancement

24 ways 2014 edition 125

http://codepen.io/bradfrost/full/mlyvu
http://media.24ways.org/2014/keith/example1.html

to reposition the navigation above the content. I could use

position: absolute, flexbox or, in this case, display:

table.

@media all and (min-width: 35em) {

.control {

display: none;

}

body {

display: table;

}

[role="navigation"] {

display: table-caption;

columns: 6 15em;

}

}

See the styles for wider screens in action

STEP THREE: ENHANCE!

Right. At this point I’m providing core functionality to

everyone, and I’ve got nice responsive styles for wider

screens. I could stop here, but the real advantage of

progressive enhancement is that I don’t have to. From

here on, I can go crazy adding all sorts of fancy

enhancements for modern browsers, without having to

worry about providing a fallback for older browsers – the

fallback is already in place.

126 24 ways 2014 edition

https://adactio.com/journal/4780
https://adactio.com/journal/4780
http://media.24ways.org/2014/keith/example2.html

What I’d really like is to provide a swish off-canvas

pattern for small-screen devices. Here’s my plan:

1. Position the navigation under the main content.

2. Listen out for the .control links being activated and

intercept that action.

3. When those links are activated, toggle a class of

.active on the body.

4. If the .active class exists, slide the content out to

reveal the navigation.

Here’s the CSS for positioning the content and navigation:

@media all and (max-width: 35em) {

[role="main"] {

transition: all .25s;

width: 100%;

position: absolute;

z-index: 2;

top: 0;

right: 0;

}

[role="navigation"] {

width: 75%;

position: absolute;

z-index: 1;

top: 0;

right: 0;

}

.active [role="main"] {

Responsive Enhancement

24 ways 2014 edition 127

http://jasonweaver.name/lab/offcanvas/

transform: translateX(-75%);

}

}

In my JavaScript, I’m going to listen out for any clicks on

the .control links and toggle the .active class on the

body accordingly:

(function (win, doc) {

'use strict';

var linkclass = 'control',

activeclass = 'active',

toggleClassName = function (element, toggleClass) {

var reg = new RegExp('(s|^)' + toggleClass +

'(s|$)');

if (!element.className.match(reg)) {

element.className += ' ' + toggleClass;

} else {

element.className =

element.className.replace(reg, '');

}

},

navListener = function (ev) {

ev = ev || win.event;

var target = ev.target || ev.srcElement;

if (target.className.indexOf(linkclass) !== -1) {

ev.preventDefault();

toggleClassName(doc.body, activeclass);

}

};

doc.addEventListener('click', navListener, false);

}(this, this.document));

I’m all set, right? Not so fast!

128 24 ways 2014 edition

Cutting the mustard

I’ve made the assumption that addEventListener will be

available in my JavaScript. That isn’t a safe assumption.

That’s because JavaScript – unlike HTML or CSS – isn’t

fault-tolerant. If you use an HTML element or attribute

that a browser doesn’t understand, or if you use a CSS

selector, property or value that a browser doesn’t

understand, it’s no big deal. The browser will just ignore

what it doesn’t understand: it won’t throw an error, and it

won’t stop parsing the file.

JavaScript is different. If you make an error in your

JavaScript, or use a JavaScript method or property that a

browser doesn’t recognise, that browser will throw an

error, and it will stop parsing the file. That’s why it’s

important to test for features before using them in

JavaScript. That’s also why it isn’t safe to rely on

JavaScript for core functionality.

In my case, I need to test for the existence of

addEventListener:

(function (win, doc) {

if (!win.addEventListener) {

return;

}

...

}(this, this.document));

Responsive Enhancement

24 ways 2014 edition 129

The good folk over at the BBC call this kind of feature test

cutting the mustard. If a browser passes the test, it cuts

the mustard, and so it gets the enhancements. If a

browser doesn’t cut the mustard, it doesn’t get the

enhancements. And that’s fine because, remember,

websites don’t need to look the same in every browser.

I want to make sure that my off-canvas styles are only

going to apply to mustard-cutting browsers. I’m going to

use JavaScript to add a class of .cutsthemustard to the

document:

(function (win, doc) {

if (!win.addEventListener) {

return;

}

...

var enhanceclass = 'cutsthemustard';

doc.documentElement.className += ' ' + enhanceclass;

}(this, this.document));

Now I can use the existence of that class name to adjust

my CSS:

@media all and (max-width: 35em) {

.cutsthemustard [role="main"] {

transition: all .25s;

width: 100%;

position: absolute;

z-index: 2;

top: 0;

right: 0;

130 24 ways 2014 edition

http://responsivenews.co.uk/post/18948466399/cutting-the-mustard

}

.cutsthemustard [role="navigation"] {

width: 75%;

position: absolute;

z-index: 1;

top: 0;

right: 0;

}

.cutsthemustard .active [role="main"] {

transform: translateX(-75%);

}

}

See the enhanced mustard-cutting off-canvas navigation.

Remember, this only applies to small screens so you might

have to squish your browser window.

ENHANCE ALL THE THINGS!

This was a relatively simple example, but it illustrates the

thinking behind progressive enhancement: once you’re

providing the core functionality to everyone, you’re free

to go crazy with all the latest enhancements for modern

browsers.

Progressive enhancement doesn’t mean you have to

provide all the same functionality to everyone – quite the

opposite. That’s why it’s key to figure out early on what

the core functionality is, and make sure that it can be

provided with the most basic technology. But from that

point on, you’re free to add many more features that

Responsive Enhancement

24 ways 2014 edition 131

http://media.24ways.org/2014/keith/example3.html

aren’t mission-critical. You should reward more capable

browsers by giving them more of those features, such as

animation in CSS, geolocation in JavaScript, and new

input types in HTML.

Like I said, progressive enhancement isn’t a technology.

It’s a way of thinking. Once you start thinking this way,

you’ll be prepared for whatever the next ten years throws

at us.

ABOUT THE AUTHOR

Jeremy Keith is an Irish web developer living in Brighton,

England where he works with the web consultancy firm

Clearleft. He wrote the books, DOM Scripting, Bulletproof Ajax,

and most recently HTML5 For Web Designers.

132 24 ways 2014 edition

http://adactio.com/
http://clearleft.com/
http://domscripting.com/
http://bulletproofajax.com/
http://html5forwebdesigners.com/

His latest project is Huffduffer, a service for creating podcasts

of found sounds. When he’s not making websites, Jeremy plays

bouzouki in the band Salter Cane. His loony bun is fine benny

lava.

Responsive Enhancement

24 ways 2014 edition 133

http://huffduffer.com/
http://saltercane.com/

Sally Jenkinson 24ways.org/201410

10. Making Sites More
Responsive, Responsibly

With digital projects we’re used to shifting
our thinking to align with our target
audience. We may undertake research,
create personas, identify key tasks, or
observe usage patterns, with our findings
helping to refine our ongoing creations. A
product’s overall experience can make or
break its success, and when it comes to
defining these experiences our development
choices play a huge role alongside more
traditional user-focused activities.

The popularisation of responsive web design is a great

example of how we are able to shape the web’s direction

through using technology to provide better experiences.

If we think back to the move from table-based layouts to

CSS, initially our clients often didn’t know or care about

the difference in these approaches, but we did.

Responsive design was similar in this respect –

134 24 ways 2014 edition

http://24ways.org/201410

momentum grew through the web industry choosing to

use an approach that we felt would give a better

experience, and which was more future-friendly.

We tend to think of responsive design as a means of

displaying content appropriately across a range of

devices, but the technology and our implementation of it

can facilitate much more. A responsive layout not only

helps your content work when the newest smartphone

comes out, but it also ensures your layout suitably adapts

if a visually impaired user drastically changes the size of

the text.

The 24 ways site at 400% on a Retina MacBook Pro displays a
layout more typically used for small screens.

Making Sites More Responsive, Responsibly

24 ways 2014 edition 135

When we think more broadly, we realise that our

technical choices and approaches to implementation can

have knock-on effects for the greater good, and beyond

our initial target audiences. We can make our experiences

more responsive to people’s needs, enhancing their

usability and accessibility along the way.

BEING RESPONSIBLY RESPONSIVE

Of course, when we think about being more responsive,

there’s a fine line between creating useful functionality

and becoming intrusive and overly complex. In the

excellent Responsible Responsive Design, Scott Jehl states

that:

136 24 ways 2014 edition

http://www.abookapart.com/products/responsible-responsive-design

A responsible responsive design equally
considers the following throughout a project:

▪ Usability: The way a website’s user interface is

presented to the user, and how that UI responds to

browsing conditions and user interactions.

▪ Access: The ability for users of all devices, browsers,

and assistive technologies to access and understand a

site’s features and content.

▪ Sustainability: The ability for the technology driving

a site or application to work for devices that exist

today and to continue to be usable and accessible to

users, devices, and browsers in the future.

▪ Performance: The speed at which a site’s features

and content are perceived to be delivered to the user

and the efficiency with which they operate within the

user interface.

Scott’s book covers these ideas in a lot more detail than I’ll

be able to here (put it on your Christmas list if it’s not

there already), but for now let’s think a bit more about our

roles as digital creators and the power this gives us.

Our choices around technology and the decisions we have

to make can be extremely wide-ranging. Solutions will

vary hugely depending on the needs of each project,

though we can further explore the concept of making our

creations more responsive through the use of humble

web technologies.

Making Sites More Responsive, Responsibly

24 ways 2014 edition 137

THE POWER OF THE WEB

We all know that under the HTML5 umbrella are some

great new capabilities, including a number of JavaScript

APIs such as geolocation, web audio, the file API and

many more. We often use these to enhance the

functionality of our sites and apps, to add in new features,

or to facilitate device-specific interactions.

You’ll have seen articles with flashy titles such as “Top 5

JavaScript APIs You’ve Never Heard Of!”, which you’ll

probably read, think “That’s quite cool”, yet never use in

any real work.

There is great potential for technologies like these to be

misused, but there are also great prospects for them to be

used well to enhance experiences. Let’s have a look at a

few examples you may not have considered.

Offline first

When we make websites, many of us follow a process

which involves user stories – standardised snippets of

context explaining who needs what, and why.

“As a student I want to pay online for my course so I don’t have

to visit the college in person.”

“As a retailer I want to generate unique product codes so I can

manage my stock.”

138 24 ways 2014 edition

We very often focus heavily on what needs doing, but

may not consider carefully how it will be done. As in

Scott’s list, accessibility is extremely important, not only

in terms of providing a great experience to users of

assistive technologies, but also to make your creation

more accessible in the general sense – including under

different conditions.

Offline first is yet another ‘first’ methodology (my

personal favourite being ‘tea first’), which encourages us

to develop so that connectivity itself is an enhancement –

letting users continue with tasks even when they’re

offline. Despite the rapid growth in public Wi-Fi, if we

consider data costs and connectivity in developing

countries, our travel habits with planes, underground

trains and roaming (or simply if you live in the UK’s signal-

barren East Anglian wilderness as I do), then you’ll realise

that connectivity isn’t as ubiquitous as our internet-

addled brains would make us believe. Take a scenario that

I’m sure we’re all familiar with – the digital conference.

Your venue may be in a city served by high-speed

networks, but after overloading capacity with a full house

of hashtag-hungry attendees, each carrying several

devices, then everyone’s likely to be offline after all.

Wouldn’t it be better if we could do something like this

instead?

▪ Someone visits our conference website.

Making Sites More Responsive, Responsibly

24 ways 2014 edition 139

▪ On this initial run, some assets may be cached for

future use: the conference schedule, the site’s CSS,

photos of the speakers.

▪ When the attendee revisits the site on the day, the page

shell loads up from the cache.

▪ If we have cached content (our session timetable,

speaker photos or anything else), we can load it directly

from the cache. We might then try to update this, or get

some new content from the internet, but the conference

attendee already has a base experience to use.

▪ If we don’t have something cached already, then we can

try grabbing it online.

▪ If for any reason our requests for new content fail

(we’re offline), then we can display a pre-cached error

message from the initial load, perhaps providing our users

with alternative suggestions from what is cached.

There are a number of ways we can make something like

this, including using the application cache (AppCache) if

you’re that way inclined. However, you may want to look

into service workers instead. There are also some great

resources on Offline First! if you’d like to find out more

about this.

Building in offline functionality isn’t necessarily about

starting offline first, and it’s also perfectly possible to

retrofit sites and apps to catch offline scenarios, but this

kind of graceful degradation can end up being more

complex than if we’d considered it from the start. By

140 24 ways 2014 edition

https://github.com/slightlyoff/ServiceWorker
http://offlinefirst.org/

treating connectivity as an enhancement, we can improve

the experience and provide better performance than we

can when waiting to counter failures. Our websites can

respond to connectivity and usage scenarios, on top of

adapting how we present our content. Thinking in this

way can enhance each point in Scott’s criteria.

As I mentioned, this isn’t necessarily the kind of

development choice that our clients will ask us for, but it’s

one we may decide is simply the right way to build based

on our project, enhancing the experience we provide to

people, and making it more responsive to their situation.

Even more accessible

We’ve looked at accessibility in terms of broadening when

we can interact with a website, but what about how? Our

user stories and personas are often of limited use. We

refer in very general terms to students, retailers, and

sometimes just users. What if we have a student whose

needs are very different from another student? Can we

make our sites even more usable and accessible through

our development choices?

Again using JavaScript to illustrate this concept, we can

do a lot more with the ways people interact with our

websites, and with the feedback we provide, than simply

accepting keyboard, mouse and touch inputs and

displaying output on a screen.

Making Sites More Responsive, Responsibly

24 ways 2014 edition 141

INPUT

Ambient light detection is one of those features that looks

great in simple demos, but which we struggle to put to

practical use. It’s not new – many satnav systems

automatically change the contrast for driving at night or

in tunnels, and our laptops may alter the screen

brightness or keyboard backlighting to better adapt to

our surroundings. Using web technologies we can adapt

our presentation to be better suited to ambient light

levels.

If our device has an appropriate light sensor and runs a

browser that supports the API, we can grab the ambient

light in units using ambient light events, in JavaScript. We

may then change our presentation based on different

bandings, perhaps like this:

window.addEventListener('devicelight', function(e) {

var lux = e.value;

if (lux < 50) {

//Change things for dim light

}

if (lux >= 50 && lux <= 10000) {

//Change things for normal light

}

if (lux > 10000) {

//Change things for bright light

}

});

142 24 ways 2014 edition

http://www.w3.org/TR/ambient-light/

Live demo (requires light sensor and supported browser).

Soon we may also be able to do such detection through

CSS, with light-level being cited in the Media Queries

Level 4 specification. If that becomes the case, it’ll

probably look something like this:

@media (light-level: dim) {

/*Change things for dim light*/

}

@media (light-level: normal) {

/*Change things for normal light*/

}

@media (light-level: washed) {

/*Change things for bright light*/

}

While we may be quick to dismiss this kind of detection as

being a gimmick, it’s important to consider that apps such

as Light Detector, listed on Apple’s accessibility page,

provide important context around exactly this

functionality.

Making Sites More Responsive, Responsibly

24 ways 2014 edition 143

http://www.sallyjenkinson.co.uk/labs/fauxluminosity/
http://caniuse.com/#feat=ambient-light
http://dev.w3.org/csswg/mediaqueries4/#mf-environment
http://dev.w3.org/csswg/mediaqueries4/#mf-environment
http://www.everywaretechnologies.com/apps/lightdetector

“If you are blind, Light Detector helps you to be
more independent in many daily activities. At
home, point your iPhone towards the ceiling to
understand where the light fixtures are and
whether they are switched on. In a room, move
the device along the wall to check if there is a
window and where it is. You can find out
whether the shades are drawn by moving the
device up and down.”

everywaretechnologies.com/apps/lightdetector

Input can be about so much more than what we enter

through keyboards. Both an ever increasing amount of

available sensors and more APIs being supported by the

major browsers will allow us to cater for more scenarios

and respond to them accordingly. This can be as complex

or simple as you need; for instance, while x-webkit-

speech has been deprecated, the web speech API is

available for a number of browsers, and research into sign

language detection is also being performed by

organisations such as Microsoft.

OUTPUT

Web technologies give us some great enhancements

around input, allowing us to adapt our experiences

accordingly. They also provide us with some nice ways to

provide feedback to users.

144 24 ways 2014 edition

http://www.everywaretechnologies.com/apps/lightdetector
https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html

When we play video games, many of our modern consoles

come with the ability to have rumble effects on our

controller pads. These are a great example of an

enhancement, as they provide a level of feedback that is

entirely optional, but which can give a great deal of extra

information to the player in the right circumstances, and

broaden the scope of our comprehension beyond what

we’re seeing and hearing.

Haptic feedback is possible on the web as well. We could

use this in any number of responsible applications, such as

alerting a user to changes or using different patterns as a

communication mechanism. If you find yourself in a pickle,

here’s how to print out SOS in Morse code through the

vibration API. The following code indicates the length of

vibration in milliseconds, interspersed by pauses in

milliseconds.

navigator.vibrate([100, 300, 100, 300, 100, 300, 600,

300, 600, 300, 600, 300, 100, 300, 100, 300, 100]);

Live demo (requires supported browser)

WITH GREAT POWER…

What you’ve no doubt come to realise by now is that

these are just more examples of progressive

enhancement, whose inclusion will provide a better

experience if the capabilities are available, but which we

should not rely on. This idea isn’t new, but the most

Making Sites More Responsive, Responsibly

24 ways 2014 edition 145

http://en.wikipedia.org/wiki/Haptic_technology
http://www.w3.org/TR/vibration/
http://www.sallyjenkinson.co.uk/labs/vibration/
http://caniuse.com/#feat=vibration

important thing to remember, and what I would like you to

take away from this article, is that it is up to us to decide

to include these kind of approaches within our projects –

if we don’t root for them, they probably won’t happen.

This is where our professional responsibility comes in.

We won’t necessarily be asked to implement solutions for

the scenarios above, but they illustrate how we can help

to push the boundaries of experiences. Maybe we’ll have

to switch our thinking about how we build, but we can

create more usable products for a diverse range of people

and usage scenarios through the choices we make around

technology. Let’s stop thinking simply in terms of features

inside a narrow view of our target users, and work out

how we can extend these to cater for a wider set of

situations.

When you plan your next digital project, consider the

power of the web and the enhancements we can use, and

try to make your projects even more responsive and

responsible.

146 24 ways 2014 edition

ABOUT THE AUTHOR

Sally Jenkinson is a freelance technical consultant and

strategist, based in Colchester in the UK. Working with a mix of

digital agencies and brands directly, Sally has been involved in

projects for people like Nokia, Electronic Arts, The Open Data

Institute, BBC, and Inghams and aims to get people talking and

thinking about technology in a creative way. She’s also a

speaker, an author, and drinks a lot of tea.

Making Sites More Responsive, Responsibly

24 ways 2014 edition 147

You can find out more about Sally’s work at

sallyjenkinson.co.uk, and she tweets as @sjenkinson when she’s

not got her head stuck in a comic book or her hands wrapped

around an Xbox controller.

148 24 ways 2014 edition

http://sallyjenkinson.co.uk
http://twitter.com/sjenkinson

Shane Hudson 24ways.org/201411

11. Putting Design on the
Map

The web can leave us feeling quite detached
from the real world. Every site we make is
really just a set of abstract concepts
manifested as tools for communication and
expression. At any minute, websites can
disappear, overwritten by a newfangled
version or simply gone. I think this is why
so many of us have desires to create a
product, write a book, or play with the
internet of things. We need to keep in touch
with the physical world and to prove (if only
to ourselves) that we do make real things.

I could go on and on about preserving the web, the

challenges of writing a book, or thoughts about how we

can deal with the need to make real things. Instead, I’m

going to explore something that gives us a direct

relationship between a website and the physical world –

maps.

Putting Design on the Map

24 ways 2014 edition 149

http://24ways.org/201411

A map does not just chart, it unlocks and
formulates meaning; it forms bridges between
here and there, between disparate ideas that
we did not know were previously connected.
Reif Larsen, The Selected Works of T.S. Spivet

The simplest form of map on a website tends to be used

for showing where a place is and often directions on how

to get to it. That’s an incredibly powerful tool. So why is it,

then, that so many sites just plonk in a default Google

Map and leave it as that? You wouldn’t just use dark grey

Helvetica on every site, would you? Where’s the

personality? Where’s the tailored experience? Where is

the design?

JUMPING INTO DESIGN

Let’s keep this simple – we all want to be better web folk,

not cartographers. We don’t need to go into the history,

mathematics or technology of map making (although all of

those areas are really interesting to research). For the

sake of our sanity, I’m going to gloss over some of the

technical areas and focus on the practical concepts.

Tiles

If you’ve ever noticed a map loading in sections, it’s

because it uses tiles that are downloaded individually

instead of requiring the user to download everything that

150 24 ways 2014 edition

they might need. These tiles come in many styles and can

be used for anything that covers large areas, such as base

maps and data. You’ve seen examples of alternative base

maps when you use Google Maps as Google provides both

satellite imagery and road maps, both of which are forms

of base maps. They are used to provide context for the

real world, or any other world for that matter. A marker

on a blank page is useless.

The tiles are representations of the physical; they do not

have to be photographic imagery to provide context. This

means you can design the map itself. The easiest way to

conceive this is by comparing Google’s road maps with

Ordnance Survey road maps. Everything about the two

maps is different: the colours, the label fonts and the

symbols used. Yet they still provide the exact same

context (other maps may provide different context such

as terrain contours).

Putting Design on the Map

24 ways 2014 edition 151

http://www.ordnancesurvey.co.uk/

Comparison of Google Maps (top) and the Ordnance Survey
(bottom).

Carefully designing the base map tiles is as important as

any other part of the website. The most obvious, yet often

overlooked, aspect are aesthetics and branding. Maps

could fit in with the rest of the site; for example, by

matching the colours and line weights, they can enhance

the full design rather than inhibiting it. You’re also able to

define the exact purpose of the map, so instead of

showing everything you could specify which symbols or

labels to show and hide.

152 24 ways 2014 edition

I’ve not done any real research on the accessibility of base

maps but, having looked at some of the available options, I

think a focus on the typography of labels and the colour of

the various elements is crucial. While you can choose to

hide labels, quite often they provide the data required to

make sense of the map. Therefore, make sure each zoom

level is not too cluttered and shows enough to give

context. Also be as careful when choosing the typeface as

you are in any other design work. As for colour, you need

to pay closer attention to issues like colour-blindness

when using colour to convey information. Quite often a

spectrum of colour will be used to show data, or to show

the topography, so you need to be aware that some

people struggle to see colour differences within a

spectrum.

A nice example of a customised base map can be found on

Michael K Owens’ check-in pages:

One of Michael K Owens’ check-in pages.

Putting Design on the Map

24 ways 2014 edition 153

https://mowens.com/checkins/2014/11/23/1/late-lunch-with-nicole

As I’ve already mentioned, tiles are not just for base maps:

they are also for data. In the screenshot below you can

see how Plymouth Marine Laboratory uses tiles to show

data with a spectrum of colour.

A map from the Marine Operational Ecology data portal,
showing data of adult cod in the North Sea.

TECHNICAL

You’re probably wondering how to design the base layers.

I will briefly explain the concepts here and give you tools

to use at the end of the article. If you’re worried about the

time it takes to design the maps, don’t be – you can

automate most of it. You don’t need to manually draw

each tile for the entire world!

We’ve learned the importance of web standards the hard

way, so you’ll be glad (and I won’t have to explain the

advantages) of the standard for web mapping from the

Open Geospatial Consortium (OGC) called the Web Map

Service (WMS). You can use conventional file formats for

154 24 ways 2014 edition

http://www.pml.ac.uk/
http://portal.marineopec.eu/
http://www.opengeospatial.org/standards/wms
http://www.opengeospatial.org/standards/wms

the imagery but you need a way to query for the

particular tiles to show for the area and zoom level, that is

what WMS does.

Features

Tiles are great for covering large areas but sometimes you

need specific smaller areas. We call these features and

they usually consist of polygons, lines or points. Examples

include postcode boundaries and routes between places,

or even something more dynamic such as borders of

nations changing over time.

Showing features on a map presents interesting design

challenges. If the colour or shape conveys some kind of

data beyond geographical boundaries then it needs to be

made obvious. This is actually really hard, without

building complicated user interfaces. For example, in the

image below, is it obvious that there is a relationship

between the colours? Does it need a way of showing what

the colours represent?

Putting Design on the Map

24 ways 2014 edition 155

Choropleth map showing ranked postcode areas, using
ViziCities.

Features are represented by means of lines or
colors; and the effective use of lines or colors
requires more than knowledge of the subject –
it requires artistic judgement.
Erwin Josephus Raisz, cartographer (1893–1968)

Where lots of boundaries are small and close together

(such as a high street or shopping centre) will it be obvious

where the boundaries are and what they represent?

When designing maps, the hardest challenge is dealing

with how the data is represented and how it is understood

by the user.

TECHNICAL

As you probably gathered, we use WMS for tiles and

another standard called the web feature service (WFS)

for specific features. I need to stress that the difference

between the two is that WMS is for tiling, whereas WFS is

for specific features. Both can use similar file formats but

should be used for their particular use cases. You may be

wondering why you can’t just use a vector format such as

KML, GeoJSON (or even SVG) – and you can – but the

issue is the same as for WMS: you need a way to query the

data to get the correct area and zoom level.

156 24 ways 2014 edition

http://en.wikipedia.org/wiki/Choropleth_map
http://vizicities.com/
http://www.opengeospatial.org/standards/wfs

User interface

There is of course never a correct way to design an

interface as there are so many different factors to take

into consideration for each individual project. Maps can

be used in a variety of ways, to provide simple information

about directions or for complex visualisations to explain

large amounts of data. I would like to just touch on

matters that need to be taken into account when working

with maps.

As I mentioned at the beginning, there are so many

Google Maps on the web that people seem to think that

its UI is the only way you can use a map. To some degree

we don’t want to change that, as people know how to use

them; but does every map require a zoom slider or base

map toggle? In fact, does the user need to zoom at all? The

answer to that one is generally yes, zooming does provide

more context to where the map is zoomed in on.

In some cases you will need to let users choose what goes

on the map (such as data layers or directions), so how do

they show and hide the data? Does a simple drop-down

box work, or do you need search? Google’s base map

toggle is quite nice since it doesn’t offer many options yet

provides very different contexts and styling.

It isn’t until we get to this point that we realise just

plonking a quick Google map is really quite ridiculous,

especially when compared to the amount of effort we

Putting Design on the Map

24 ways 2014 edition 157

make in other areas such as colour, typography or how the

CSS is written. Each of these is important but we need to

make sure the whole site is designed, and that includes

the maps as much as any other content.

Putting it into practice

I could ramble on for ages about what we can do to

customise maps to fit a site’s personality and correctly

represent the data. I wanted to focus on concepts and

standards because tools constantly change and it is never

good to just rely on a tool to do the work. That said, there

are a large variety of tools that will help you turn these

concepts into reality. This is not a comparison; I just want

to show you a few of the many options you have for maps

on the web.

GOOGLE

OK, I’ve been quite critical so far about Google Maps but

that is only because there is such a large amount of the

default maps across the web. You can style them almost as

much as anything else. They may not allow you to use

custom WMS layers but Google Maps does have its own

version, called styled maps. Using an array of map

features (in the sense of roads and lakes and landmarks

rather than the kind WFS is used for), you can style the

base map with JavaScript. It even lets you toggle visibility,

which helps to avoid the issue of too much clutter on the

158 24 ways 2014 edition

https://developers.google.com/maps/documentation/javascript/styling

map. As well as lacking WMS, it doesn’t support WFS, but

it does support GeoJSON and KML so you can still show

the features on the map. You should also check out

Google Maps Engine (the new version of My Maps), which

provides an interface for creating more advanced maps

with a selection of different base maps. A premium

version is available, essentially for creating map-based

visualisations, and it provides a step up from the main

Google Maps offering. A useful feature in some cases is

that it gives you access to many datasets.

LEAFLET

You have probably seen Leaflet before. It isn’t quite as

popular as Google Maps but it is definitely used often and

for good reason. Leaflet is a lightweight open source

JavaScript library. It is not a service so you don’t have to

worry about API throttling and longevity. It gives you two

options for tiling, the ability to use WMS, or to directly get

the file using variables in the filename such as

/{z}/{x}/{y}.png. I would recommend using WMS over

dynamic file names because it is a standard, but the ability

to use variables in a file name could be useful in some

situations. Leaflet has a strong community and a well-

documented API.

Putting Design on the Map

24 ways 2014 edition 159

https://developers.google.com/maps-engine/
http://leafletjs.com/

MAPBOX

As a freemium service, Mapbox may not be perfect for

every use case but it’s definitely worth looking into. The

service offers incredible customisation tools as well as

lots of data sources and hosting for the maps. It also

provides plenty of libraries for the various platforms, so

you don’t have to only use the maps on the web.

Mapbox is a service, though its map design tool is open

source. Mapbox Studio is a vector-only version of their

previous tool called Tilemill. Earlier I wrote about how

typography and colour are as important to maps as they

are to the rest of a website; if you thought, “Yes, but how

on earth can I design those parts of a map?” then this is

the tool for you. It is incredibly easy to use. Essentially

each map has a stylesheet.

If you do not want to open a paid-for Mapbox account,

then you can export the tiles (as PNG, SVG etc.) to use

with other map tools.

OPENLAYERS

After a long wait, OpenLayers 3 has been released. It is

similar to Leaflet in that it is a library not a service, but it

has a much broader scope. During the last year I worked

on the GIS portal at Plymouth Marine Laboratory (which I

used to show the data tiles earlier), it essentially used

160 24 ways 2014 edition

https://www.mapbox.com/
https://www.mapbox.com/design/#mapbox-studio
http://openlayers.org/

OpenLayers 2 to create a web-based geographic

information system, taking a large amount of data and

permitting analysis (such as graphs) without downloading

entire datasets and complicated software. OpenLayers 3

has improved greatly on the previous version in both

performance and accessibility. It is the ideal tool for

complex map-based web apps, though it can be used for

the simple use cases too.

OPENSTREETMAP

I couldn’t write an article about maps on the web without

at least mentioning OpenStreetMap. It is the place to go

for crowd-sourced data about any location, with complete

road maps and a strong API.

VIZICITIES

The newest project on this list is ViziCities by Robin

Hawkes and Peter Smart. It is a open source 3-D

visualisation tool, currently in the very early stages of

development. The basic example shows 3-D buildings

around the world using OpenStreetMap data. Robin has

used it to create some incredible demos such as real-time

London underground trains, and planes landing at an

airport. Edward Greer and I are currently working on

using ViziCities to show ideal housing areas based on

particular personas. We chose it because the 3-D aspect

gives us interesting possibilities for the data we are able

Putting Design on the Map

24 ways 2014 edition 161

http://www.openstreetmap.org/
http://vizicities.com/

to visualise (such as bar charts on the actual map instead

of in the UI). Despite not being a completely stable, fully

featured system, ViziCities is worth taking a look at for

some use cases and is definitely going to go from strength

to strength.

◆◆◆

So there you have it – a whistle-stop tour of how maps can

be customised. Now please stop plonking in maps without

thinking about it and design them as you design the rest of

your content.

162 24 ways 2014 edition

ABOUT THE AUTHOR

Despite being a constant presence on Twitter, Shane Hudson

occasionally does some work. He is a developer interested in all

things web. Currently focussing on completing a degree in

Artificial Intelligence, Shane has previously written a book

called JavaScript Creativity, worked on a web-based geographic

data portal at Plymouth Marine Laboratory and freelanced as a

front-end developer.

Putting Design on the Map

24 ways 2014 edition 163

http://shanehudson.net

Charlie Perrins 24ways.org/201412

12. Is Agile Harder for
Agencies?

I once sat in a pitch meeting and watched a
new business exec tell a potential client that
his agency followed an agile workflow
process at all times. The potential client
nodded wisely, and they both agreed that
agile was indeed the way to go.

The meeting progressed and they signed off on a contract

for a massive project, to be delivered in a standard

waterfall fashion, with all manner of phases and key

deliverables.

Of course both of them left the meeting perfectly happy,

because neither of them knew nor cared what an agile

workflow process might be.

That was about five years ago. As 2015 heaves into view I

think it’s fair to say that attitudes have changed. Perhaps

the same number of people claim to do Agile™ now as in

2010, but I think more of them are telling the truth.

164 24 ways 2014 edition

http://24ways.org/201412

As a developer in an agency that works primarily with

larger organisations, this year I have started to see a shift

from agencies pushing agile methodologies with their

clients, to clients requesting and even demanding agile

practices from their agencies. Only a couple of years ago

this would have been unusual behaviour.

SO WHAT’S THE PROBLEM?

We should be happy then, no? Those of us in agencies will

get to spend more time delivering great products, and less

time arguing over out-of-date functional specs or battling

through an adversarial change management procedure

because somebody had a good idea during development

rather than planning. We get to be a little bit more like our

brothers and sisters in vaunted teams like the

Government Digital Service, which is using agile

approaches to great effect on projects that have a real

benefit to their users.

Almost. Unfortunately, it seems to be the case that

adhering to an agile framework such as scrum is more

difficult within an agency/client structure than it is for an

in-house development team.

This is no surprise. The Agile Manifesto was written in

2001 by a group of software developers for their own use.

Many of the underlying principles of a framework like

Scrum assume the existence of an in-house team, working

Is Agile Harder for Agencies?

24 ways 2014 edition 165

http://agilemanifesto.org/

on a highly technical project, and working for the business

that employs them. The agency/client model must to

some extent be retrofitted into agile frameworks. It can

be done though, and there are plenty of agencies out

there doing it well.

This article isn’t meant to be another introduction to agile

techniques – there are too many of those online already.

This article is for people just dipping their toes into this

way of working. I’ve laid out a few of the key reasons why

adopting a more fully agile approach seems difficult, at

least initially, for those of us working in agencies.

1. AGILE ASKS MORE OF YOUR CLIENTS

When a team adopts Scrum everyone has to get used to a

number of unfamiliar roles and rituals. Few team

members have a steeper learning curve than the person

designated as the product owner.

The product owner carries a lot of weight on their

shoulders. They have to uphold the overall vision for the

project. They are also meant to be the primary author of

the project’s user stories (short atomic descriptions of

project features which are testable and relate to a real

business need). They should own this list of stories (called

a backlog) and should be able to prioritise the order in

166 24 ways 2014 edition

http://scrummethodology.com/scrum-product-owner/

which the stories are developed, to ensure that the

project is delivering real value to the business early and

often.

When a burst of work is completed (bursts of work in

Scrum are called sprints), the product owner leads a

review or show-and-tell session with the wider project

stakeholders. The product owner needs to understand the

work that has been completed, and must champion it to

the business. Finally, and most importantly, the product

owner is responsible for managing the feedback and

requests from stakeholders in such a way that they don’t

derail the project team’s agreed workload for any given

sprint, without upsetting or offending any of the

stakeholders – some of whom may outrank the product

owner.

If you follow that spec, this is a job for a superhuman in

any organisational context. And within the agency/client

structure this superhuman needs to be client-side for the

process to be at its most effective.

So your client, who in the past might have briefed a

project to an agency team and then had the work

presented back to them every few weeks, is now asked to

be involved with the team on a daily basis; to fight on

behalf of the team when new or difficult requests come in

from senior figures within their organisation; and to

Is Agile Harder for Agencies?

24 ways 2014 edition 167

present the agency’s work to their own colleagues after

each sprint. It’s a big change if all that gets dropped into

someone’s lap without warning.

There are several ways agencies can mitigate this issue.

The ScrumAlliance suggests some alternative ways to

structure the product owner role. The approach I have

taken in the past is simply to start slow, and gradually

move more of the product owner role over to the client

side as and when they feel comfortable with it. If you’re

working together long-term on a project, and you both

see tangible improvements in the quality of the work after

adopting an agile process, then your client is more likely

to be open to further changes as the partnership

progresses.

2. MY CLIENT WANTS FIXED COSTS, FIXED
DEADLINES AND A FIXED SCOPE

I know. Mine too. Of course they do – it is the way that

agencies and clients have agreed to work in digital and

other creative service industries for a very long time. On

both sides of the fence we’re used to thinking about

projects in this way.

Of the three, fixing scope is the one that agile purists

would rail hardest against. The more time we spend

working on digital projects, the less sense it makes. James

Archer, CEO of UI/UX design agency Forty puts it like this:

168 24 ways 2014 edition

https://www.scrumalliance.org/community/articles/2010/april/common-product-owner-traps
https://www.scrumalliance.org/community/articles/2010/april/common-product-owner-traps
http://forty.co

For me, the Agile approach is really about
acknowledging that disturbing truth that every
project manager knows, but has trouble
admitting. The truth that the project plan is
wrong. Scope creep. Change orders. Shifting
priorities. New directions. We act shocked and
appalled when those things happen during our
carefully planned project, even though they
happen on every project ever.

Successful relationships require trust and honesty, and we

shouldn’t be afraid of discussing this aspect of project

management. If you do move away from a fixed scope of

work, then the other two items (costs and timings) can be

fixed – more or less. If you can get your clients to buy into

this from a standing start then you are doing well. In fact

you probably deserve a promotion. For most of us this is a

continual discussion.

Anyway, as soon as you’ve made headway on the

argument that it makes little or no sense to try and fix the

scope of a digital project, you usually run into a related

concern, which we’ll look at next.

Is Agile Harder for Agencies?

24 ways 2014 edition 169

3. FEAR OF UNCONTROLLED COSTS

We all know that a dog is for life, not just for Christmas. At

this time of year perhaps we should reiterate to everyone

that digital products and services also need support and

love once we have taken the decision to bring them into

the world.

More organisations are realising that their investment in

digital platforms should be viewed as an operational

expenditure rather than a capital expenditure. But from

time to time we will find ourselves working on projects for

people who have a finite amount of money to invest in a

product at a given point in time. When agencies start

talking about these projects as rolling investments those

responsible can understandably worry about their costs

running out of control.

There’s another factor at play here. Agile, on the whole,

prefers to derive a cost for services from the hours a team

spends working on a project. In other industries this is

referred to as charging for time and materials, and there

seems to be an ingrained distrust in this approach among

people in general. See, for example, the Citizens Advice

Bureau’s “Top tips for employing a builder”:

“Bear in mind that if you pay a daily rate, this
makes it easier for a builder to string the work
out and get more money so agree what you will
do if the job takes longer than expected.”

170 24 ways 2014 edition

http://www.adviceguide.org.uk/wales/consumer_w/consumer_builders_and_home_improvements_e/consumer_builders_and_home_improvements_tips_e/consumer_choosing_a_builder_e/top_tips_for_employing_a_builder.htm

It’s hard not to feel stung if you are in the builder’s shoes

here, as we are when we’re talking about our role as an

agency. But if you’ve ever haggled with a builder over time

and materials, and also moaned about your clients

misunderstanding agile methods, take a moment to

reflect on the similarities from your client’s point of view.

Again, there are some things we can do to mitigate this

issue. Some agencies put in place a service level

agreement around their team’s velocity (an agile-related

term related to how much work a team delivers in any

given sprint) and this can help.

As the industry moves further towards a long-term

approach to investment in digital I hope this fear will

subside. But that shift in approach leads to the final

concern I want to address.

4. AGENCY STRUCTURES NEED SHAKING UP

If you work for a company that has spent many years

developing a business model around the waterfall

process, you may have to break through many layers of

entrenched thinking in order to establish new practices

and effect organisational change.

There are consultancies that exist specifically to help

agencies through their own agile transformation. One of

these companies, AgencyAgile, provides a helpful list of

Is Agile Harder for Agencies?

24 ways 2014 edition 171

common pitfalls. They emphasise the need to look at your

whole agency’s structure, rather than simply encouraging

project teams to adopt new workflows.

Even awesomely run Agile projects can have a
limited impact on the overall organization.

If you’re serious about changing the way your company

approaches projects then try talking to people who sit

outside the usual project delivery team. Speak to the

finance department if you have one, and try to convince

your senior management team if they’re not already on

board. And definitely speak to your new business people,

who go out there and win the projects you get to work on.

It’s these people who need to understand the potential

business benefits of working in a new way, and also which

of their existing habits and behaviours they might need to

change to accommodate a new approach.

Otherwise you’ll find yourself with a team of designers,

developers and project managers who are ready and

waiting to deliver work in an iterative and collaborative

way, but by the time they get hold of the project a cost has

already been agreed, a deadline has been imposed, and a

functional requirements document has been

painstakingly put together. Nobody wins in this situation.

172 24 ways 2014 edition

http://www.thoughtlegion.com/blog/three-reasons-agile-can-fail-at-your-agency/

CONCLUSION

So where should we go from here? I certainly don’t have

hard and fast answers – I’m not sure that they exist in a

one-size-fits-all approach for agencies.

There are plenty of smart people thinking about this

problem. It’s a hot topic right now. Earlier in the year a

London-based meetup was established called Agile for

Agencies. If you’re in the capital and want to discuss these

issues with your peers it’s a great opportunity to do so.

I’ve mentioned James Archer and Forty already. Both

James and Paul Boag have written in the last twelve

months on this subject. They both come out on the side of

the argument that suggests you adopt agile principles, but

don’t have to worry about the rituals if they don’t fit in

with your practices.

Personally, I think the rituals and the discipline mandated

by an agile framework like Scrum can provide a great deal

of value to your team, even it if is hard to implement

within an agency culture that has traditionally structured

its work and its services in another way.

In whatever way you figure out the details, when your

teams collaborate with your clients rather than work for

them at arm’s length, and when everyone prioritises

frequent delivery, reflection and iteration over exhaustive

scoping and planning, I believe you’ll see a tangible

difference in the quality of the work that you create.

Is Agile Harder for Agencies?

24 ways 2014 edition 173

http://www.meetup.com/agile4agencies/
http://www.meetup.com/agile4agencies/
http://forty.co/agile-design-what-weve-learned
https://boagworld.com/digital-strategy/agile-web-design/

ABOUT THE AUTHOR

Charlie Perrins is Technical Director at Dare. He’s a front-end

developer by trade, and a nut for semantic and readable code.

He writes and talks about technologies old and new to anyone

who’ll listen. Most recently he’s spoken at events run by Faber &

Faber and at Front End London.

Charlie tweets pretty regularly, but is an unreliable blogger. His

crowning achievement in self-publishing came some five years

ago and was entitled simply ‘The Bacon Project’.

Photo by Steve Whittington

174 24 ways 2014 edition

http://www.thisisdare.com
http://www.frontendlondon.co.uk
https://twitter.com/charlieperrins
http://www.charlieperrins.com/category/bacon
https://twitter.com/stevetwiters

Inayaili de León Persson 24ways.org/201413

13. The Introvert Owner’s
Manual

Nobody realizes that some people expend
tremendous energy merely to be normal.
Albert Camus

“Whatever you plan, just make sure there are lots of

people there,” said my husband in the run-up to his

birthday last year. A few months later, before my own

birthday, I uttered, “Whatever you plan, just make sure it

is only me and you.”

I am an introvert. It is very likely some of you are too, or

that you live, work or fraternise with one. Despite there

being quite a few of us out there – some say as many as

one third of the population, others as little as ten per cent

– I think our professional and social lives are biased

towards a definition of normality that is more accepting of

the extrovert. I hope that by reading this article you will

The Introvert Owner’s Manual

24 ways 2014 edition 175

http://24ways.org/201413

gain some insight to what goes on inside the head of the

introvert(s) that you know and understand how to relate

to them in a way that respects their disposition.

Before we go any further, I should define what exactly

being an introvert means, and, equally important, what it

does not. Only once this is established will you be able to

handle your introvert correctly.

WHAT DEFINES AN INTROVERT

The simplest and most accurate way of describing an

introvert is that she uses up energy in social situations

and needs to be in solitude to recharge.

To explain what I mean, let us take the example of the The

Sims: when you create a Sim, you can choose (among

other characteristics) whether it will be outgoing or not. If

the Sim is outgoing, when you play the game you need to

make sure it interacts as much as possible with other Sims

or its mood indicator (the plumbob) will become red and

that is a bad thing. Conversely, if your Sim is not outgoing,

when you put it in too many social situations its plumbob

will become red too.

So your (real life) introvert might think you are great (you

might even be her best friend, her spouse or her child), but

if her plumbob is red, or nearly, she might just need a little

time and space to recharge before she is ready to interact.

176 24 ways 2014 edition

http://en.wikipedia.org/wiki/The_Sims
http://en.wikipedia.org/wiki/The_Sims
https://www.google.co.uk/search?q=plumbob&es_sm=91&source=lnms&tbm=isch&sa=X&ei=cx16VLzHDNKV7gbx54HoDw&ved=0CAgQ_AUoAQ&biw=1280&bih=679

This is not the same thing as being shy or in a bad mood all

the time. We are not necessarily awkward in social

situations, but, if we have not had the time to recharge,

being social might be almost impossible. This explains why

your introvert will likely ask who will be at the gathering

you have planned, for how long she will have to stay there,

and what she will be doing before and after the event. It is

the equivalent of you wanting to know if there will be

power sockets in the restaurant to charge your iPhone –

asking this does not mean you don’t want to attend.

The explanation above might be a simplistic way of

looking at things, but I would say it is one that introverts

can relate to; call it a minimalist approach to socialisation.

CARING FOR YOUR INTROVERT

Articles and conversations about introversion usually

focus on how to fix the condition and how to make

introverts more outgoing: a clear example of our society’s

bias towards the normality of extroversion. Avoid this.

You will not be able to convert your introvert into an

extrovert. Believe it or not, there is nothing wrong with

her.

In her 2012 TED talk, “The power of introverts”, Susan

Cain pointed to the fact that places like school and work

are designed for extroverts: students and workers are

required to constantly work in groups and speaking up is

The Introvert Owner’s Manual

24 ways 2014 edition 177

http://www.ted.com/talks/susan_cain_the_power_of_introverts?language=en

highly valued. Both types are evaluated against the same

criteria and more often than not people are expected to

excel at being outspoken to be considered well rounded.

Obviously, this is not the right way to appraise your

introvert. Comparing your introvert with an extrovert

using the same parameters and simply asking her to

behave more like an extrovert is a mistake and something

that will only perpetuate an introvert’s idea that the

problem lies with her.

Speaking up

Your introvert is likely to have strong opinions and ideas,

and to have been listening to other people speak at

meetings and workshops. Help her voice those thoughts

by creating an environment where everyone stops and

listens when someone speaks instead of one which fosters

interruptions. Show her that it is acceptable for someone

to take time to think before they speak: silences are OK.

Allow her the freedom to be herself instead of pressuring

her to change an innate quality.

It is not uncommon to find an introvert who likes to

express ideas in writing. The world of web professionals

excels in the spread of knowledge that is shared and

sought through the written word. Give your introvert the

178 24 ways 2014 edition

necessary time and tools to write about the job, if she is

that way inclined; this might be a good alternative to

asking her to speak out.

Group work

I remember the sinking feeling whenever I heard my

teachers say the dreaded words: “And now you’re going to

break out into groups of…” Being an introvert does not

mean you do not like people (or like to be around or work

with others). It is just that activities such as group work

will invariably drain your introvert’s energy rapidly. Your

introvert’s batteries will need to be fully charged for her

to be at her best and afterwards she will most likely need

to recharge.

Quiet time

These days, one of the things that I value most at work is

the ability to have moments to create and to think in

solitude. When I am able to have those moments at the

right time I will in turn be happy to participate in group

conversations and tasks. Allow your introvert to have

those moments: this does not mean she will have to work

from home one day a week (but maybe it will); it might

simply mean allowing her to take her laptop and her

notebook and work from the empty side of the office, or

from the coffee shop downstairs for an hour or two. In all

The Introvert Owner’s Manual

24 ways 2014 edition 179

likelihood she will come back fully recharged and ready to

engage in more social activities – her plumbob will again

be bright green.

Leadership

Do not think that your introvert cannot lead. Cain notes

that introverted leaders are more likely to let their

proactive employees run with their ideas instead of taking

the ideas as their own. I would say that is a positive

attribute in a leader. Maybe next time a project starts, talk

to your introvert about the possibility of her being in a

leadership position or of having more responsibility: you

might be surprised at her ability to plan and foresee

potential obstacles in the project.

FINAL THOUGHTS

You would not tell someone with dyslexia to get better at

spelling without giving her the right tools and enough

time to do so. Equally, do not ask your introvert to be

more outgoing, or to turn her frown upside down, without

giving her the space to do so.

I believe that everyone is an introvert at some point.

Everyone needs a moment of solitude now and then, and

the work we do requires frequent periods of deep focus

and concentration. Striving to create workplaces,

180 24 ways 2014 edition

classrooms, homes that allow introverts to shine and be

comfortable in their skin has the potential to also make

those places more balanced for everyone else.

RESOURCES AND FURTHER READING

▪ The power of introverts

▪ 10 myths about introverts

▪ Susan Cain’s 2014 TED Talk | Announcing the Quiet

Revolution

▪ Help Shy Kids — Don’t Punish Them

▪ The Introvert Advantage

▪ 6 Things You Thought Wrong About Introverts

▪ Extraversion and introversion

The Introvert Owner’s Manual

24 ways 2014 edition 181

http://www.ted.com/talks/susan_cain_the_power_of_introverts?language=en
http://www.carlkingdom.com/10-myths-about-introverts#.VHICSlesVzA
http://www.thepowerofintroverts.com/susan-cain-ted-talk-2014-quiet-revolution/
http://www.thepowerofintroverts.com/susan-cain-ted-talk-2014-quiet-revolution/
http://susancain.sharedby.co/share/NV5ro0
http://www.amazon.co.uk/Introvert-Advantage-Thrive-Extrovert-World/dp/0761123695
http://www.huffingtonpost.com/2013/07/29/introvert-myths_n_3569058.html
http://en.wikipedia.org/wiki/Extraversion_and_introversion

ABOUT THE AUTHOR

Inayaili de León Persson (or just Yaili) is a web designer and

author. She’s Lead Web Designer at Canonical, the company

that delivers Ubuntu. She’s Panamanian Portuguese, born in the

USSR, and has been living in London since 2008 — her favourite

city in the world. She loves cats and naps.

182 24 ways 2014 edition

http://yaili.com/
http://ubuntu.com/

Rachel Nabors 24ways.org/201414

14. Five Ways to Animate
Responsibly

It’s been two years since I wrote about
“Flashless Animation” on this very site.
Since then, animation has steadily begun
popping up on websites, from sleek app-like
user interfaces to interactive magazine-like
spreads. It’s an exciting time for web
animation wonks, interaction developers,
UXers, UI designers and a host of other
acronyms!

But in our rush to experiment with animation it seems

that we’re having fewer conversations about whether or

not we should use it, and more discussions about what we

can do with it. We spend more time fretting over how to

animate all the things at 60fps than we do devising ways

to avoid incapacitating users with vestibular disorders.

Five Ways to Animate Responsibly

24 ways 2014 edition 183

http://24ways.org/201414
http://24ways.org/2012/flashless-animation/
http://24ways.org/2012/flashless-animation/
http://a11yproject.com/posts/understanding-vestibular-disorders/

I love web animation. I live it. And I make adorably silly

things with it that have no place on a self-respecting

production website. I know it can be abused. We’ve all

made fun of Flash-turbation. But how quickly we forget the

lessons we learned from that period of web design.

Parallax scrolling effects may be the skip intro of this

generation. Surely we have learned better in the sobering

up period between Flash and the web animation API.

So here are five bits of advice we can use to pull back from

the edge of animation abuse. With these thoughts in mind,

we can make 2015 the year web animation came into its

own.

ANIMATE DELIBERATELY

Sadly, animation is considered decorative by the bulk of

the web development community. UI designers and

interaction developers know better, of course. But when

I’m teaching a workshop on animation for interaction, I

know that my students face an uphill battle against

decision makers who consider it nice to have, and tack it

on at the end of a project, if at all.

This stigma is hard to shake. But it starts with us using

animation deliberately or not at all. Poorly considered,

tacked-on animation will often cause more harm than

good. Users may complain that it’s too slow or too fast, or

that they have no idea what just happened.

184 24 ways 2014 edition

http://rachelnabors.com/alice-in-videoland/book/
http://rachelnabors.com/alice-in-videoland/book/
http://www.smashingmagazine.com/2014/11/18/the-state-of-animation-2014/

When I was at Chrome Dev Summit this year, I had the

privilege to speak with Roma Sha, the UX lead behind

Polymer’s material design (with the wonderful animation

documentation). I asked her what advice she’d give to

people using animation and transitions in their own

designs. She responded simply: animate deliberately. If

you cannot afford to slow down to think about animation

and make well-informed and well-articulated decisions on

behalf of the user, it is better that you not attempt it at all.

Animation takes energy to perform, and a bad animation

is worse than none at all.

IT TAKES MORE THAN TWELVE PRINCIPLES

We always try to draw correlations between disparate

things that spark our interest. Recently it feels like more

and more people are putting the The Illusion of Life on their

reading shelf next to Understanding Comics. These books

give us so many useful insights from other industries.

However, we should never mistake a website for a comic

book or an animated feature film. Some of these concepts,

while they help us see our work in a new light, can be

more or less relevant to producing said work.

See: //player.vimeo.com/video/93206523

The illusion of life from cento lodigiani on Vimeo.

Five Ways to Animate Responsibly

24 ways 2014 edition 185

https://www.youtube.com/watch?v=tfSiXRy1vEw
https://www.youtube.com/watch?v=tfSiXRy1vEw
http://www.google.com/design/spec/animation/meaningful-transitions.html
http://www.google.com/design/spec/animation/meaningful-transitions.html
http://www.amazon.com/gp/product/0786860707
http://www.scottmccloud.com/2-print/1-uc/index.html
http://player.vimeo.com/video/93206523
http://vimeo.com/93206523
http://vimeo.com/centodesign
https://vimeo.com

I am specifically thinking of the twelve principles of

animation put forth by Disney studio veterans in that

great tome The Illusion of Life. These principles are very

useful for making engaging, lifelike animation, like a ball

bouncing or a squirrel scampering, or the physics behind

how a lightbox should feel transitioning off a page. But

they provide no direction at all for when or how

something should be animated as part of a greater

interactive experience, like how long a drop-down should

take to fully extend or if a group of manipulable objects

should be animated sequentially or as a whole.

The twelve principles are a great place to start, but we

have so much more to learn. I’ve documented at least six

more functions of interactive animation that apply to web

and app design. When thinking about animation, we

should consider why and how, not just what, the physics.

Beautiful physics mean nothing if the animation is

superfluous or confusing.

USEFUL AND NECESSARY, THEN BEAUTIFUL

There is a Shaker saying: “Don’t make something unless it

is both necessary and useful; but if it is both necessary

and useful, don’t hesitate to make it beautiful.” When it

comes to animation and the web, currently there is very

little documentation about what makes it useful or

necessary. We tend to focus more on the beautiful, the

186 24 ways 2014 edition

http://vimeo.com/93206523
http://vimeo.com/93206523
http://alistapart.com/article/web-animation-at-work
http://alistapart.com/article/web-animation-at-work

delightful, the aesthetic. And while aesthetics are

important, they take a back seat to the user’s overall

experience.

See: //www.youtube.com/embed/m5MrbCGcaUI

The first time I saw the load screen for Pokemon Yellow

on my Game Boy, I was enthralled. By the sixth time, I was

mashing the start button as soon as Game Freak’s logo hit

the screen. What’s delightful and meaningful to us while

working on a project is not always so for our users. And

even when a purely delightful animation is favorably

received, as with Pokemon Yellow’s adorable opening

screen, too many repetitions of the cutest but ultimately

useless animation, and users start to resent it as a

hindrance.

Five Ways to Animate Responsibly

24 ways 2014 edition 187

http://www.youtube.com/embed/m5MrbCGcaUI
https://www.youtube.com/watch?v=m5MrbCGcaUI

If an animation doesn’t help the user in some way, by

showing them where they are or how two elements on a

page relate to each other, then it’s using up battery juice

and processing cycles solely for the purpose of delight.

Hardly the best use of resources.

Rather than animating solely for the sake of delight, we

should first be able to articulate two things the animation

does for the user. As an example, take this menu icon from

Finethought.com (found via Use Your Interface). The

menu icon does two things when clicked:

1. It gives the user feedback by animating, letting the

user know its been clicked.

2. It demonstrates its changed relationship to the page’s

content by morphing into a close button.

188 24 ways 2014 edition

http://finethought.com/
http://useyourinterface.com/post/97576888941

Assuming we have two good reasons to animate

something, there is no reason our third cannot be to

delight the user.

GO FOUR TIMES FASTER

There is a rule of thumb in the world of traditional

animation which is applicable to web animation: however

long you think your animation should last, take that time

and halve it. Then halve it again! When we work on an

animation for hours, our sense of time dilates. What

seems fast to us is actually unbearably slow for most

users. In fact, the most recent criticism from users of

animated interfaces on websites seems to be, “It’s so

slow!” A good animation is unobtrusive, and that often

means running fast.

When getting your animations ready for prime time,

reduce those durations to 25% of their original speed: a

four-second fade out should be over in one.

INSTALL A KILL SWITCH

No matter how thoughtful and necessary an animation,

there will be people who become physically sick from

seeing it. For these people, we must add a way to turn off

animations on the website.

Five Ways to Animate Responsibly

24 ways 2014 edition 189

Fortunately, web designers are already thinking of ways

to empower users to make their own decisions about how

they experience the web. As an example, this site for the

animated film Little from the Fish Shop allows users to turn

off most of the parallax effects. While it doesn’t remove

the animation entirely, this website does reduce the most

nauseating of the animations.

See: //www.youtube.com/embed/2c3siLM1zlw

◆◆◆

Animation is a powerful tool in our web design arsenal.

But we must take care: if we abuse animation it might get

a bad reputation; if we underestimate it, it won’t be

prioritized. But if we wield it thoughtfully, use it where it

is both necessary and useful, and empower users to turn it

off, animation is a tool that will help us build things that

are easier to use and more delightful for years to come.

Let’s make 2015 the year web animation went to work for

users.

190 24 ways 2014 edition

http://www.malazrybarnyfilm.cz/en/index.html
http://www.malazrybarnyfilm.cz/en/index.html
http://www.youtube.com/embed/2c3siLM1zlw

ABOUT THE AUTHOR

Rachel Nabors is an interaction developer and award-winning

cartoonist. She travels the world, speaking and training people

in the art of web animation. When not biking around her home

city of Portland, she makes interactive comics at her company

Tin Magpie. You can catch her as @rachelnabors on Twitter and

at rachelnabors.com.

Five Ways to Animate Responsibly

24 ways 2014 edition 191

http://tinmagpie.com
http://twitter.com/rachelnabors
http://rachelnabors.com/

Dave Collins 24ways.org/201415

15. SEO in 2015 (and Why
You Should Care)

If your business is healthy, you can always
find plenty of reasons to leave SEO on your
to-do list in perpetuity. After all, SEO is
technical, complicated, time-consuming
and potentially dangerous. The SEO industry
is full of self-proclaimed gurus whose lack
of knowledge can be deadly. There’s the
terrifying fact that even if you dabble in SEO
in the most gentle and innocent way, you
might actually end up in a worse state than
you were to begin with.

To make matters worse, Google keeps changing the rules.

There have been a bewildering number of major updates,

which despite their cuddly names have had a horrific

impact on website owners worldwide.

Fear aside, there’s also the issue of time. It’s probably

tricky enough to find the time to read this article. Setting

up, planning and executing an SEO campaign might well

seem like an insurmountable obstacle.

192 24 ways 2014 edition

http://24ways.org/201415

So why should you care enough about SEO to do it

anyway?

The main reason is that you probably already see between

30% and 60% of your website traffic come from the

search engines. That might make you think that you don’t

need to bother, because you’re already doing so well. But

you’re almost certainly wrong.

If you have a look through the keyword data in your

Google Webmaster Tools account, you’ll probably see

that around 30–50% of the keywords used to find your

website are brand names – the names of your products or

companies. These are searches carried out by people who

already know about you. But the people who don’t know

who you are but are searching for what you sell aren’t

finding you right now. This is your opportunity.

If a person goes looking for a company or product by

name, Google will steer them towards what they’re

looking for. Their intelligence does have limits, however,

and even though they know your name they won’t be

completely clear about what you sell. That’s where SEO

would come in.

Still need more convincing? How about the fact that the

seeming complexities of SEO mean that your competition

are almost certainly neglecting it too. They have the same

reservations as you about complexity, time and danger,

SEO in 2015 (and Why You Should Care)

24 ways 2014 edition 193

and hopefully they aren’t reading this article and so are

none the wiser of the well-kept secret: that 70% of SEO is

easy.

I’m going to lead you through what you need to do to tap

into that stream of people looking for what you sell right

now.

WHAT IS REAL SEO?

Real SEO is all about helping Google understand the

content of your website. It’s about steering, guiding and

assisting Google. Not manipulating it.

It’s easy to assume that Google already understands the

content and relevance of each and every page on your

website, but the fact is that it needs a fair amount of hand-

holding. Fortunately, helping Google along really isn’t very

difficult at all.

Rest assured that real SEO has nothing to do with

keyword stuffing, keyword density, hacks, tricks or

cunning techniques. If you hear any of these terms from

your SEO advisor, run away from them as quickly as you

can.

194 24 ways 2014 edition

UNDERSTANDING YOUR CURRENT SITUATION
– GOOGLE ANALYTICS

Before you can do anything to improve your SEO status,

you need to get an idea of how you’re already doing.

Below is a very quick and easy way of doing so.

1. Open up your Google Analytics account.

2. Click on the date range selector on the top-right of the

interface and change the year of the first date to last year.

So 12 Dec 2014 will become 12 Dec 2013. Then click on

Apply.

3. Click on the All Sessions rectangle towards the top-left,

click once on Organic Traffic and click Apply.

4. Click the little black-and-white squares icon that has

now appeared under the date selector on the top-right,

and drag the slider all the way over to Higher Precision.

5. Change the interval buttons on the top-right of the

graph to Week to make this easier to digest.

At this point your graph should look something like this:

It’s worth noting the approximate proportion of your

visitors that currently come from organic sources.

SEO in 2015 (and Why You Should Care)

24 ways 2014 edition 195

6. Click the little downwards arrow to the right of the All

Sessions rectangle and choose Remove, so that we’re only

looking at the organic traffic on its own.

7. Click on Select a metric next to the Sessions button

above the graph and select Pages / Session. You should

then see something like this:

In the example above we can see that the quantity of

traffic has been increasing since the middle of August, but

the quality of the traffic (as measured by the number of

pages per session) has fallen significantly.

How you choose to view this is down to your own graph,

recent history and interpretation of events, but this

should give you an indication of how things stand at the

present time. Trends are often much more revealing than

a snapshot of a brief moment in time.

YOUR GOOGLE WEBMASTER TOOLS DATA

If you’re not very familiar with your Google Webmaster

Tools account, it’s really worth taking ten to fifteen

minutes to see what’s on offer. I can’t recommend this

enough. From the point of view of an SEO health check, I’d

196 24 ways 2014 edition

advise you to look into the HTML Improvements, Crawl

Errors and Crawl Stats, and most importantly the Search

Queries.

From what you see here and the trends shown in your

Analytics data, you should now have a good idea of your

current status. If you want to explore further, I

recommend Screaming Frog as a good diagnostics tool, or

Botify if your website is large or unusually complex.

COMBINING THE DATA INTO SOMETHING
USEFUL

Your Google Analytics session will have shown you how

you’re doing from an SEO point of view in terms of the

quantity and, to some extent, the quality of your visitors.

But it’s only showing you what is already working. In other

words: the people who are finding you on the search

engines, and clicking on your links.

The Google Webmaster Tools search query data, on the

other hand, will give you a better idea of what isn’t

working. It will show you the keyword searches that are

getting you listed in the results, but which aren’t

necessarily getting clicked. And it doesn’t take much by

the way of expertise to see why.

For example, if you see your targeted keyword, which you

feel is extremely relevant, has generated over 2,000

impressions in the last month but produced only two

SEO in 2015 (and Why You Should Care)

24 ways 2014 edition 197

http://www.screamingfrog.co.uk/seo-spider/
http://www.botify.com

clicks, you’ll probably find a very low average position.

Bear in mind that an average position of fourteen will

mean being around halfway down the second page of

results. Think about how rarely you go beyond the first

two or three listings, never mind to the second page of

results, and you’ll understand why the click-through rate

is so low.

So now you have an idea of what you’re being found for at

the present time. But what about the other terms?

WHAT WOULD YOU LIKE TO BE FOUND FOR?

This is one of the more common SEO mistakes, on a

number of different levels.

Many businesses assume that they don’t need to worry

about keyword research. They think they know what

terms people use to find what they sell, and they also

assume that Google understands the content on their

website. This is incorrect on all counts.

A better starting point is to brainstorm a small number of

your most obvious keywords, then run them through

Google’s Keyword Planner. Ignore the information in the

Ad group ideas tab, and instead go straight to the

Keyword ideas tab. Rather than wade through the very

unfriendly interface, I recommend downloading the data

198 24 ways 2014 edition

as a spreadsheet, in which not only is more detail

included, but you can also slice, dice, sort and report the

data as required.

From there you can delete all the irrelevant columns, and

start working your way through the list, deleting any

irrelevant keywords as you go along.

It’s around this stage that you may hit a problem in terms

of where to focus your efforts. The number of reported

searches for a given keyword is of course important, but

so is the level of competition. Ideally, you’d like keywords

with plenty of searches but not too much competition.

I personally like to factor both together by adding a

column that simply divides the number of searches

squared by the level of competition:

(number of searches × number of searches) ÷ competition

There are plenty of alternatives to this basic formula, but I

like it for ease of use and simplicity. Once I’ve added this

column, I then sort the data by this value (largest to

smallest) and I then only usually need ten to fifteen

keywords at most to give me plenty of ideas to work with.

This is a slightly involved but effective methodology for

keyword research, as what you’re left with is a list of

keywords that both Google and you consider to be

relevant to the content of your website. And relevance is

an important concept in SEO.

SEO in 2015 (and Why You Should Care)

24 ways 2014 edition 199

Real SEO keyword research is about making sure that

your customers, website and Google are all in agreement

and alignment over the content of your website. Other

sources of inspiration and ideas include having a look at

what terms your competition are targeting, Google

Trends and, of course, Google Suggest. If you’re not sure

where to find these things, you can probably work out

where to search for them!

If you want to dive further into understanding your

current search engine status, search for some of the

better keywords that you just discovered and see where

you rank compared to your competition. Note that it’s

vital to avoid Google serving up personalised results, so

either use the privacy, incognito or anonymous mode of

your browser for the searches, or use a browser that you

don’t normally use. I hope this is Internet Explorer. If what

you find isn’t great, don’t despair: everything in SEO is

fixable (terms and conditions may apply).

PUTTING IT ALL TOGETHER

You should now have a good idea of where things stand

with your current search engine traffic, and a solid list of

keywords that you’re not getting visitors for but very

much want.

All that’s left now is to work out how to use these

keywords. But before we do, let’s take a quick step back.

200 24 ways 2014 edition

If you have in any way kept up with what’s been

happening in SEO over the last couple of years, you’ll have

probably heard about Google updates with names like

Panda, Hummingbird, Phantom, Pirate and more.

I won’t go into the technical details of what Google is

doing, but it is important to understand why they’re trying

to do it. At the most basic level, Google understands that

there’s a very real problem with people who are trying

manipulate its index. In response to this, Google is trying

to clean up its results. They don’t want people getting fed

up with bad results and considering other options – have

you even tried Bing?

This is extremely important. Remember earlier when I

said that 70% of SEO was easy? That rule still applies. So,

for example, if you have a list of keywords that you know

are relevant to what you sell, then all you need to do is

create great content for them. Incredibly, that’s all there is

to it (terms and conditions apply again, unfortunately –

see below).

There is, however, one simple rule to be consistently

followed without exception: that the content you create

should not only be good quality and completely original,

but it should also be written primarily for the human

visitor and not the search engine spider.

SEO in 2015 (and Why You Should Care)

24 ways 2014 edition 201

In other words, if you create some fantastic content for a

keyword like “choosing a small business HR service”, then

the article should not only make perfect sense if read out

loud (as opposed to the same phrase being repeated

fifteen times), but also provide real value to the person

reading it.

So the process is simple:

1. Choose your keywords

2. Create spectacular content

WAIT. IS IT REALLY THAT SIMPLE?

Unfortunately there’s a lot more to the other 30% of SEO

than just creating great content and waiting for the

visitors. There are issues like helping Google understand

the content on your pages and website, incoming links,

page authority, domain authority, usage patterns, spam

factors, canonical issues and much more.

But there’s the often overlooked fact about Google: it

actually does a reasonable job of working out what’s on

your website and (to some extent) understanding the gist

of it. If you’ve never done any SEO on your website but

still get some traffic from Google, this is why.

202 24 ways 2014 edition

Even without dabbling in the other 30% of SEO, by

creating the right content for the right visitors using the

precise language and terminology that your potential

customers are using, you’re significantly better off than

your competition. And you can only gain from this.

When you’ve checked this off your to-do list and made it

an ingrained part of your content creation process, then

you’re ready to delve into the other 30% of SEO. The not-

so-easy side.

Until then, work on understanding your current situation,

exploring the opportunities, creating a list of good

keywords, creating the right content for them, and

starting 2015 with a little bit of smart, safe and real SEO.

SEO in 2015 (and Why You Should Care)

24 ways 2014 edition 203

ABOUT THE AUTHOR

Dave Collins is the founder of SoftwarePromotions, and

contrary to his youthful charm has been working in online

marketing since 1997. Dave oversees the SEO and marketing

work for all of their clients, and has a very unhealthy obsession

with data and trends. Really. He’s also an awful rock climber,

amateur photographer and a slave to his wonderful children. He

wishes he could eat more and exercise less.

204 24 ways 2014 edition

http://www.softwarepromotions.com

Sara Soueidan 24ways.org/201416

16. An Overview of SVG
Sprite Creation
Techniques

SVG can be used as an icon system to replace
icon fonts. The reasons why SVG makes for a
superior icon system are numerous, but we
won’t be going over them in this article. If
you don’t use SVG icons and are interested
in knowing why you may want to use them, I
recommend you check out “Inline SVG vs
Icon Fonts” by Chris Coyier – it covers the
most important aspects of both systems and
compares them with each other to help you
make a better decision about which system
to choose.

Once you’ve made the decision to use SVG instead of icon

fonts, you’ll need to think of the best way to optimise the

delivery of your icons, and ways to make the creation and

use of icons faster.

An Overview of SVG Sprite Creation Techniques

24 ways 2014 edition 205

http://24ways.org/201416
http://css-tricks.com/icon-fonts-vs-svg/
http://css-tricks.com/icon-fonts-vs-svg/

Just like bitmaps, we can create image sprites with SVG –

they don’t look or work exactly alike, but the basic

concept is pretty much the same.

There are several ways to create SVG sprites, and this

article will give you an overview of three of them. While

we’re at it, we’re going to take a look at some of the

available tools used to automate sprite creation and

fallback for us.

PREREQUISITES

The content of this article assumes you are familiar with

SVG. If you’ve never worked with SVG before, you may

want to look at some of the introductory tutorials

covering SVG syntax, structure and embedding

techniques. I recommend the following:

▪ SVG basics: Using SVG.

▪ Structure: Structuring, Grouping, and Referencing in

SVG — The <g>, <use>, <defs> and <symbol> Elements.

We’ll mention <use> and <symbol> quite a bit in this

article.

▪ Embedding techniques: Styling and Animating SVGs

with CSS. The article covers several topics, but the section

linked focuses on embedding techniques.

▪ A compendium of SVG resources compiled by Chris

Coyier — contains resources to almost every aspect of

SVG you might be interested in.

206 24 ways 2014 edition

http://css-tricks.com/using-svg/
http://sarasoueidan.com/blog/structuring-grouping-referencing-in-svg/
http://sarasoueidan.com/blog/structuring-grouping-referencing-in-svg/
http://www.smashingmagazine.com/2014/11/03/styling-and-animating-svgs-with-css/4/
http://www.smashingmagazine.com/2014/11/03/styling-and-animating-svgs-with-css/4/
http://css-tricks.com/mega-list-svg-information/

And if you’re completely new to the concept of spriting,

Chris Coyier’s CSS Sprites explains all about them.

Another important SVG feature is the viewBox attribute.

For some of the techniques, knowing your way around

this attribute is not required, but it’s definitely more

useful if you understand – even if just vaguely – how it

works. The last technique mentioned in the article

requires that you do know the attribute’s syntax and how

to use it. To learn all about viewBox, you can refer to my

blog post about SVG coordinate systems.

With the prerequisites in place, let’s move on to spriting

SVGs!

BEFORE YOU SPRITE…

In order to create an SVG sprite with your icons, you’ll of

course need to have these icons ready for use.

Some spriting tools require that you place your icons in a

folder to which a certain spriting process is to be applied.

As such, for all of the upcoming sections we’ll work on the

assumption that our SVG icons are placed in a folder

named SVG.

Each icon is an individual .svg file.

An Overview of SVG Sprite Creation Techniques

24 ways 2014 edition 207

http://css-tricks.com/css-sprites/
http://sarasoueidan.com/blog/svg-coordinate-systems
http://sarasoueidan.com/blog/svg-coordinate-systems

You’ll need to make sure each icon is well-prepared and

optimised for use – make sure you’ve cleaned up the code

by running it through one of the optimisation tools or

processes available (or doing it manually if it’s not

tedious).

After prepping the icon files and placing them in a folder,

we’re ready to create our SVG sprite.

HTML INLINE SVG SPRITES

Since SVG is XML code, it can be embedded inline in an

HTML document as a code island using the <svg> element.

Chris Coyier wrote about this technique first on CSS-

Tricks.

The embedded SVG will serve as a container for our

icons and is going to be the actual sprite we’re going to

use. So we’ll start by including the SVG in our document.

<!DOCTYPE html>

<!-- HTML document stuff -->

<svg style="display:none;">

<!-- icons here -->

</svg>

<!-- other document stuff -->

</html>

208 24 ways 2014 edition

http://css-tricks.com/svg-sprites-use-better-icon-fonts/

Next, we’re going to place the icons inside the <svg>. Each

icon will be wrapped in a <symbol> element we can then

reference and use elsewhere in the page using the SVG

<use> element. The <symbol> element has many benefits,

and we’re using it because it allows us to define a symbol

(which is a convenient markup for an icon) without

rendering that symbol on the screen. The elements

defined inside <symbol><symbol>will only be rendered when they

are referenced – or called – by the <use><use> element.

Moreover, <symbol> can have its own viewBox attribute,

which makes it possible to control the positioning of its

content inside its container at any time.

Before we move on, I’d like to shed some light on the

style="display:none;" part of the snippet above.

Without setting the display of the SVG to none, and even

though its contents are not rendered on the page, the

SVG will still take up space in the page, resulting in a big

empty area. In order to avoid that, we’re hiding the SVG

entirely with CSS.

Now, suppose we have a Twitter icon in the icons folder.

twitter.svg might look something like this:

<!-- twitter.svg -->

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">

<svg version="1.1" xmlns="http://www.w3.org/2000/svg"

An Overview of SVG Sprite Creation Techniques

24 ways 2014 edition 209

xmlns:xlink="http://www.w3.org/1999/xlink" width="32"

height="32" viewBox="0 0 32 32">

<path d="M32 6.076c-1.177 0.522-2.443 0.875-3.771 1.034

1.355-0.813 2.396-2.099 2.887-3.632-1.269 0.752-2.674

1.299-4.169

1.593-1.198-1.276-2.904-2.073-4.792-2.073-3.626 0-6.565

2.939-6.565 6.565 0 0.515 0.058 1.016 0.17

1.496-5.456-0.274-10.294-2.888-13.532-6.86-0.565

0.97-0.889 2.097-0.889 3.301 0 2.278 1.159 4.287 2.921

5.465-1.076-0.034-2.088-0.329-2.974-0.821-0.001

0.027-0.001 0.055-0.001 0.083 0 3.181 2.263 5.834 5.266

6.437-0.551 0.15-1.131 0.23-1.73 0.23-0.423

0-0.834-0.041-1.235-0.118 0.835 2.608 3.26 4.506 6.133

4.559-2.247 1.761-5.078 2.81-8.154 2.81-0.53

0-1.052-0.031-1.566-0.092 2.905 1.863 6.356 2.95 10.064

2.95 12.076 0 18.679-10.004 18.679-18.68

0-0.285-0.006-0.568-0.019-0.849 1.283-0.926 2.396-2.082

3.276-3.398z" fill="#000000"></path>

</svg>

We don’t need the root svg element, so we’ll strip the

code and only keep the parts that make up the Twitter

icon’s shape, which in this example is just the <path>

element.Let’s drop that into the sprite container like so:

<svg style="display:none;">

<symbol id="twitter-icon" viewBox="0 0 32 32">

<path d="M32 6.076c-1.177 …" fill="#000000"></path>

</symbol>

<!-- remaining icons here -->

<symbol id="instagram-icon" viewBox="0 0 32 32">

<!-- icon contents -->

210 24 ways 2014 edition

</symbol>

<!-- etc. -->

</svg>

Repeat for the other icons.

The value of the <symbol> element’s viewBox attribute

depends on the size of the SVG. You don’t need to know

how the viewBox works to use it in this case. Its value is

made up of four parts: the first two will almost always be

“0 0”; the second two will be equal to the size of the icon.

For example, our Twitter icon is 32px by 32px (see

twitter.svg above), so the viewBox value is “0 0 32 32”.

That said, it is certainly useful to understand how the

viewBox works – it can help you troubleshoot SVG

sometimes and gives you better control over it, allowing

you to scale, position and even crop SVGs manually

without having to resort to an editor. My blog post

explains all about the viewBox attribute and its related

attributes.

Once you have your SVG sprite ready, you can display the

icons anywhere on the page by referencing them using

the SVG <use> element:

<svg class="twitter-icon">

<use xlink:href="#twitter-icon"></use>

<svg>

And that’s all there is to it!

An Overview of SVG Sprite Creation Techniques

24 ways 2014 edition 211

http://sarasoueidan.com/blog/svg-coordinate-systems
http://sarasoueidan.com/blog/svg-coordinate-systems

HTML-inline SVG sprites are simple to create and use, but

when you have a lot of icons (and the more icon sets you

create) it can easily become daunting if you have to

manually transfer the icons into the <svg>. Fortunately,

you don’t have to do that. Fabrice Weinberg created a

Grunt plugin called grunt-svgstore which takes the icons

in your SVG folder and generates the SVG sprites for you;

all you have to do is just drop the sprites into your page

and use the icons like we did earlier.

This technique works in all browsers supporting SVG.

There seems to be a bug in Safari on iOS which causes the

icons not to show up when the SVG sprite is defined at the

bottom of the document after the <use> references to the

icons, so it’s safest to include the sprite before you use the

icons until this bug is fixed.

This technique has one disadvantage: the SVG sprite

cannot be cached. We’re saving an extra HTTP request

here but the browser cannot cache the image, so we

aren’t speeding up any subsequent page loads by inlining

the SVG. There must be a better way – and there is.

Styling the icons is possible, but getting deep into the

styles becomes a bit harder owing to the nature of the

contents of the <use> element – these contents are

cloned into a shadow DOM, and hence selecting elements

in CSS the traditional way is not possible. However, some

212 24 ways 2014 edition

https://github.com/FWeinb/grunt-svgstore
http://codepen.io/FWeinb/blog/quick-tip-svg-use-style-two-colors

techniques to work around that do exist, and give us

slightly more styling flexibility. Animations work as

expected.

Referencing an external SVG sprite in HTML

Instead of including the SVG inline in the document, you

can reference the sprite and the icons inside it externally,

taking advantage of fragment identifiers to select

individual icons in the sprite.

For example, the above reference to the Twitter icon

would look something like this instead:

<svg class="twitter-icon">

<use xlink:href="path/to/icons.svg#twitter-icon"></use>

<svg>

icons.svg is the name of the SVG file that contains all of

our icons as symbols, and the fragment identifier

#twitter-icon is the reference to the <symbol> wrapping

the Twitter icon’s contents. Very convenient, isn’t it? The

browser will request the sprite and then cache it,

speeding up subsequent page loads. Win!

This technique also works in all browsers supporting SVG

except Internet Explorer – not even IE9+ with SVG

support permits this technique. No version of IE supports

referencing an external SVG in <use>.

An Overview of SVG Sprite Creation Techniques

24 ways 2014 edition 213

http://codepen.io/AmeliaBR/thoughts/customizable-svg-icons-css-variables

Fortunately (again), Jonathan Neil has created a plugin

called svg4everybody which fills this gap in IE; you can

reference an external sprite in <use> and also provide

fallback for browsers that do not support SVG. However,

it requires you to have the fallback images (PNG or JPEG,

for example) available to do so. For details, refer to the

plugin’s Github repository’s readme file.

CSS INLINE SVG SPRITES

Another way to create an SVG sprite is by inlining the SVG

icons in a style sheet using data URIs, and providing

fallback for non-supporting browsers – also within the

CSS.

Using this approach, we’re turning the style sheet into

the sprite that includes our icons. The style sheet is

normally cached by the browser, so we have that concern

out of the way.

This technique is put into practice in Filament Group’s

icon system approach, which uses their Grunticon plugin

– or its sister Grumpicon web app – for generating the

necessary CSS for the sprite. As such, we’re going to cover

this technique by following a workflow that uses one of

these tools.

Again, we start with our icon SVG files. To focus on the

actual spriting method and not on the tooling, I’ll go over

the process of sprite creation using the Grumpicon web

214 24 ways 2014 edition

https://github.com/jonathantneal/svg4everybody
https://github.com/filamentgroup/grunticon
http://www.grumpicon.com/

app, instead of the Grunticon plugin. Both tools generate

the same resources that we’re going to use for the icon

system. Whether you choose the web app or the Grunt

set-up, after processing your SVG folder you’re going to

end up with the same set of resources that we’ll be using

throughout this section.

The first step is to drop your icons into the Grumpicon

web app.

Grumpicon homepage screenshot.

The application will then show you a preview of your

icons, and a download button will allow you to download

the generated files. These files will contain everything you

need for your icon system – all that’s left is for you to drop

the generated files and code into your project as

recommended and you’ll have your sprite and icons ready

to use anywhere you want in your page.

An Overview of SVG Sprite Creation Techniques

24 ways 2014 edition 215

Grumpicon generates five files and one folder in the

downloaded package: a png folder containing PNG

versions of your icons; three style sheets (that we’ll go

over briefly); a loader script file; and preview.html which is

a live example showing you the other files in action.

The script in the loader goes into the <head> of your page.

This script handles browser and feature detection, and

requests the necessary style sheet depending on browser

support for SVG and base64 data URIs. If you view the

source code of the preview page, you can see exactly how

the script is added.

icons.data.svg.css is the style sheet that contains your

icons – the sprite. The icons are embedded inline inside

the style sheet using data URIs, and applied to elements

of your choice as background images, using class names.

For example:

.twitter-icon{

background-image: url('data:image/svg+xml;…'); /*

the ellipsis is where the icon’s data would go */

background-repeat: no-repeat;

background-position: 50% 50%;

height: 2em;

width: 2em;

/* etc. */

}

216 24 ways 2014 edition

Then, you only have to apply the twitter-icon class name

to an element in your HTML to apply the icon as a

background to it:

And that’s all you need to do to get an icon on the page.

icons.data.svg.css, along with the other two style sheets

and the png folder should be added to your CSS folder.

icons.data.png.css is the style sheet the script will load in

browsers that don’t support SVG, such as IE8. Fallback for

the inline SVG is provided as a base64-encoded PNG. For

instance, the fallback for the Twitter icon from our

example would look like so:

.twitter-icon{

background-image: url('data:image/png;base64;…’);

/* etc. */

}

icons.fallback.css is the style sheet required for browsers

that don’t support base64-encoded PNGs – the PNG

images are loaded as usual using the image’s URL. The

script will load this style sheet for IE6 and IE7, for

example.

.twitter-icon{

background-image: url(png/twitter-icon.png);

/* etc. */

}

An Overview of SVG Sprite Creation Techniques

24 ways 2014 edition 217

This technique is very different from the previous one.

The sprite in this case is literally the style sheet, not an

SVG container, and the icon usage is very similar to that of

a CSS sprite – the icons are provided as background

images.

This technique has advantages and disadvantages. For the

sake of brevity, I won’t go into further details, but the

main limitations worth mentioning are that SVGs

embedded as background images cannot be styled with

CSS; and animations are restricted to those defined inside

the <svg> for each icon. CSS interactions (such as hover

effects) don’t work either. Thus, to apply an effect for an

icon that changes its color on hover, for example, you’ll

need to export a set of SVGs for each colour in order for

Grumpicon to create matching fallback PNG images that

can then be used for the animation.

For more details about the Grumpicon workflow, I

recommend you check out “A Designer’s Guide to

Grumpicon” on Filament Group’s website.

USING SVG FRAGMENT IDENTIFIERS AND
VIEWS

This spriting technique is, again, different from the

previous ones, and it is my personal favourite.

218 24 ways 2014 edition

http://www.filamentgroup.com/lab/grumpicon-workflow.html
http://www.filamentgroup.com/lab/grumpicon-workflow.html

SVG comes with a standard way of cropping to a specific

area in a particular SVG image. If you’ve ever worked with

CSS sprites before then this definitely sounds familiar: it’s

almost exactly what we do with CSS sprites – the image

containing all of the icons is cropped, so to speak, to show

only the one icon that we want in the background

positioning area of the element, using background size

and positioning properties.

Instead of using background properties, we’ll be using

SVG’s viewBox attribute to crop our SVG to the specific

icon we want.

What I like about this technique is that it is more visual

than the previous ones. Using this technique, the SVG

sprite is treated like an actual image containing other

images (the icons), instead of treating it as a piece of code

containing other code.

Again, our SVG icons are placed inside a main SVG

container that is going to be our SVG sprite. If you’re

working in a graphics editor, position or arrange your

icons inside the canvas any way you want them to be, and

then export the graphic as is. Of course, the less empty

space there is in your SVG, the better.

In our example, the sprite contains three icons as shown

in the following image. The sprite is open in Sketch. Notice

how the SVG is just big enough to fit the icons inside it. It

doesn’t have to be like this, but it’s cleaner this way.

An Overview of SVG Sprite Creation Techniques

24 ways 2014 edition 219

http://bohemiancoding.com/sketch/

Screenshot showing the SVG sprite containing our icons.

Now, suppose you want to display only the Instagram

icon. Using the SVG viewBox attribute, we can crop the

SVG to the icon. The Instagram icon is positioned at 64px

along the positive x-axis, and zero pixels along the y-axis.

It is also 32px by 32px in size.

220 24 ways 2014 edition

Screenshot showing the position (offset) of the Instagram icon
inside the SVG sprite, and its size.

Using this information, we can specify the value of the

viewBox as: 64 0 32 32. This area of the view box contains

only the Instagram icon. 64 0 specifies the top-left corner

of the view box area, and 32 32 specify its dimensions.

Now, if we were to change the viewBox value on the SVG

sprite to this value, only the Instagram icon will be visible

inside the SVG viewport. Great. But how do we use this

information to display the icon in our page using our

sprite?

An Overview of SVG Sprite Creation Techniques

24 ways 2014 edition 221

SVG comes with a native way to link to portions or areas

of an image using fragment identifiers. Fragment

identifiers are used to link into a particular view area of an

SVG document. Thus, using a fragment identifier and the

boundaries of the area that we want (from the viewBox),

we can link to that area and display it.

For example, if you want to display the icon from the

sprite using an tag, you can reference the icon in the

sprite like so:

<img src='uiIcons.svg#svgView(viewBox(64, 0, 32, 32))'

alt="Settings icon"/>

The fragment identifier in the snippet above

(#svgView(viewBox(64, 0, 32, 32))) is the important

part. This will result in only the Instagram icon’s area of

the sprite being displayed.

There is also another way to do this, using the SVG <view>

element. The <view> element can be used to define a view

area and then reference that area somewhere else. For

example, to define the view box containing the Instagram

icon, we can do the following:

<view id='instagram-icon' viewBox='64 0 32 32' />

Then, we can reference this view in our element like

this:

<img src='sprite.svg#instagram-icon' alt="Instagram

icon" />

222 24 ways 2014 edition

The best part about this technique – besides the ability to

reference an external SVG and hence make use of

browser caching – is that it allows us to use practically any

SVG embedding technique and does not restrict us to

specific tags.

It goes without saying that this feature can be used for

more than just icon systems, owing to viewBox’s power in

controlling an SVG’s viewable area.

SVG fragment identifiers have decent browser support,

but the technique is buggy in Safari: there is a bug that

causes problems when loading a server SVG file and then

using fragment identifiers with it. Bear Travis has

documented the issue and a workaround.

WHERE TO GO FROM HERE

Pick the technique that works best for your project. Each

technique has its own pros and cons, relating to

convenience and maintainability, performance, and

styling and scripting. Each technique also requires its own

fallback mechanism.

The spriting techniques mentioned here are not the only

techniques available. Other methods exist, such as SVG

stacks, and others may surface in future, but these are the

three main ones today.

An Overview of SVG Sprite Creation Techniques

24 ways 2014 edition 223

http://caniuse.com/#feat=svg-fragment
http://betravis.github.io/icon-methods/svg-sprite-sheets.html
http://simurai.com/blog/2012/04/02/svg-stacks/
http://simurai.com/blog/2012/04/02/svg-stacks/

The third technique using SVG’s built-in viewBox features

is my favourite, and with better browser support and

fewer (ideally, no) bugs, I believe it is more likely to

become the standard way to create and use SVG sprites.

Fallback techniques can be created, of course, in one of

many possible ways.

Do you use SVG for your icon system? If so, which is your

favourite technique? Do you know or have worked with

other ways for creating SVG sprites?

224 24 ways 2014 edition

http://css-tricks.com/svg-fallbacks/

ABOUT THE AUTHOR

Sara is a freelance front-end web developer from Lebanon —

focusing on HTML5, SVG, CSS3 and Javascript. She loves

teaching and enjoys breaking down complex subjects into

simple, easy-to-understand bits. She writes articles and

tutorials on front-end web development on her blog, and for

various online magazines including Codrops, where she is an

author and team member. She also actively tweets on Twitter at

@SaraSoueidan.

An Overview of SVG Sprite Creation Techniques

24 ways 2014 edition 225

http://sarasoueidan.com
http://tympanus.net/codrops
http://twitter.com/SaraSoueidan

Sophie Dennis 24ways.org/201417

17. Content Production
Planning

While everyone agrees that getting the
content of a website right is vital to its
success, unless you’re lucky enough to have
an experienced editor or content strategist
on board, planning content production often
seems to fall through the cracks. One reason
is that, for most of the team, it feels like
someone else’s problem. Not necessarily a
specific person’s problem. Just someone
else’s. It’s only when everyone starts
urgently asking when the content is going to
be ready, that it becomes clear the answer
is, “Not as soon as we’d like it”.

The good news is that there are some quick and simple

things you can do, even if you’re not the official content

person on a project, to get everyone on the same content

planning page.

Content production planning boils down to answering

three deceptively simple questions:

226 24 ways 2014 edition

http://24ways.org/201417

1. What content do you need?

2. How much of it do you need?

3. Who’s going to make it?

Even if it’s not your job to come up with the answers, by

asking these questions early enough and agreeing who is

going to come up with the answers, you’ll be a long way

towards avoiding the last-minute content problems which

so often plague projects.

HOW MUCH CONTENT DO WE NEED?

People tend to underestimate two crucial things about

content: how much content they need, and how long that

content takes to produce.

When I ask someone how big their website is – how many

pages it contains – I usually double or triple the answer I

get. That’s because almost everyone’s mental model of

their website greatly underestimates its true size. You can

see the problem for yourself if you look at a site map. Site

maps are great at representing a mental model of a

website. But because they’re a deliberate simplification

they naturally lead us to underestimate how much

content is involved in populating them.

Content Production Planning

24 ways 2014 edition 227

Several years ago I was asked to help a client create a new

microsite (their word) which they wanted ready in two

weeks for a conference they were attending. Here’s the

site map they had in mind. At first glance it looks like a

pretty small website. Maybe twenty to thirty pages?

That’s what the client thought.

But see those boxes which are multiple boxes stacked on

top of one another, for product categories, descriptions

and supporting material? They’re known as page stacks,

and page stacks are the content strategy equivalent of

Here Be Dragons.

228 24 ways 2014 edition

Say we have:

▪ five product categories

▪ each with five products

▪ which all have two or three supporting documents

Those are still fairly small numbers. But small numbers

multiplied by other small numbers tend to lead to big

numbers.

5 categories = 5 category descriptions

plus

5 categories × 5 products each = 25 product descriptions

plus

25 products × 2.5 (average) supporting documents = 63

supporting documents

equals

Content Production Planning

24 ways 2014 edition 229

93 pages

Suddenly our twenty- or thirty-page website is running

towards one hundred.

That’s probably enough to get most project teams to sit

up and take notice. But there’s still the danger of

underestimating how long it’s going to take to create the

content. After all, assuming the supporting documents

already exist in some form, there are only about twenty-

five to thirty pages of new copy to write.

HOW MUCH WORK IS IT?

Again, we have the problem that small numbers when

multiplied by other small numbers tend to lead to big

numbers. Let’s make a rough guess that it’ll take four

hours to write each product category and description

page we need. That feels a little conservative if we’re

writing stuff from scratch, but assuming the person doing

it already knows the products fairly well it’s not

unreasonable.

30 pages × 4 hours each = 120 hours

120 hours ÷ 7.5 working hours a day = 16 days

Ouch.

At this point it’s pretty clear we’re not getting this site

launched in two weeks.

230 24 ways 2014 edition

THE GOAL IS THE CONVERSATION

By breaking down the site into its content components,

and putting some rough estimates on how long each

might take to produce, the client instantly realised that

there was no way they would be ready to launch it in two

weeks. Although we still didn’t know exactly when it

would be ready, getting to that realisation right at the

start of the project was a major win for everybody.

Without it, the design agency would have bust a gut to get

the design, front-end and CMS all done in double-quick

time, only to find it was all for nothing as barely half the

content was ready. As it was, an early discussion about

content, albeit a brief one, bought everyone time to tackle

the project properly, without pulling any long nights or

working weekends.

If you haven’t been able to get people to discuss content

plans for the project, these kinds of rough estimates

should give you enough evidence to get everyone to start

taking it seriously. Your goal is to get everyone on the

project to a place where they are ready to talk in detail

about who is going to create this content, and how long

it’s really going to take them, and to get to those

conversations before lack of content becomes a problem.

Be careful though. It’s best to talk in ranges and round

numbers when your estimates are this uncertain. And

watch those multipliers. Given small numbers multiplied

by other small numbers lead to big numbers, changing just

Content Production Planning

24 ways 2014 edition 231

one number can greatly change the overall estimate. I like

to run a couple of different scenarios to check what things

look like if I’ve under- or overestimated either how many

pages we’re going to need, or how long they’re going to

take to create. For example:

Top end: 30 pages × 5 hours = 150 hours, or 20 days

Bottom end: 25 pages × 4 hours = 100 hours, or 13.3 days

So rather than say, “I estimate the content will take

around sixteen days to produce”, I’m going to say, “I think

the content will take about three to four weeks to

produce”. Even with qualifiers like estimate and around,

sixteen days sounds too precise. Whereas three to four

weeks instantly conveys that this is just a rough figure.

WHO’S GOING TO MAKE IT?

So, people tend to underestimate two crucial things about

content: how much content they need, and how long

content takes to write. At this stage, you’re still in danger

of the latter, because it’s tempting to simply estimate how

much time content takes to write (or record, if we’re

talking audio or visual content), and overlook all the other

work that needs to goes on around it.

232 24 ways 2014 edition

Take 24 ways as an example. In terms of our three

deceptively simple questions: what is practical articles

about web design; how many is twenty-four, one for each

day of Advent; and who are experts working on the web,

one to write each article.

But there’s another who you might not have considered.

Someone needs to select those authors in the first place,

make sure they deliver their articles on time (and find

someone to replace them if they don’t), review drafts,

copy-edit and proofread final versions, upload them to the

site, promote them, keep an eye on the comments and

make sure there are still presents under the tree on

Christmas morning.

Even if each of those tasks only takes an hour or so, it then

needs multiplying by twenty-four (except the presents,

obviously). And as we’ve already seen, small numbers

multiplied by small numbers quickly turn into much bigger

numbers. Just a few hours per article, when multiplied by

twenty-four articles, easily multiplies up to days or even

weeks of effort.

To get a more accurate estimate of how long the different

kinds of content are going to take, you need to break

down the content production work into its constituent

stages, starting with planning, moving on through the

main work of creation, to reviewing, approvals and finally

Content Production Planning

24 ways 2014 edition 233

publishing. You need to think about who needs to be

involved at each step, and how much time they’ll need to

do their bit.

Taken together, these things make up your content

workflow. The workflow will be different for each

organisation, but might look something like this:

1. Eddie the web editor will work out the key messages

and objectives for each page, and agree them with Mo the

marketing director.

2. Eddie will then get Cal, the copywriter, to write the

first draft.

3. As part of that, Cal will interview Sam the subject

expert to understand the intricacies of the subject and get

all the facts straight.

4. Once Cal’s done the first draft, it’ll go to Sam to check

for accuracy, while Eddie reviews it for style and message.

5. Once Cal has incorporated their feedback it’s time to

get Mo to have a look at the final draft.

6. If Mo’s happy, it’ll get a final proofread, be uploaded to

the CMS, and Mo will give the final sign-off and release it

for publishing.

You can plot this on a table, with the stages of the content

production process down the side, and the key roles or

personnel along with top. Then the team can estimate

how much time they think each of them needs at each

stage.

234 24 ways 2014 edition

Mo
(marketing
director)

Sam
(subject
expert)

Eddie
(web
editor)

Cal
(copywriter)

Outline: define

key messages and

objectives

30 min

Review outline 15 min

First draft 30 min 3 hours

Review 1st draft 30 min 30 min

2nd draft 1 hour

Review 2nd draft 15 min 15 min 15 min

Final amendments 30 min

Proofread 15 min

Upload 15 min

Sign-off 10 min

TOTAL 40 min 1 hour

15 min

1 hour

30 min

4 hours 45

min

You can then bring out your calculator again, and come up

with some more big scary numbers showing how much

time it’s going to take for the whole team to get all the

content needed not just written, but also planned,

reviewed, approved and published.

With an experienced team you can run this exercise as a

group workshop and get some fairly accurate estimates

pretty quickly. If this is all a bit new to you, check out

Gather Content’s Content Production Planning for Agencies

Content Production Planning

24 ways 2014 edition 235

https://gathercontent.com/content-production-planning-for-agencies

ebook for a useful guide to common content roles,

ballpark estimates for how much time each one needs on

a typical piece of content, and how to run a process and

estimating workshop to dig into them in more detail.

On a small team, one person might play many roles, but

you should still sanity-check your estimates by breaking

down the process and putting a rough estimate on each

stage. With only a couple of people involved, it’s even

easier to only include the core activity like writing or

recording in your estimates, and forget to allow time for

the planning, reviewing, proofreading, publishing and

promoting you’ll still need to do. And even in a team of

one, if at all possible you should find at least one other

person to act as a second pair of eyes, and give anything

you produce a quick once-over and proofread before it’s

published.

Depending on the kind of content you’re making, you

should also consider what will happen after it’s published.

The full content life cycle should include promotion,

monitoring and regular reviews to make sure content

stays accurate and up to date. Making sure you have the

time and resources available to do all those things for

each piece of content is essential for creating a

sustainable content programme.

236 24 ways 2014 edition

https://gathercontent.com/content-production-planning-for-agencies

THE PROOF OF THE PUDDING

Even after digging into workflow and getting the whole

team involved in estimating, you’re still largely in the

realm of the guesstimate. The good news, though, is that

you can quite quickly start finding out if your

guesstimates are right or not. As soon as you can, pilot the

production process with some real content. This is a

double-win: you start finding out how long it really takes

to produce all this fab new content, and you get real

content to work with in designs and prototypes.

Once you’ve run a few things through your process, you’ll

be able to refine your estimates, confirm your workflow,

and give everyone involved a clear idea of when it will all

be ready, and what you need from them.

KEEPING IT ALL ON TRACK

At this point I like to pull everything together into the

content strategist’s favourite tool: the spreadsheet.

A simple content production checklist is a bit like a

content inventory or audit, but for the content you don’t

yet have, not the stuff already done. You can grab an

example here.

Each piece of content gets its own row, with columns for

basic information like page title, ID (which should match

the site map), and who’s responsible for making it. You can

Content Production Planning

24 ways 2014 edition 237

https://drive.google.com/previewtemplate?id=1O2IvEcWmLanDHHGkAgW8GHD-wZowFkQG45mNgb4lEqI&mode=public
https://drive.google.com/previewtemplate?id=1O2IvEcWmLanDHHGkAgW8GHD-wZowFkQG45mNgb4lEqI&mode=public

capture simple details like target audience and key

messages here too, though for more complex content,

page description tables like those described by Relly

Annett-Baker in “Extracting the Content” may be a better

tool to use. Just adapt these columns to whatever makes

sense for your content.

I then have columns to track where each piece is in the

production process. I usually keep this simple, with a

column each to mark whether it’s draft, final or uploaded.

The status column on the left automatically shows the

item’s status, using a simple traffic light colour scheme for

whether the item is still to do (red), in draft (amber), or

done (green). Seeing the whole thing slowly turn from red

to green is a nice motivator.

If you want to track the workflow in more detail, a kanban

board in a tool like Trello is a great way for a team to

collaborate on content production, track each item’s

progress, and keep an eye out for bottlenecks and delays.

GETTING TO THE CONTENT STRATEGY
CONVERSATION

It’s a relatively simple exercise, then, to decide not just

what kinds of pages you need, but also how many of them:

put some rough estimates of effort on the tasks needed to

create those pages – not just the writing, but all the other

stages of planning, reviewing, approving, publishing and

238 24 ways 2014 edition

http://24ways.org/2011/extracting-the-content/
http://24ways.org/2013/home-kanban-for-domestic-bliss/
http://24ways.org/2013/home-kanban-for-domestic-bliss/

promoting – and then multiply all those things together.

This will quickly bring some reality to grand visions and

overambitious plans. Do it early enough, and even when

the final big scary number is a lot bigger and scarier than

everyone thought, you’ll still have time to do something

about it.

As well as getting everyone on board for some proper

content planning activities, that big scary number is your

opportunity to get to the real core questions of content

strategy: do we really need all this content? Where can

existing content be reused and repurposed? How do we

prioritise our efforts? What really matters to our readers

and users?

Time and again, case studies show that less content

delivers more: more leads, more sales, more self-service

support and savings in the call centre. Although that

argument is primarily one you should make from a good-

for-the-users perspective, it doesn’t hurt to be able to

make it from the cheaper-for-the-business perspective as

well, and to have some big scary numbers to back that up.

Content Production Planning

24 ways 2014 edition 239

ABOUT THE AUTHOR

Sophie Dennis consults on content and UX strategy, and leads

blended creative / technical teams (mostly agile ones) on a

freelance or contract basis. She loves working with other smart,

creative people to deliver digital products that make a real

difference both to users and clients. Recently she’s worked on

major digital projects for cxpartners, the Office for National

Statistics, Bristol City Council, the National Trust, Jisc,

Bloomsbury Publishing and the University of Surrey. She lives in

240 24 ways 2014 edition

http://sophiedennis.co.uk/

the rural South West of England, where she runs the

Digpen.com grassroots web conference with husband Andy

Robinson.

Content Production Planning

24 ways 2014 edition 241

http://Digpen.com
http://twitter.com/andycayenne
http://twitter.com/andycayenne

Jeffrey Zeldman 24ways.org/201418

18. A Holiday Wish

A friend and I were talking the other day
about why clients spend more on toilet
cleaning than design, and how the industry
has changed since the mid-1990s, when we
got our starts. Early in his career, my friend
wrote a fine CSS book, but for years he has
called himself a UX designer. And our
conversation got me thinking about how I
reacted to that title back when I first started
hearing it.

“Just what this business needs,” I said to myself, “another

phony expert.”

Okay, so I was wrong about UX, but my touchiness was

not altogether unfounded. In the beginning, our industry

was divided between freelance jack-of-all-trade punks,

who designed and built and coded and hosted and

Photoshopped and even wrote the copy when the client

couldn’t come up with any, and snot-slick dot-com mega-

agencies that blew up like Alice and handed out titles like

impoverished nobles in the years between the world wars.

242 24 ways 2014 edition

http://24ways.org/201418
http://5by5.tv/bigwebshow/123

I was the former kind of designer, a guy who, having failed

or just coasted along at a cluster of other careers, had

suddenly, out of nowhere, blossomed into a web

designer—an immensely curious designer slash coder

slash writer with a near-insatiable lust to shave just one

more byte from every image. We had modems back then,

and I dreamed in sixteen colors. My source code was as

pretty as my layouts (arguably prettier) and I hoovered up

facts and opinions from newsgroups and bulletin boards

as fast as any loudmouth geek could throw them. It was a

beautiful life.

But soon, too soon, the professional digital agencies

arose, buying loft buildings downtown, jacking in at T1

speeds, charging a hundred times what I did, and

communicating with their clients in person, in large

artfully bedecked rooms, wearing hand-tailored Barney’s

suits and bringing back the big city bullshit I thought I’d

left behind when I quit advertising to become a web

designer.

Just like the big bad ad agencies of my early career, the

new digital agencies stocked every meeting with a totem

pole worth of ranks and titles. If the client brought five

upper middle managers to the meeting, the agency did

likewise. If fifteen stakeholders got to ask for a bigger

logo, fifteen agency personnel showed up to take notes on

the percentage of enlargement required.

A Holiday Wish

24 ways 2014 edition 243

http://crosswordtracker.com/clue/one-of-the-original-16-html-web-colors/

But my biggest gripe was with the titles.

The bigger and more expensive the agency, the lousier it

ran with newly invented titles. Nobody was a designer any

more. Oh, no. Designer, apparently, wasn’t good enough.

Designer was not what you called someone you threw

that much money at.

Instead of designers, there were user interaction leads

and consulting middleware integrators and bilabial

experience park rangers and you name it. At an AIGA

Miami event where I was asked to speak in the 1990s, I

once watched the executive creative director of the

biggest dot-com agency of the day make a presentation

where he spent half his time bragging that the agency had

recently shaved down the number of titles for people who

basically did design stuff from forty-six to just twenty-

three—he presented this as though it were an Einsteinian

coup—and the other half of his time showing a film about

the agency’s newly opened branch in Oslo. The Oslo

footage was shot in December. I kept wondering which

designer in the audience who lived in the constant breezy

balminess of Miami they hoped to entice to move to dark,

wintry Norway. But I digress.

Shortly after I viewed this presentation, the dot-com

world imploded, brought about largely by the euphoric

excess of the agencies and their clients. But people still

needed websites, and my practice flourished—to the point

244 24 ways 2014 edition

where, in 1999, I made the terrifying transition from guy

in his underwear working freelance out of his apartment

to head of a fledgling design studio. (Note: you never stop

working on that change.)

I had heard about experience design in the 1990s, but

assumed it was a gig for people who only knew one font.

But sometime around 2004 or 2005, among my freelance

and small-studio colleagues, like a hobbit in the Shire, I

began hearing whispers in the trees of a new evil stirring.

The fires of Mordor were burning. Web designers were

turning in their HTML editing tools and calling themselves

UXers.

I wasn’t sure if they pronounced it “uck-sir,” or “you-ex-er,”

but I trusted their claims to authenticity about as far as I

trusted the actors in a Doctor Pepper commercial when

they claimed to be Peppers. I’m an UXer, you’re an UXer,

wouldn’t you like to be an UXer too? No thanks, said I. I

still make things. With my hands.

Such was my thinking. I may have earned an MFA at the

end of some long-past period of soul confusion, but I have

working-class roots and am profoundly suspicious of, well,

everything, but especially of anything that smacks of

pretense. I got exporting GIFs. I didn’t get how white

papers and bullet points helped anybody do anything.

A Holiday Wish

24 ways 2014 edition 245

I was wrong. And gradually I came to know I was wrong.

And before other members of my tribe embraced UX, and

research, and content strategy, and the other airier

consultant services, I was on board. It helped that my wife

of the time was a librarian from Michigan, so I’d already

bought into the cult of information architecture. And if I

wasn’t exactly the seer who first understood how

borderline academic practices related to UX could

become as important to our medium and industry as our

craft skills, at least I was down a lot faster than Judd

Apatow got with feminism. But I digress.

I love the web and all the people in it. Today I understand

design as a strategic practice above all. The promise of the

web, to make all knowledge accessible to all people, won’t

be won by HTML5, WCAG 2, and responsive web design

alone.

We are all designers. You may call yourself a front-end

developer, but if you spend hours shaving half-seconds off

an interaction, that’s user experience and you, my friend,

are a designer. If the client asks, “Can you migrate all my

old content to the new CMS?” and you answer, “Of course

we can, but should we?”, you are a designer. Even our users

are designers. Think about it.

246 24 ways 2014 edition

Once again, as in the dim dumb dot-com past, we seem to

be divided by our titles. But, O, my friends, our varied

titles are only differing facets of the same bright gem.

Sisters, brothers, we are all designers. Love on! Love on!

And may all your web pages, cards, clusters, clumps,

asides, articles, and relational databases be bright.

ABOUT THE AUTHOR

A Holiday Wish

24 ways 2014 edition 247

Jeffrey Zeldman is the founder and executive creative director

of Happy Cog™, an agency of web design specialists, and the co-

founder (with Eric Meyer) of An Event Apart.

In 1995, the former art director and copywriter launched one of

the first personal sites (Jeffrey Zeldman Presents) and began

publishing web design tutorials. In 1998 he co-founded (and for

several years led) The Web Standards Project, a grassroots

coalition that brought standards to our browsers. That same

year, he launched A List Apart “for people who make websites.”

Jeffrey has written many articles and two books, notably the

foundational web standards text Designing With Web Standards,

now in its third edition.

Photo: John Morrison

248 24 ways 2014 edition

http://www.happycog.com/
http://www.zeldman.com/
http://www.webstandards.org/
http://www.alistapart.com/
http://www.zeldman.com/dwws/
http://www.flickr.com/photos/localcelebrity/

Jina Bolton 24ways.org/201419

19. Why You Should
Design for Open Source

Let’s be honest. Most designers don’t like
working for nothing. We rally against spec
work and make a stand for contracts and
getting paid. That’s totally what you should
do as a professional designer in the
industry. It’s your job. It’s your hard-
working skill. It’s your bread and butter. Get
paid.

However, I’m going to make a case for why you could also

consider designing for open source. First, I should

mention that not all open source work is free work. Some

companies hire open source contributors to work on their

projects full-time, usually because that project is used by

said company. There are other companies that encourage

open source contribution and even offer 20%-time for

these projects (where you can spend one day a week

contributing to open source). These are super rad

situations to be in. However, whether you’re able to land a

Why You Should Design for Open Source

24 ways 2014 edition 249

http://24ways.org/201419
http://www.nospec.com/faq
http://www.nospec.com/faq
http://vimeo.com/22053820
https://blog.heroku.com/archives/2011/7/12/matz_joins_heroku
https://blog.heroku.com/archives/2011/7/12/matz_joins_heroku
http://playbook.thoughtbot.com/#open-source
http://playbook.thoughtbot.com/#open-source

gig doing this type of work, or you’ve decided to volunteer

your time and energy, designing for open source can be

rewarding in many other ways.

PORTFOLIO BUILDING

New designers often find themselves in a catch-22

situation: they don’t have enough work experience

showcased in their portfolio, which leads to them not

getting much work because their portfolio is bare. These

new designers often turn to unsolicited redesigns to fill

their portfolio. An unsolicited redesign is a proof of

concept in which a designer attempts to redesign a

popular website. You can see many of these concepts on

sites like Dribbble and Behance and there are even

websites dedicated to showcasing these designs, such as

Uninvited Designs. There’s even a subreddit for them.

There are quite a few negative opinions on unsolicited

redesigns, though some people see things from both sides.

If you feel like doing one or two of these to fill your

portfolio, that’s of course up to you. But here’s a better

suggestion. Why not contribute design for an open source

project instead?

You can easily find many projects in great need of design

work, from branding to information design,

documentation, and website or application design. The

benefits to doing this are far better than an unsolicited

250 24 ways 2014 edition

http://dribbble.com
https://www.behance.net/
http://uninvitedredesigns.com/about
http://www.reddit.com/r/UnsolicitedRedesigns/
http://www.erickarjaluoto.com/blog/keep-your-unsolicited-redesign-to-yourself/
https://medium.com/i-m-h-o/the-two-corners-of-unsolicited-redesigns-8e8a40407c12

redesign. You get a great portfolio piece that actually has

greater potential to get used (especially if the core team is

on board with it). It’s a win-win situation.

Not all designers are in need of portfolio filler, but there

are other benefits to contributing design.

GIVING BACK TO THE COMMUNITY

My first experience with voluntary work was when I

collaborated with my friend, Vineet Thapar, on a pro bono

project for the W3C’s Web Accessibility Initiative

redesign project back in 2004. I was very excited to

contribute CSS to a website that would get used by the

W3C! Unfortunately, it decided to go a different direction

and my work did not get used. However, it was still pretty

exciting to have the opportunity, and I don’t regret a

moment of that work. I learned a lot about accessibility

from this experience and it helped me land some of the

jobs I’ve had since.

Almost a decade later, I got super into Sass. One of the

core maintainers, Chris Eppstein, lamented on Twitter

one day that the Sass website and brand was in dire need

of design help. That led to the creation of an open source

task force, Team Sass Design, and we revived the brand

and the website, which launched at SassConf in 2013.

Why You Should Design for Open Source

24 ways 2014 edition 251

http://www.w3.org/WAI/redesign/project.html
http://www.w3.org/WAI/redesign/project.html
http://chriseppstein.github.io/
http://sass-lang.com
http://sass-lang.com/styleguide/team

It helped me in my current job. I showed it during my

portfolio review when I interviewed for the role. Then I

was able to use inspiration from a technique I’d tried on

the Sass website to help create the more feature-rich

design system that my team at work is building. But most

importantly, I soon learned that it is exhilarating to be a

part of the Sass community. This is the biggest benefit of

all. It feels really good to give back to the technology I love

and use for getting my work done.

Ben Werdmuller writes about the need for design in open

source. It’s great to see designers contributing to open

source in awesome ways. When A List Apart’s website

went open source, Anna Debenham contributed by

helping build its pattern library. Bevan Stephens worked

with FontForge on the design of its website. There are

also designers who have created their own open source

projects. There’s Dan Cederholm’s Pears, which shares

common patterns in markup and style. There’s also Brad

Frost’s Pattern Lab, which shares his famous method of

atomic design and applies it to a design system. These

systems and patterns have been used in real-world

projects, such as RetailMeNot, so designers have

contributed to the web in an even larger way simply by

putting their work out there for others to use. That’s kind

of fun to think about.

252 24 ways 2014 edition

https://medium.com/salesforce-ux/living-design-system-3ab1f2280ef7
http://benwerd.com/2011/06/27/open-source-needs-designers/
http://benwerd.com/2011/06/27/open-source-needs-designers/
http://maban.co.uk/
http://alistapart.com/blog/post/getting-started-with-pattern-libraries
http://www.bevanstephens.com/
http://fontforge.github.io/en-US/
http://simplebits.com/
http://pea.rs/
http://bradfrost.com
http://bradfrost.com
http://patternlab.io/
http://www.retailmenot.com/

HOW TO GET STARTED

So are you stoked about getting into the open source

community? That’s great!

Initially, you might get worried or uncomfortable in

getting involved. That’s okay. But first consider that the

project is open source for a reason. Your contribution (no

matter how large or small) can help in a big way.

If you find a project you’re interested in helping, make

sure you do your research. Sometimes project team

members will be attached to their current design. Is there

already a designer on the core team? Reach out to that

designer first. Don’t be too aggressive with why you think

your design is better than theirs. Rather, offer some

constructive feedback and a proposal of what would make

the design better. Chances are, if the designer cares about

the project, and you make a strong case, they’ll be up for

it.

Are there contribution guidelines? It’s proper etiquette to

read these and follow the community’s rules. You’ll have a

better chance of getting your work accepted, and it shows

that you take the time to care and add to the overall

quality of the project. Does the project lack guidelines?

Consider starting a draft for that before getting started in

the design.

Why You Should Design for Open Source

24 ways 2014 edition 253

When contributing to open source, use your initiative to

solve problems in a manageable way. Huge pull requests

are hard to review and will often either get neglected or

rejected. Work in small, modular, and iterative

contributions.

So this is my personal take on what I’ve learned from my

experience and why I love open source. I’d love to hear

from you if you have your own experience in doing this

and what you’ve learned along the way as well. Please

share in the comments!

Thanks Drew McLellan, Eric Suzanne, Kyle Neath for

sharing their thoughts with me on this!

254 24 ways 2014 edition

http://allinthehead.com/
http://ericsuzanne.com/
http://warpspire.com/

ABOUT THE AUTHOR

Jina Bolton is a Senior Product Designer at Salesforce UX,

where she helps design and develop systems for enterprise

software. She also loves Sass; she leads Team Sass Design, an

open source task force that redesigned the Sass brand and

website. Jina also organizes the San Francisco Sass Meet Up,

The Mixin. She coauthored two books, Fancy Form Design and

The Art & Science of CSS. Previously, she has worked with rad

companies including Apple, Engine Yard, and Crush + Lovely.

Photo: Nick Howland

Why You Should Design for Open Source

24 ways 2014 edition 255

http://sushiandrobots.com/
http://sass-lang.com/styleguide/team
http://themixinsf.com/

Leslie Jensen-Inman 24ways.org/201420

20. Meet for Learning

“I’ve never worked in a place like this,” said
one of my direct reports during our daily
stand-up meeting.

And with that statement, my mind raced to the most

important thing about lawyering that I’ve learned from

decades of watching lawyers lawyer on TV: don’t ask a

question you don’t know the answer to.

But I couldn’t stop myself. I wanted to learn more. The

thought developed in my mind. The words formed in my

mouth. And the vocalization occurred: “A place like this?”

“I’ve never worked where people are so honest and

transparent about things.”

DESIGNING A LEARNING-CENTERED CULTURE

Before we started Center Centre, Jared Spool and I

discussed both the larger goals and the smaller details of

this new UX design school. We talked about things like

user experience, curriculum, and structure.

256 24 ways 2014 edition

http://24ways.org/201420
http://centercentre.com/

We discussed the pattern we saw in our research. Hiring

managers told us time and again that great designers have

excellent technical and interpersonal skills. But, more

importantly, the best designers are lifelong learners—they

are willing and able to learn how to do new things.

Learning this led us to ask a critical question: how would

we intentionally design a learning-centered experience?

To craft the experience we were aiming for, we knew we

had to create a learning-centered culture for our students

and our employees. We knew that our staff would need to

model the behaviors our students needed to learn. We

knew the best way to shape the culture was to work with

our direct reports—our directs—to develop the behaviors

we wanted them to exemplify.

To craft the experience we were aiming for, we knew we

had to create a learning-centered culture for our students

and our employees. We knew that our staff would need to

model the behaviors our students needed to learn.

BUILDING A LEARNING TEAM

Our learning-centered culture starts with our staff. We

believe in transparency. Transparency builds trust.

Effective organizations have effective teams who trust

each other as individuals.

Meet for Learning

24 ways 2014 edition 257

One huge way we build that trust and provide

opportunities for transparency is in our meetings. (I know,

I know—meetings! Yuck!) But seriously, running and

participating in effective meetings is a great opportunity

to build a learning-centered culture.

Meetings—when done well—allow individuals time to

come together, to share, and to listen. These behaviors,

executed on a consistent and regular basis, build honest

and trusting relationships.

An effective meeting is one that achieves the desired

outcomes of that meeting. While different meetings aim

for different results, at Center Centre all meetings have a

secondary goal: meet for learning.

A framework for learning-centered meetings

We’ve developed a framework for our meetings. We use it

for all our meetings, which means attendees know what to

expect. It also saves us from reinventing the wheel in each

meeting.

These basic steps help our meetings focus on the valuable

face-to-face interaction we’re having, and help us truly

begin to learn from one another.

258 24 ways 2014 edition

An agenda for a staff meeting.

USE EFFECTIVE MEETING BASICS

▪ Prepare for the meeting before the meeting.

▪ If you’re running the meeting, prepare a typed agenda

and share it before the meeting. Agendas have start times

for each item.

▪ Start the meeting on time. Don’t wait for stragglers.

▪ Define ground rules. Get input from attendees.

Recurring meetings don’t have to do this every time.

▪ Keep to the meeting agenda. Put off-topic questions

and ideas in a parking lot, a visual document that

everyone can see, so you can address the questions and

ideas later.

▪ Finish on time. And if you’ve reached the meeting’s

goals, finish early.

Meet for Learning

24 ways 2014 edition 259

Parking lots where ideas on sticky notes can be posted for later
consideration.

FOCUS TO LEARN

▪ Have tech-free meetings: no laptops, no phones, no

things with notifications.

▪ Bring a notebook and a pen.

▪ Take notes by hand. You’re not taking minutes, you’re

writing to learn.

COME WITH A LEARNING MINDSET

▪ Ask: what are our goals for this meeting? (Hopefully

answered by the meeting agenda.)

▪ Ask: what can I learn overall?

▪ Ask: what can I learn from each of my colleagues?

▪ Ask: what can I share that will help the team learn

overall?

▪ Ask: what can I share that will help each of my

colleagues learn?

260 24 ways 2014 edition

INVESTING IN REGULARLY SCHEDULED
LEARNING-CENTERED MEETINGS

At Center Centre, we have two types of recurring all-staff

meetings: daily stand-ups and weekly staff meetings. (We

are a small organization, so it makes sense to meet as an

entire group.)

Yes, that means we spend thirty minutes each day in

stand-up, for a total of two and a half hours of stand-up

meeting time each week. And, yes, we also have a weekly

ninety-minute sit-down staff meeting on top of that. This

investment in time is an investment in learning.

We use these meetings to build our transparency, and,

therefore, our trust. The regularity of these meetings

helps us maintain ongoing, open sharing about our

responsibilities, our successes, and our learning.

For instance, we answer five questions in our stand-up:

1. What did I get done since the last stand-up (I reported

at)?

2. What is my goal to accomplish before the next stand-

up?

3. What’s preventing me from getting these things done,

if anything?

4. What’s the highest risk or most unknown thing right

now about what I’m trying to get done?

Meet for Learning

24 ways 2014 edition 261

5. What is the most important thing I learned since the

last time we met and how will what I learned change the

way I approach things in the future?

Each person writes out their answers to these questions

before the meeting. Each person brings their answers

printed on paper to the meeting. And each person brings a

pen to jot down notes.

Notes compiled for a stand-up meeting.

During the stand-up, each person shares their answers to

the five questions. To sustain a learning-centered culture,

the fifth question is the most important question to

answer. It allows individual reflection focused on learning.

Sometimes this isn’t an easy question to answer. It makes

us stretch. It makes us think.

262 24 ways 2014 edition

By sharing our individual answers to the fifth question, we

open ourselves up to the group. When we honestly share

what we’ve learned, we openly admit that we didn’t know

something. Sharing like this would be scary (and even

risky) if we didn’t have a learning-centered culture.

We often share the actual process of how we learned

something. By listening, each of us is invited to learn more

about the topic at hand, consider what more there is to

learn about that topic, and even gain insights into other

methods of learning—which can be applied to other

topics.

Sharing the answers to the fifth question also allows

opportunities for further conversations. We often take

what someone has individually learned and find ways to

apply it for our entire team in support of our organization.

We are, after all, learning together.

BUILDING INDIVIDUAL LEARNERS

We strive to grow together as a team at Center Centre,

but we don’t lose sight of the importance of the

individuals who form our team. As individuals, we bring

our goals, dreams, abilities, and prior knowledge to the

team.

Meet for Learning

24 ways 2014 edition 263

To build learning teams, we must build individual learners.

A team made up of lifelong learners, who share their

learning and learn from each other, is a team that will

continually produce better results.

As a manager, I need to meet each direct where they are

with their current abilities and knowledge. Then, I can

help them take their skills and knowledge base to the next

levels. This process requires each individual direct to

engage in professional development.

We believe effective managers help their directs engage

in behaviors that support growth and development.

Effective managers encourage and support learning.

Our weekly one-on-ones

One way we encourage learning is through weekly one-

on-ones. Each of my directs meets with me, individually,

for thirty minutes each week. The meeting is their

meeting. It is not my meeting.

264 24 ways 2014 edition

http://www.manager-tools.com/2005/07/the-single-most-effective-management-tool-part-1
http://www.manager-tools.com/2005/07/the-single-most-effective-management-tool-part-1

My direct sets the agenda. They talk about what they

want to talk about. They can talk about work. They can

talk about things outside of work. They can talk about

their health, their kids, and even their cat. Whatever is

important to them is important to me. I listen. I take notes.

Although the direct sets the specific agenda, the meeting

has three main parts. Approximately ten minutes for them

(the direct), ten minutes for me (the manager), and ten

minutes for us to talk about their future within—and

beyond—our organization.

COACHING FOR FUTURE PERFORMANCE

The final third of our one-on-one is when I coach my

directs. Coaching looks to the direct’s future

performance. It focuses on developing the direct’s skills.

Coaching isn’t hard. It doesn’t take much time. For me, it

usually takes less than five minutes a week during a one-

on-one.

The first time I coach one of my directs, I ask them to

brainstorm about the skills they want to improve. They

usually already have an idea about this. It’s often

something they’ve wanted to work on for some time, but

didn’t think they had the time or the knowhow to improve.

Meet for Learning

24 ways 2014 edition 265

https://www.manager-tools.com/2009/07/coaching-model-revised

If a direct doesn’t know what they want to improve, we

discuss their job responsibilities—specifically the aspects

of the job that concern them.

Coaching provides an opportunity for me to ask, “In your

job, what are the required skills that you feel like you

don’t have (or know well enough, or perform effectively,

or use with ease)?”

Sometimes I have to remind a direct that it’s okay not to

know how to do something (even if it’s a required part of

their job). After all, our organization is a learning

organization. In a learning organization, no one knows

everything but everyone is willing to learn anything.

After we review the job responsibilities together, I ask my

direct what skill they’d like to work to improve. Whatever

they choose, we focus on that skill for coaching—I’ve

found my directs work better when they’re internally

motivated.

Sometimes the first time I talk with a direct about

coaching, they get a bit anxious. If this happens, I share a

personal story about my professional learning journey. I

say something like:

266 24 ways 2014 edition

I didn’t know how to make a school before we
started to make Center Centre.

I didn’t know how to manage an entire team of
people—day in and day out—until I started
managing a team of people every day.

When I realized that I was the boss—and that
the success of the school would hinge, at least
in part, on my skills as a manager—I was a bit
terrified. I was missing an important skill set
that I needed to know (and I needed to know
well).

When I first understood this, I felt bad—like I
should have already known how to be a great
manager. But then I realized, I’d never faced
this situation. I’d never needed to know how to
use this skill set in this way.

I worked through my anxiety about feeling
inadequate. I decided I’d better learn how to be
an effective manager because the school
needed me to be one. You needed me to be one.

Every day, I work to improve my management
skills. You’ve probably noticed that some days
I’m better at it than others. I try not to beat
myself up about this, although it’s hard—I’d
like to be perfect at it. But I’m not.

Meet for Learning

24 ways 2014 edition 267

I know that if I make a conscious, daily effort to
learn how to be a better manager, I’ll continue
to improve. So that’s what I do.

Every day I learn. I learn by doing. I learn how
to be better than I was the day before. That’s
what I ask of you.

Once we determine the skill the direct wants to learn, we

figure out how they can go about learning it. I ask: “How

could you learn this skill?”

We brainstorm for two or three minutes about this. We

write down every idea that comes to mind, and we write it

so both of us can easily see the options (both whiteboards

and sticky notes on the wall work well for this exercise).

Read a book. Research online. Watch a virtual
seminar. Listen to a podcast. Talk to a mentor.
Reach out to an expert. Attend a conference.
Shadow someone else while they do the skill.
Join a professional organization.

The goal is to get the direct on a path of self-development.

I’m coaching their development, but I’m not the main way

my direct will learn this new skill.

I ask my direct which path seems like the best place to

start. I let them choose whatever option they want (as

long as it works with our budget). They are more likely to

follow through if they are in control of this process.

268 24 ways 2014 edition

Next, we work to break down the selected path into tasks.

We only plan one week’s worth of tasks. The tasks are

small, and the deadlines are short. My direct reports when

each task is completed.

At our next one-on-one, I ask my direct about their

experience learning this new skill.

Rinse. Repeat.

That’s it. I spend five minutes a week talking with each

direct about their individual learning. They develop their

professional skills, and together we’re creating a learning-

centered culture.

ASKING QUESTIONS I DON’T KNOW THE
ANSWER TO

When my direct said, “I’ve never worked where people are

so honest and transparent about things,” it led me to

believe that all this is working. We are building a learning-

centered culture.

This week I was reminded that creating a learning-

centered culture starts not just with the staff, but with

me. When I challenge myself to learn and then share what

I’m currently learning, my directs want to learn more

about what I’m learning about.

Meet for Learning

24 ways 2014 edition 269

For example, I decided I needed to improve my writing

skills. A few weeks ago, I realized that I was sorely out of

practice and I felt like I had lost my voice. So I started to

write. I put words on paper. I felt overwhelmed. I felt like I

didn’t know how to write anymore (at least not well or

effectively).

I bought some books on writing (mostly Peter Elbow’s

books like Writing with Power, Writing Without Teachers,

and Vernacular Eloquence), and I read them. I read them all.

Reading these books was part of my personal coaching. I

used the same steps to coach myself as I use with my

directs when I coach them.

In stand-ups, I started sharing what I accomplished (like I

completed one of the books) and what I learned by

doing—specific things, like engaging in freewriting and an

open-ended writing process.

This week, I went to lunch with one of my directs. She

said, “You’ve been talking about freewriting a lot. You’re

really excited about it. Freewriting seems like it’s helping

your writing process. Would you tell me more about it?”

So I shared the details with her. I shared the reasons why I

think freewriting is helping. I’m not focused on perfection.

Instead, each day I’m focused on spending ten,

uninterrupted minutes writing down whatever comes to

270 24 ways 2014 edition

http://en.wikipedia.org/wiki/Peter_Elbow

my mind. It’s opening my writing mind. It’s allowing my

words to flow more freely. And it’s helping me feel less

self-conscious about my writing.

She said, “Leslie, when you say you’re self-conscious about

your writing, I laugh. Not because it’s funny. But because

when I read what you write, I think, ‘What is there to

improve?’ I think you’re a great writer. It’s interesting to

know that you think you can be a better writer. I like

learning about your learning process. I think I could do

freewriting. I’m going to give it a try.”

There’s something magical about all of this. I’m not even

sure I can eloquently put it into words. I just know that

our working environment is something very different. I’ve

never experienced anything quite like it. Somehow, by

sharing that I don’t know everything and that I’m always

working to learn more, I invite my directs to be really

open about what they don’t know. And they see it’s

possible always to learn and grow.

I’m glad I ignore all the lawyering I’ve learned from

watching TV. I’m glad I ask the questions I don’t know the

answers to. And I’m glad my directs do the same. When

we meet for learning, we accelerate and amplify the

learning process—building individual learners and

learning teams. Embracing the unknown and working

toward understanding is what makes our culture a

learning-centered culture.

Meet for Learning

24 ways 2014 edition 271

Photos by Summer Kohlhorst.

ABOUT THE AUTHOR

Dr. Leslie Jensen-Inman is co-founder of Centre Centre, a

school creating industry-ready user experience designers.

Leslie combines her 19 years of design practice and eight years

of instructional background to make Center Centre an

extraordinary learning environment.

272 24 ways 2014 edition

http://centercentre.com/

Leslie creative directed and co-authored the book, InterACT

with Web Standards: A holistic approach to web design. She writes

articles for publications such as A List Apart, The Pastry Box,

Ladies in Tech, and .net Magazine. She speaks at and keynotes

conferences including Build, Converge, and SXSW. You can

reach Leslie at jenseninman.com and on Twitter @jenseninman.

Meet for Learning

24 ways 2014 edition 273

http://lanyrd.com/profile/jenseninman/
http://www.jenseninman.com/
https://twitter.com/jenseninman

Paul Lloyd 24ways.org/201421

21. Naming Things

There are only two hard things in
computer science: cache invalidation and
naming things.
Phil Karlton

Being a professional web developer means taking

responsibility for the code you write and ensuring it is

comprehensible to others. Having a documented code

style is one means of achieving this, although the size and

type of project you’re working on will dictate the

conventions used and how rigorously they are enforced.

Working in-house may mean working with multiple

developers, perhaps in distributed teams, who are all

committing changes – possibly to a significant codebase –

at the same time. Left unchecked, this codebase can

become unwieldy. Coding conventions ensure everyone

can contribute, and help build a product that works as a

coherent whole.

274 24 ways 2014 edition

http://24ways.org/201421

Even on smaller projects, perhaps working within an

agency or by yourself, at some point the resulting product

will need to be handed over to a third party. It’s sensible,

therefore, to ensure that your code can be understood by

those who’ll eventually take ownership of it.

Put simply, code is read more often than it is written or

changed. A consistent and predictable naming scheme can

make code easier for other developers to understand,

improve and maintain, presumably leaving them free to

worry about cache invalidation.

LET’S TALK ABOUT SEMANTICS

Names not only allow us to identify objects, but they can

also help us describe the objects being identified.

Semantics (the meaning or interpretation of words) is the

cornerstone of standards-based web development. Using

appropriate HTML elements allows us to create

documents and applications that have implicit structural

meaning. Thanks to HTML5, the vocabulary we can

choose from has grown even larger.

HTML elements provide one level of meaning: a widely

accepted description of a document’s underlying

structure. It’s only with the mutual agreement of browser

vendors and developers that <p> indicates a paragraph.

Naming Things

24 ways 2014 edition 275

Yet (with the exception of widely accepted microdata and

microformat schemas) only HTML elements convey any

meaning that can be parsed consistently by user agents.

While using semantic values for class names is a noble

endeavour, they provide no additional information to the

visitor of a website; take them away and a document will

have exactly the same semantic value.

I didn’t always think this was the case, but the real world

has a habit of changing your opinion. Much of my thinking

around semantics has been informed by the writing of my

peers. In “About HTML semantics and front-end

architecture”, Nicholas Gallagher wrote:

The important thing for class name semantics
in non-trivial applications is that they be
driven by pragmatism and best serve their
primary purpose – providing meaningful,
flexible, and reusable presentational/
behavioural hooks for developers to use.

These thoughts are echoed by Harry Roberts in his CSS

Guidelines:

276 24 ways 2014 edition

http://nicolasgallagher.com/about-html-semantics-front-end-architecture/
http://nicolasgallagher.com/about-html-semantics-front-end-architecture/
http://cssguidelin.es/#naming
http://cssguidelin.es/#naming

The debate surrounding semantics has raged
for years, but it is important that we adopt a
more pragmatic, sensible approach to naming
things in order to work more efficiently and
effectively. Instead of focussing on
‘semantics’, look more closely at sensibility
and longevity – choose names based on ease of
maintenance, not for their perceived meaning.

NAMING METHODOLOGIES

Front-end development has undergone a revolution in

recent years. As the projects we’ve worked on have grown

larger and more important, our development practices

have matured. The pros and cons of object-orientated

approaches to CSS can be endlessly debated, yet their

introduction has highlighted the usefulness of having

documented naming schemes.

Jonathan Snook’s SMACSS (Scalable and Modular

Architecture for CSS) collects style rules into five

categories: base, layout, module, state and theme. This

grouping makes it clear what each rule does, and is aided

by a naming convention:

Naming Things

24 ways 2014 edition 277

http://smacss.com/
http://smacss.com/book/categorizing

By separating rules into the five categories,
naming convention is beneficial for
immediately understanding which category a
particular style belongs to and its role within
the overall scope of the page. On large projects,
it is more likely to have styles broken up across
multiple files. In these cases, naming
convention also makes it easier to find which
file a style belongs to.

I like to use a prefix to differentiate between
layout, state and module rules. For layout, I use
l- but layout- would work just as well. Using
prefixes like grid- also provide enough clarity
to separate layout styles from other styles. For
state rules, I like is- as in is-hidden or is-

collapsed. This helps describe things in a very
readable way.

SMACSS is more a set of suggestions than a rigid

framework, so its ideas can be incorporated into your own

practice. Nicholas Gallagher’s SUIT CSS project is far

more strict in its naming conventions:

278 24 ways 2014 edition

https://github.com/suitcss/
https://github.com/suitcss/suit/blob/master/doc/naming-conventions.md

SUIT CSS relies on structured class names and
meaningful hyphens (i.e., not using hyphens
merely to separate words). This helps to work
around the current limits of applying CSS to
the DOM (i.e., the lack of style encapsulation),
and to better communicate the relationships
between classes.

Over the last year, I’ve favoured a BEM-inspired approach

to CSS. BEM stands for block, element, modifier, which

describes the three types of rule that contribute to the

style of a single component. This means that, given the

following markup:

<ul class=“sleigh”>

<li class=“sleigh__reindeer

sleigh__reindeer––famous”>Rudolph

<li class=“sleigh__reindeer”>Dasher

<li class=“sleigh__reindeer”>Dancer

<li class=“sleigh__reindeer”>Prancer

<li class=“sleigh__reindeer”>Vixen

<li class=“sleigh__reindeer”>Comet

<li class=“sleigh__reindeer”>Cupid

<li class=“sleigh__reindeer”>Dunder

<li class=“sleigh__reindeer”>Blixem

I know that:

▪ .sleigh is a containing block or component.

▪ .sleigh__reindeer is used only as a descendent

element of .sleigh.

Naming Things

24 ways 2014 edition 279

http://csswizardry.com/2013/01/mindbemding-getting-your-head-round-bem-syntax/
http://csswizardry.com/2013/01/mindbemding-getting-your-head-round-bem-syntax/

▪ .sleigh__reindeer––famous is used only as a modifier

of .sleigh__reindeer.

With this naming scheme in place, I know which styles

relate to a particular component, and which are shared.

Beyond reducing specificity-related head-scratching, this

approach has given me a framework within which I can

consistently label items, and has sped up my workflow

considerably.

Each of these methodologies shows that any robust CSS

naming convention will have clear rules around case

(lowercase, camelCase, PascalCase) and the use of special

(allowed) characters like hyphens and underscores.

WHAT MAKES FOR A GOOD NAME?

Regardless of higher-level conventions, there’s no getting

away from the fact that, at some point, we’re still going to

have to name things. Recognising that classes should be

named with other developers in mind, what makes for a

good name?

280 24 ways 2014 edition

http://www.w3.org/TR/CSS2/syndata.html#characters

Understandable

The most important aspect is for a name to be

understandable. Words used in your project may come

from a variety of sources: some may be widely

understood, and others only be recognised by people

working within a particular environment.

▪ Culture

Most words you’ll choose will have common currency

outside the world of web development, although they may

have a particular interpretation among developers (think

menu, list, input). However, words may have a narrower

cultural significance; for example, in Germany and other

German-speaking countries, impressum is the term used

for legally mandated statements of ownership.

▪ Industry

Industries often use specific terms to describe common

business practices and concepts. Publishing has a number

of these (headline, standfirst, masthead, colophon…) all have

well understood meanings – and not all of them are

relevant to online usage.

▪ Organisation

Companies may have internal names (or nicknames) for

their products and services. The Guardian is rife with such

names: bisons (and buffalos), pixies (and super-pixies), bentos

(and mini-bentos)… all of which mean something very

different outside the organisation. Although such names

can be useful inside smaller teams, in larger organisations

Naming Things

24 ways 2014 edition 281

https://en.wikipedia.org/wiki/Category%3APublishing_terms
https://en.wikipedia.org/wiki/Category%3APublishing_terms
http://next.theguardian.com/blog/bison/

they can become a barrier to entry, a sort of secret code

used among employees who have been around long

enough to know what they mean.

▪ Product

Your team will undoubtedly have created names for

specific features or interface components used in your

product. For example, at Clearleft we coined the term

gravigation for a navigation bar that was pinned to the

bottom of the viewport. Elements of a visual design

language may have names, too. Transport for London’s bar

and circle logo is known internally as the roundel, while

Nike’s logo is called the swoosh. Branding agencies often

christen colours within a brand palette, too, either to

evoke aspects of the identity or to indicate intended

usage.

Once you recognise the origin of the words you use, you’ll

be better able to judge their appropriateness. Using Latin

words for class names may satisfy a need to use semantic-

sounding terms but, unless you work in a company whose

employees have a basic grasp of Latin, a degree of

translation will be required. Military ranks might be a

clever way of declaring sizes without implying actual

values, but I’d venture most people outside the armed

forces don’t know how they’re ordered.

282 24 ways 2014 edition

http://www.tfl.gov.uk/corporate/about-tfl/culture-and-heritage/art-and-design/the-roundel
http://www.wikiwand.com/en/Swoosh

Obvious

Quite often, the first name that comes into your head will

be the best option. Names that obliquely reference the

function of a class (e.g. receptacle instead of container,

kevlar instead of no-bullets) only serve to add an additional

layer of abstraction. Don’t overthink it!

One way of knowing if the names you use are well

understood is to look at what similar concepts are called

in existing vocabularies. schema.org, Dublin Core and the

BBC’s ontologies are all useful sources for object names.

Functional

While we’ve learned to avoid using presentational classes,

there remains a tension between naming things based on

their content, and naming them for their intended

presentation or behaviour (which may change at different

breakpoints). Rather than think about a component’s

appearance or behaviour, instead look to its function, its

purpose. To clarify, ask what a component’s function is,

and not how the component functions.

For example, the Guardian’s internal content system uses

the following names for different types of image

placement: supporting, showcase and thumbnail, with inline

being the default. These options make no promise of the

Naming Things

24 ways 2014 edition 283

http://schema.org/
http://dublincore.org/documents/usageguide/elements.shtml
http://www.bbc.co.uk/ontologies

resulting position on a webpage (or smartphone app, or

television screen…), but do suggest intended use, and

therefore imply the likely presentation.

Consistent

Being consistent in your approach to names will allow for

easier naming of successive components, and extending

the vocabulary when necessary. For example, a

predictably named hierarchy might use names like primary

and secondary. Should another level need to be added,

tertiary is clearly be preferred over third.

Appropriate

Your project will feature a mix of style rules. Some will

perform utility functions (clearing floats, removing bullets

from a list, reseting margins), while others will perform

specific functions used only once or twice in a project.

Names should reflect this. For commonly used classes, be

generic; for unique components be more specific.

It’s also worth remembering that you can use multiple

classes on an element, so combining both generic and

specific can give you a powerful modular design system:

▪ Generic: list

▪ Specific: naughty-children

▪ Combined: naughty-children list

284 24 ways 2014 edition

If following the BEM methodology, you might use the

following classes:

▪ Generic: list

▪ Specific: list––nice-children

▪ Combined: list list––nice-children

Extensible

Good naming schemes can be extended. One way of

achieving this is to use namespaces, which are basically a

way of grouping related names under a higher-level term.

Microformats are a good example of a well-designed

naming scheme, with many of its vocabularies taking

property names from existing and related specifications

(e.g. hCard is a 1:1 representation of vCard).

Microformats 2 goes one step further by grouping

properties under several namespaces:

▪ h-* for root class names (e.g. h-card)

▪ p-* for simple (text) properties (e.g. p-name)

▪ u-* for URL properties (e.g. u-photo)

▪ dt-* for date/time properties (e.g. dt-bday)

▪ e-* for embedded markup properties (e.g. e-note)

The inclusion of namespaces is a massive improvement

over the earlier specification, but the downside is that

microformats now occupy five separate namespaces. This

Naming Things

24 ways 2014 edition 285

http://microformats.org/wiki/microformats2

might be problematic if you are using u-* for your utility

classes. While nothing will break, your naming system

won’t be as robust, so plan accordingly.

(Note: Microformats perform a very specific function,

separate from any presentational concerns. It’s therefore

considered best practice to not use microformat classes

as styling hooks, but instead use additional classes that

relate to the function of the component and adhere to

your own naming conventions.)

Short

Names should be as long as required, but no longer. When

looking for words to describe a particular function, I try to

look for single words where possible. Avoid abbreviations

unless they are understood within the contexts described

above. rrp is fine if labelling a recommended retail price in

an online shop, but not very helpful if used to mean

ragged-right paragraph, for example.

Fun!

Finally, names can be an opportunity to have some fun!

Names can give character to a project, be it by providing

an outlet for in-jokes or adding little easter eggs for those

inclined to look.

286 24 ways 2014 edition

The copyright statement on Apple’s website has long been

named sosumi, a word that has a nice little history inside

Apple. Until recently, the hamburger menu icon on the

Guardian website was labelled honest-burger, after the

developer’s favourite burger restaurant.

A FEW THOUGHTS ON PREPROCESSORS

CSS preprocessors have solved a lot of problems, but they

have an unfortunate downside: they require you to name

yet more things! Whereas we needed to worry only about

style rules, now we need names for variables, mixins,

functions… oh my!

A second article could be written about naming these, so

for now I’ll offer just a few thoughts. The first is to note

that preprocessors make it easier to change things, as

they allow for DRYer code. So while the names of

variables are important (and the advice in this article still

very much applies), you can afford to relax a little.

Looking to name colour variables? If possible, find out if

colours have been assigned names in a brand palette. If

not, use obvious names (based on appearance or function,

depending on your preference) and adapt as the palette

grows. If it becomes difficult to name colours that are too

similar, I’d venture that the problem lies with the design

rather than the naming scheme.

Naming Things

24 ways 2014 edition 287

http://www.wikiwand.com/en/Sosumi
http://www.wikiwand.com/en/Sosumi
http://www.wikiwand.com/en/Don%27t_repeat_yourself
http://chir.ag/projects/name-that-color/

The same is true for responsive breakpoints.

Preprocessors allow you to move awkward naming

conventions out of the markup and into the CSS. Although

terms like mobile, tablet and desktop are not desirable

given the need to think about device-agnostic design, if

these terms are widely understood within a product team

and among stakeholders, using them will ensure everyone

is using the same language (they can always be changed

later).

It still feels like we’re at the very beginning of

understanding how preprocessors fit into a development

workflow, if at all! I suspect over the next few years, best

practices will emerge for all of these considerations. In the

meantime, use your brain!

◆◆◆

Even with sensible rules and conventions in place, naming

things can remain difficult, but hopefully I’ve made this

exercise a little less painful. Christmas is a time of giving,

so to the developer reading your code in a year’s time,

why not make your gift one of clearer class names.

288 24 ways 2014 edition

ABOUT THE AUTHOR

Paul Robert Lloyd is interaction designer at the Guardian. Prior

to this he was a senior designer at Clearleft, where he worked

for clients such as NBCUniversal, Channel 4, Mozilla and

UNICEF UK.

When not working on side projects (he is currently digitizing

George Bradshaw’s railway guide), Paul can be found writing

about design, travel and more on his blog or blathering on

Twitter.

Naming Things

24 ways 2014 edition 289

http://theguardian.com/
http://clearleft.com
http://bradshawsguide.org
http://paulrobertlloyd.com/
http://twitter.com/paulrobertlloyd/

Geri Coady 24ways.org/201422

22. Integrating Contrast
Checks in Your Web
Workflow

It’s nearly Christmas, which means you’ll be
sure to find an overload of festive red and
green decorating everything in sight—often
in the ugliest ways possible.

While I’m not here to battle holiday tackiness in today’s

24 ways, it might just be the perfect reminder to step back

and consider how we can implement colour schemes in

our websites and apps that are not only attractive, but

also legible and accessible for folks with various types of

visual disabilities.

290 24 ways 2014 edition

http://24ways.org/201422

This simulated photo demonstrates how red and green
Christmas baubles could appear to a person affected by
protanopia-type colour blindness—not as festive as you might
think. Source: Derek Bruff

I’ve been fortunate to work with Simply Accessible to

redesign not just their website, but their entire brand.

Although the new site won’t be launching until the new

year, we’re excited to let you peek under the tree and

share a few treats as a case study into how we tackled

colour accessibility in our project workflow. Don’t

worry—we won’t tell Santa!

CREATE A COLOUR GAME PLAN

A common misconception about accessibility is that

meeting compliance requirements hinders creativity and

beautiful design—but we beg to differ. Unfortunately, like

many company websites and internal projects, Simply

Accessible has spent so much time helping others that

they had not spent enough time helping themselves to

show the world who they really are. This was the perfect

opportunity for them to practise what they preached.

After plenty of research and brainstorming, we decided to

evolve the existing Simply Accessible brand. Or, rather,

salvage what we could. There was no established logo to

carry into the new design (it was a stretch to even call it a

wordmark), and the Helvetica typography across the site

Integrating Contrast Checks in Your Web Workflow

24 ways 2014 edition 291

https://flic.kr/p/aUYntV
http://simplyaccessible.com

lacked any character. The only recognizable feature left to

work with was colour. It was a challenge, for sure: the

oranges looked murky and brown, and the blues looked

way too corporate for a company like Simply Accessible.

We knew we needed to inject a lot of personality.

The old Simply Accessible website and colour palette.

After an audit to round up every colour used throughout

the site, we dug in deep and played around with some

ideas to bring some new life to this palette.

292 24 ways 2014 edition

CHOOSE EFFECTIVE COLOURS

Whether you’re starting from scratch or evolving an

existing brand, the first step to having an effective and

legible palette begins with your colour choices. While we

aren’t going to cover colour message and meaning in this

article, it’s important to understand how to choose

colours that can be used to create strong contrast—one of

the most important ways to create hierarchy, focus, and

legibility in your design.

There are a few methods of creating effective contrast.

Light and dark colours

The contrast that exists between light and dark colours is

the most important attribute when creating effective

contrast.

Try not to use colours that have a similar lightness next to

each other in a design.

Integrating Contrast Checks in Your Web Workflow

24 ways 2014 edition 293

The red and green colours on the left share a similar

lightness and don’t provide enough contrast on their own

without making some adjustments. Removing colour and

showing the relationship in greyscale reveals that the

version on the right is much more effective.

It’s important to remember that red and green colour

pairs cause difficulty for the majority of colour-blind

people, so they should be avoided wherever possible,

especially when placed next to each other.

Complementary contrast

Effective contrast can also be achieved by choosing

complementary colours (other than red and green), that

are opposite each other on a colour wheel.

These colour pairs generally work better than choosing

adjacent hues on the wheel.

294 24 ways 2014 edition

Cool and warm contrast

Contrast also exists between cool and warm colours on

the colour wheel.

Imagine a colour wheel divided into cool colours like

blues, purples, and greens, and compare them to warm

colours like reds, oranges and yellows.

Choosing a dark shade of a cool colour, paired with a light

tint of a warm colour will provide better contrast than

two warm colours or two cool colours.

Integrating Contrast Checks in Your Web Workflow

24 ways 2014 edition 295

DEVELOP COLOUR CONCEPTS

After much experimentation, we settled on a simple, two-

colour palette of blue and orange, a cool-warm contrast

colour scheme. We added swatches for call-to-action

messaging in green, error messaging in red, and body copy

and form fields in black and grey. Shades and tints of blue

and orange were added to illustrations and other design

elements for extra detail and interest.

First stab at a new palette.

We introduced the new palette for the first time on an

internal project to test the waters before going full steam

ahead with the website. It gave us plenty of time to get a

feel for the new design before sharing it with the public.

Putting the test palette into practice with an internal report

296 24 ways 2014 edition

It’s important to be open to changes in your palette as it

might need to evolve throughout the design process.

Don’t tell your client up front that this palette is set in

stone. If you need to tweak the colour of a button later

because of legibility issues, the last thing you want is your

client pushing back because it’s different from what you

promised.

As it happened, we did tweak the colours after the test

run, and we even adjusted the logo—what looked great

printed on paper looked a little too light on screens.

CONSIDER HOW COLOURS MIGHT BE USED

Don’t worry if you haven’t had the opportunity to test

your palette in advance. As long as you have some well-

considered options, you’ll be ready to think about how the

colour might be used on the site or app.

Obviously, in such early stages it’s unlikely that you’re

going to know every element or feature that will appear

on the site at launch time, or even which design elements

could be introduced to the site later down the road. There

are, of course, plenty of safe places to start.

For Simply Accessible, I quickly mocked up these

examples in Illustrator to get a handle on the elements of

a website where contrast and legibility matter the most:

text colours and background colours. While it’s less

important to consider the contrast of decorative elements

Integrating Contrast Checks in Your Web Workflow

24 ways 2014 edition 297

that don’t convey essential information, it’s important for

a reader to be able to discern elements like button shapes

and empty form fields.

A basic list of possible colour combinations that I had in mind
for the Simply Accessible website

RUN INITIAL TESTS

Once these elements were laid out, I manually plugged in

the HTML colour code of each foreground colour and

background colour on Lea Verou’s Contrast Checker. I

298 24 ways 2014 edition

http://leaverou.github.io/contrast-ratio

added the results from each colour pair test to my

document so we could see at a glance which colours

needed adjustment or which colours wouldn’t work at all.

Note: Read more about colour accessibility and contrast

requirements

Integrating Contrast Checks in Your Web Workflow

24 ways 2014 edition 299

http://24ways.org/2012/colour-accessibility
http://24ways.org/2012/colour-accessibility

As you can see, a few problems were revealed in this test.

To meet the minimum AA compliance, we needed to

slightly darken the green, blue, and orange background

colours for text—an easy fix. A more complicated problem

was apparent with the button colours. I had envisioned

some buttons appearing over a blue background, but the

contrast ratios were well under 3:1. Although there isn’t a

guide in WCAG for contrast requirements of two non-text

elements, the ISO and ANSI standard for visible contrast

is 3:1, which is what we decided to aim for.

300 24 ways 2014 edition

We also checked our colour combinations in Color Oracle,

an app that simulates the most extreme forms of colour

blindness. It confirmed that coloured buttons over blue

backgrounds was simply not going to work. The contrast

was much too low, especially for the more common

deuteranopia and protanopia-type deficiencies.

How our proposed colour pairs could look to people with three
types of colour blindness

MAKE ADJUSTMENTS IF NECESSARY

As a solution, we opted to change all buttons to white

when used over dark coloured backgrounds. In addition to

increasing contrast, it also gave more consistency to the

button design across the site instead of introducing a lot

of unnecessary colour variants.

Integrating Contrast Checks in Your Web Workflow

24 ways 2014 edition 301

http://colororacle.cartography.ch

Putting more work into getting compliant contrast ratios

at this stage will make the rest of implementation and

testing a breeze. When you’ve got those ratios looking

good, it’s time to move on to implementation.

IMPLEMENT COLOURS IN STYLE GUIDE AND
PROTOTYPE

Once I was happy with my contrast checks, I created a

basic style guide and added all the colour values from my

colour exploration files, introduced more tints and shades,

and added patterned backgrounds. I created examples of

every panel style we were planning to use on the site, with

sample text, links, and buttons—all with working hover

states. Not only does this make it easier for the developer,

it allows you to check in the browser for any further

contrast issues.

302 24 ways 2014 edition

Integrating Contrast Checks in Your Web Workflow

24 ways 2014 edition 303

RUN A FINAL CONTRAST CHECK

During the final stages of testing and before launch, it’s a

good idea to do one more check for colour accessibility to

ensure nothing’s been lost in translation from design to

code. Unless you’ve introduced massive changes to the

design in the prototype, it should be fairly easy to fix any

issues that arise, particularly if you’ve stayed on top of

updating any revisions in the style guide.

One of the more well-known evaluation tools, WAVE, is

web-based and will work in any browser, but I love using

Chrome’s Accessibility Tools. Not only are they built right

in to the Inspector, but they’ll work if your site is

password-protected or private, too.

Chrome’s Accessibility Tools audit feature shows that there are
no immediate issues with colour contrast in our prototype

304 24 ways 2014 edition

http://wave.webaim.org/

THE HUMAN TOUCH

Finally, nothing beats a good round of user testing. Even

evaluation tools have their flaws. Although they’re great

at catching contrast errors for text and backgrounds, they

aren’t going to be able to find errors in non-text elements,

infographics, or objects placed next to each other where

discernible contrast is important.

Our final palette, compared with our initial ideas, was

quite different, but we’re proud to say it’s not just

compliant, but shows Simply Accessible’s true personality.

Who knows, it may not be final at all—there are so many

opportunities down the road to explore and expand it

further.

Integrating Contrast Checks in Your Web Workflow

24 ways 2014 edition 305

Accessibility should never be an afterthought in a project.

It’s not as simple as adding alt text to images, or running

your site through a compliance checker at the last minute

and assuming that a pass means everything is okay.

Considering how colour will be used during every stage of

your project will help avoid massive problems before

launch, or worse, launching with serious issues.

If you find yourself working on a personal project over the

Christmas break, try integrating these checks into your

workflow and make colour accessibility a part of your

New Year’s resolutions.

306 24 ways 2014 edition

ABOUT THE AUTHOR

Geri Coady is a colour-obsessed illustrator and designer from

Newfoundland, Canada. She is a former Art Director at a

Canadian advertising agency and is now pursuing her own

clients through her website at hellogeri.com. Geri loves chatting

about nerdy things on Twitter and has shared her thoughts in

publications such as net magazine, The Pastry Box Project, and

Digital Arts. She’s the author of the Pocket Guide to Colour

Accessibility from Five Simple Steps, a sometimes-illustrator for

A List Apart, and was voted Net Magazine’s Designer of the

Year in 2014.

Integrating Contrast Checks in Your Web Workflow

24 ways 2014 edition 307

http://hellogeri.com
http://twitter.com/hellogeri
http://www.fivesimplesteps.com/products/colour-accessibility
http://www.fivesimplesteps.com/products/colour-accessibility

Andrew Clarke 24ways.org/201423

23. Taglines and Truisms

To bring her good luck, “white rabbits” was
the first thing that my grandmother said out
loud on the first day of every month. We all
need a little luck, but we shouldn’t rely on it,
especially when it comes to attracting new
clients.

The first thing we say to a prospective client when they

visit our website for the first time helps them to

understand not only what we do but why we do it. We can

also help them understand why they should choose to

work with us over one of our competitors.

Take a minute or two to look at your competitors’

websites. What’s the first thing that they say about

themselves? Do they say that they “design delightful

digital experiences,” “craft beautiful experiences” or

“create remarkable digital experiences?”

308 24 ways 2014 edition

http://24ways.org/201423
http://www.clearleft.com
http://www.clearleft.com
http://www.simpleasmilk.co.uk
http://qoppa.co/about/

It’s easy to find companies who introduce themselves

with what they do, their proposition, but what a company

does is only part of their story. Their beliefs and values,

what they stand for why they do what they do are also

important.

When someone visits our websites for the first time, we

have only a brief moment to help them understand us. To

help us we can learn from the advertising industry, where

the job of a tagline is to communicate a concept, deliver a

message and sell a product, often using only a few words.

When an advertising campaign is effective, its tagline

stays with you, sometimes long after that campaign is

over. For example, can you remember which company or

brand these taglines help to sell? (Answers at the bottom

of the article:)

a. The Ultimate Driving Machine

b. Just Do It

c. Don’t Leave Home Without It

A clever tagline isn’t just a play on words, although it can

include one. A tagline does far more than help make your

company memorable. Used well, it brings together

notions of what makes your company and what you offer

special. Then it expresses those notions in a few words or

possibly a short sentence.

Taglines and Truisms

24 ways 2014 edition 309

I’m sure that everyone can find examples of company

slogans written in the type of language that should stay

within the walls of a marketing department. We can also

find taglines where the meaning is buried so deep that the

tag itself becomes effectively meaningless.

A meaningful tagline supports our ideas about who we are

and what we offer, and provides a platform for different

executions of them, sometimes over a period of time. For

a tagline to work well, it must allow for current and future

ideas about a brand.

It must also be meaningful to our brand and describe a

truism, a truth that need not be a fact or statistic, but

something that’s true about us, who we are, what we do

and why that’s distinctive. It can be obvious, funny, serious

or specific but above all it must be true. It should also be

difficult to argue with, making your messages difficult to

argue with too.

I doubt that I need remind you who this tagline belongs to:

There are some things money can’t buy. For
everything else there’s MasterCard.

That tagline was launched in 1997 by McCann-Erickson

along with the “Priceless” campaign and it helped

establish MasterCard as a friendlier credit card company,

one with a sense of humour.

310 24 ways 2014 edition

MasterCard’s truism is that the things which really matter

in life can’t be bought. They are worth more than anything

that a monetary value can be applied to. In expressing

that truism through the tagline, MasterCard’s advertising

tells people to use not just any credit card, but their

MasterCard, to pay for everything they buy.

“Guinness is good for you” may have been a stretch, but

“Good things come to those who wait” builds on the

truism that patience is a virtue and therefore a good pint

of Guinness takes time to pour (119.5 seconds. I know you

were wondering.)

The fact that British Airways flies to more destinations

than any other airline is their truism, and led their

advertisers to the now famous tagline, “The world’s

favourite airline.”

◆◆◆

At my company, Stuff & Nonsense, we’ve been thinking

about taglines as we think about our position within an

industry that seems full of companies who “design”, “craft”,

and “create” “delightful”, “beautiful”, “remarkable digital

experiences”.

Much of what made us different has changed along with

the type of work we’re interested in doing. Our work’s

expanded beyond websites and now includes design for

mobile and other media. It’s true we can’t know how or

Taglines and Truisms

24 ways 2014 edition 311

where it will be seen. The ways that we make it are

flexible too as we’re careful not to become tied to

particular tools or approaches.

It’s also true that we’re a small team. One that’s flexible

enough to travel around the world to work alongside our

clients. We join their in-house teams and we collaborate

with them in ways that other agencies often find more

difficult. We know that our clients appreciate our

flexibility and have derived enormous value from it. We

know that we’ve won business because of it and that it’s

now a big part of our proposition.

Our truism is that we’re flexible, “Fabulously flexible” as

our tagline now expresses. And although we know that

there may be other agencies who can be similarly flexible

– after all, being flexible is not a unique selling proposition

– only we do it so fabulously.

◆◆◆

As the old year rolls into the new, how will your company

describe what you do in 2015? More importantly, how will

you tell prospective clients why you do it, what matters to

you and why they should work with you?

312 24 ways 2014 edition

Start by writing a list of truisms about your company.

Write as many as you can, but then whittle that list down

to just one, the most important truth. Work on that truism

to create a tagline that’s meaningful, difficult to be argue

with and, above all, uniquely yours.

ANSWERS

a. The Ultimate Driving Machine (BMW)

b. Just Do It (Nike)

c. Don’t Leave Home Without It (American Express)

Taglines and Truisms

24 ways 2014 edition 313

ABOUT THE AUTHOR

Andrew Clarke runs Stuff and Nonsense, a tiny web design

company where they make fashionably flexible websites.

Andrew’s the author of Transcending CSS and Hardboiled Web

Design and hosts the popular weekly podcast Unfinished

Business where he discusses the business side of web, design

and creative industries with his guests. He tweets as

@malarkey.

314 24 ways 2014 edition

http://stuffandnonsense.co.uk/
http://unfinished.bz/
http://unfinished.bz/
http://twitter.com/malarkey

Cameron Moll 24ways.org/201424

24. Cohesive UX

With Yosemite, Apple users can answer
iPhone calls on their MacBooks. This is
weird. And yet it’s representative of a
greater trend toward cohesion.

Shortly after upgrading to Yosemite, a call came in on my

iPhone and my MacBook “rang” in parallel. And I was all,

like, “Wut?” This was a new feature in Yosemite, and

honestly it was a little bizarre at first.

Cohesive UX

24 ways 2014 edition 315

http://24ways.org/201424

Apple promotional image showing a phone call ringing
simultaneously on multiple devices.

However, I had just spoken at a conference on the very

topic you’re reading about now, and therefore I

appreciated the underlying concept: the cohesion of user

experience, the cohesion of screens.

This is just one of many examples I’ve encountered since

beginning to speak about this topic months ago. But

before we get ahead of ourselves, let’s look back at the

past few years, specifically the role of responsive web

design.

RWD != COHESIVE EXPERIENCE

I needn’t expound on the virtues of responsive web design

(RWD). You’ve likely already encountered more than a

career’s worth on the topic. This is a good thing. Count me

in as one of its biggest fans.

However, if we are to sing the praises of RWD, we must

also acknowledge its shortcomings. One of these is that

RWD ends where the browser ends. For all its goodness,

RWD really has no bearing on native apps or any other

experiences that take place outside the browser. This

makes it challenging, therefore, to create cohesion for

multi-screen users if RWD is the only response to “let’s

make it work everywhere.”

316 24 ways 2014 edition

We need something that incorporates the spirit of RWD

while unifying all touchpoints for the entire user

experience—single device or several devices, in browser

or sans browser, native app or otherwise.

I call this cohesive UX, and I believe it’s the next era of

successful user experiences.

TOWARD A UNIFIED WHOLE

Simply put, the goal of cohesive UX is to deliver a

consistent, unified user experience regardless of where

the experience begins, continues, and ends.

Two facets are vital to cohesive UX:

1. Function and form

2. Data symmetry

Let’s examine each of these.

Function AND form

Function over form, of course. Right? Not so fast, kiddo.

Consider Bruce Lawson’s dad. After receiving an Android

phone for Christmas and thumbing through his favorite

sites, he was puzzled why some looked different from

their counterparts on the desktop. “When a site looked

radically different,” Bruce observed, “he’d check the URL

bar to ensure that he’d typed in the right address. In short,

Cohesive UX

24 ways 2014 edition 317

he found RWD to be confusing and it meant he didn’t

trust the site.” A lack of cohesive form led to a jarring

experience for Bruce’s dad.

Now, if I appear to be suggesting websites must look the

same in every browser—you already learned they

needn’t—know that I recognize the importance of context,

especially in regards to mobile. I made a case for this more

than seven years ago.

Rather, cohesive UX suggests that form deserves the same

respect as function when crafting user experiences that

span multiple screens or devices. And users are

increasingly comfortable traversing media. For example,

more than 40% of adults in the U.S. owning more than one

device start an activity on one screen and finish it on

another, according to a study commissioned by Facebook.

I suspect that percentage will only increase in 2015, and I

suspect the tech-affluent readers of 24 ways are among

the 40%.

There are countless examples of cohesive form and

function. Consider Gmail, which displays email

conversations visually as a stack that can be expanded

and collapsed like the bellows of an accordion. This visual

metaphor has been consistent in virtually any instance of

Gmail—website or app—since at least 2007 when I

captured this screenshot on my Nokia 6680:

318 24 ways 2014 edition

Screenshot captured while authoring Mobile Web Design
(2007). Back then we didn’t call this an app, but rather a ‘smart
client’.

When the holistic experience is cohesive as it is with

Gmail, users’ mental models and even muscle memory are

preserved.1 Functionality and aesthetics align with the

expectations users have for how things should function

and what they should look like. In other words, the

experience is roughly the same across screens.

But don’t be ridiculous, peoples. Note that I said “roughly.”

It’s important to avoid mindless replication of aesthetics

and functionality for the sake of cohesion. Again, the goal

is a unified whole, not a carbon copy. Affordances and

concessions should be made as context and intuition

require. For example, while Facebook users are

accustomed to top-aligned navigation in the browser, they

encounter bottom-aligned navigation in the iOS app as

justified by user testing:

Cohesive UX

24 ways 2014 edition 319

The iOS app model has held up despite many
attempts to better it: http://t.co/rSMSAqeh9m
pic.twitter.com/mBp36lAEgc

— Luke Wroblewski (@lukew) December 10, 2014

Despite the (rather minor) lack of consistency in

navigation placement, other elements such as icons,

labels, and color theme work in tandem to produce a

unified, holistic whole.

Data symmetry

Data symmetry involves the repetition, continuity, or

synchronicity of data across screens, devices, and

platforms. As regards cohesive UX, data includes not just

the material (such as an article you’re writing on Medium)

but also the actions that can be performed on or with that

material (such as Medium’s authoring tools). That is to say,

“sync verbs, not just nouns” (Josh Clark).

In my estimation, Amazon is an archetype of data

symmetry, as is Rdio. When logged in, data is shared

across virtually any device of any kind, irrespective of

using a browser or native app. Add a product to your

Amazon cart from your phone during the morning

commute, and finish the transaction at work on your

laptop. Easy peasy.

320 24 ways 2014 edition

http://t.co/rSMSAqeh9m
http://t.co/mBp36lAEgc
https://twitter.com/lukew/status/542555210426880000

Amazon’s aesthetics are crazy cohesive, to boot:

Amazon web (left) and native app (right).

With Rdio, not only are playlists and listening history

synced across screens as you would expect, but the

cohesion goes even further. Rdio’s remote control feature

allows you to control music playing on one device using

another device, all in real time.

Cohesive UX

24 ways 2014 edition 321

Rdio’s remote control feature, as viewed on my MacBook while
music plays on my iMac.

At my office I often work from my couch using my

MacBook, but my speakers are connected to my iMac.

When signed in to Rdio on both devices, my MacBook

serves as proxy for controlling Rdio on my iMac, much the

same as any Yosemite-enabled device can serve as proxy

for an incoming iPhone call.

322 24 ways 2014 edition

Me, in my office. Note the iMac and speakers at far right.

This is a brilliant example of cohesive design, and it’s

executed entirely via the cloud.

THINGS TO CONSIDER

Consider the following when crafting cohesive

experiences:

1. Inventory the elements that comprise your product

experience, and cohesify them.2

Consider things such as copy, tone, typography,

iconography, imagery, flow, placement, brand

identification, account data, session data, user

Cohesive UX

24 ways 2014 edition 323

preferences, and so on. Then, create cohesion among

these elements to the greatest extent possible, while

adapting to context as needed.

2. Store session data in the cloud rather than locally.

For example, avoid using browser cookies to store

shopping cart data, as cookies are specific to a single

browser on a single device. Instead, store this data in the

cloud so it can be accessed from other devices, as well as

beyond the browser.

3. Consider using web views when developing your

native app.

“You’re already using web apps in native wrappers

without even noticing it,” Lukas Mathis contends. “The

fact that nobody even notices, the fact that this isn’t a

story, shows that, when it comes to user experience, web

vs. native doesn’t matter anymore.” Web views essentially

allow you to display HTML content inside a native

wrapper. This can reduce the time and effort needed to

make the overall experience cohesive. So whereas the

navigation bar may be rendered by the app, for example,

the remaining page display may be rendered via the web.

There’s readily accessible documentation for using web

views in C++, iOS, Android, and so forth.

324 24 ways 2014 edition

NATURE IS CALLING

Returning to the example of Yosemite and sychronized

phone calls, is it really that bizarre in light of cohesive UX?

Perhaps at first. But I suspect that, over time, Yosemite’s

cohesiveness — and the cohesiveness of other examples

like the ones we’ve discussed here — will become not only

more natural but more commonplace, too.

◆◆◆

1 I browse Flipboard on my iPad nearly every morning as

part of my breakfast routine. Swiping horizontally

advances to the next page. Countless times I’ve done the

same gesture in Flipboard for iPhone only to have it do

nothing. This is because the gesture for advancing is

vertical on phones. I’m so conditioned to the horizontal

swipe that I often fail to make the switch to vertical swipe,

and apparently others suffer from the same muscle

memory, too.

2 Cohesify isn’t a thing. But chances are you understood

what I meant. Yay neologism!

Cohesive UX

24 ways 2014 edition 325

ABOUT THE AUTHOR

Cameron Moll is the founder of Authentic Jobs, maker of

Structures in Type, and author of Mobile Web Design (2007). He

resides in Sarasota, Florida with his wife and five sons. Find him

on Twitter at @cameronmoll.

Cameron is looking to share the principles of Cohesive UX in

2015. Please get in touch if you’d like to have him speak at your

conference.

326 24 ways 2014 edition

http://authenticjobs.com
http://typestructures.com
http://twitter.com/cameronmoll
http://cameronmoll.tumblr.com/contact

	Credits
	2014
	What It Takes to Build a Website
	Getting the tech right
	Create a stable development environment
	Use source control
	Don’t repeat, automate!

	Build systems, not sites
	Working collaboratively
	The business end
	Time to review
	About the author

	Dealing with Emergencies in Git
	Getting Interrupted in Git
	Checking out a single commit
	Saving just one commit
	Uploading the fixed branch
	Cleaning up and getting back to work
	Having fun with analogies
	About the author

	JavaScript Modules the ES6 Way
	What is ES6?
	The ES6 module spec
	Module syntax
	Named exports
	Default exports

	Programmatic API

	How to use it today
	ES6 module transpiler
	SystemJS

	Conclusion
	Further reading
	About the author

	Developing Robust Deployment Procedures
	The benefits of good practice
	No surprises when you launch
	Being able to work collaboratively
	Having a proper backup of site files with access to them from anywhere
	Being able to jump back into a site quickly when the client wants a few changes

	The tool chain
	Source control
	A deployment service
	Tools to choose from
	Hosted Git repositories
	Standalone deployment tools

	Putting it all together
	Get your local site into a local Git repository
	Setting up a hosted Git repository
	Connecting a deployment tool to your repository and web hosting

	Your new procedure step by step
	Taking it further
	Staging servers for client preview
	Using Git branches
	Automatic deployment to staging
	Further Reading

	Get set up for the new year
	About the author

	What Is Vagrant and Why Should I Care?
	What?
	Why?
	OK, got it. Show me already
	Bonus level
	Wrapping up
	About the author

	Don’t Push Through the Pain
	The Wrist Bone’s Connected to the Brain Bone
	How to Crawl Back
	1. Massage therapy
	2. Change your equipment
	Mice
	Keyboards
	Other doohickies

	3. Stop clicking, at least for a while
	4. Use built-in features
	5. Take breaks
	6. Whether you are sore or not, do stretches throughout the day
	7. Follow good habits
	8. Speak instead of writing, if you can
	9. Watch your position
	10. If you need to take anti-inflammatories, stop working
	11. Don’t forget the rest of your body
	12. Remember the children

	I’ll be watching you
	About the author

	Collaborative Responsive Design Workflows
	Why is it so difficult?
	Why do it
	How to do it
	How to get buy-in
	Write
	Talk
	Pitch

	About the author

	Websites of Christmas Past, Present and Future
	The websites of Christmas past
	Doing it all in the browser
	What problem are we trying to solve?
	A better solution
	Isn’t this just more work?

	The websites of Christmas present
	Websites of Christmas yet to come
	About the author

	Responsive Enhancement
	Step one: core functionality
	Step two: layout as an enhancement
	Step three: enhance!
	Cutting the mustard

	Enhance all the things!
	About the author

	Making Sites More Responsive, Responsibly
	Being responsibly responsive
	The power of the web
	Offline first
	Even more accessible
	Input
	Output

	With great power…
	About the author

	Putting Design on the Map
	Jumping into design
	Tiles
	Technical

	Features
	Technical

	User interface
	Putting it into practice
	Google
	Leaflet
	Mapbox
	OpenLayers
	OpenStreetMap
	ViziCities

	About the author

	Is Agile Harder for Agencies?
	So what’s the problem?
	1. Agile asks more of your clients
	2. My client wants fixed costs, fixed deadlines and a fixed scope
	3. Fear of uncontrolled costs
	4. Agency structures need shaking up
	Conclusion
	About the author

	The Introvert Owner’s Manual
	What defines an introvert
	Caring for your introvert
	Speaking up
	Group work
	Quiet time
	Leadership

	Final thoughts
	Resources and further reading
	About the author

	Five Ways to Animate Responsibly
	Animate deliberately
	It takes more than twelve principles
	Useful and necessary, then beautiful
	Go four times faster
	Install a kill switch
	About the author

	SEO in 2015 (and Why You Should Care)
	What is real SEO?
	Understanding your current situation – Google Analytics
	Your Google Webmaster Tools data
	Combining the data into something useful
	What would you like to be found for?
	Putting it all together
	Wait. Is it really that simple?
	About the author

	An Overview of SVG Sprite Creation Techniques
	Prerequisites
	Before you sprite…
	HTML inline SVG sprites
	Referencing an external SVG sprite in HTML

	CSS inline SVG sprites
	Using SVG fragment identifiers and views
	Where to go from here
	About the author

	Content Production Planning
	How much content do we need?
	How much work is it?
	The goal is the conversation
	Who’s going to make it?
	The proof of the pudding
	Keeping it all on track
	Getting to the content strategy conversation
	About the author

	A Holiday Wish
	About the author

	Why You Should Design for Open Source
	Portfolio building
	Giving back to the community
	How to get started
	About the author

	Meet for Learning
	Designing a learning-centered culture
	Building a learning team
	A framework for learning-centered meetings
	Use effective meeting basics
	Focus to learn
	Come with a learning mindset

	Investing in regularly scheduled learning-centered meetings
	Building individual learners
	Our weekly one-on-ones
	Coaching for future performance

	Asking questions I don’t know the answer to
	About the author

	Naming Things
	Let’s talk about semantics
	Naming methodologies
	What makes for a good name?
	Understandable
	Obvious
	Functional
	Consistent
	Appropriate
	Extensible
	Short
	Fun!

	A few thoughts on preprocessors
	About the author

	Integrating Contrast Checks in Your Web Workflow
	Create a colour game plan
	Choose effective colours
	Light and dark colours
	Complementary contrast
	Cool and warm contrast

	Develop colour concepts
	Consider how colours might be used
	Run initial tests
	Make adjustments if necessary
	Implement colours in style guide and prototype
	Run a final contrast check
	The human touch
	About the author

	Taglines and Truisms
	Answers
	About the author

	Cohesive UX
	RWD != cohesive experience
	Toward a unified whole
	Function AND form
	Data symmetry

	Things to consider
	Nature is calling
	About the author

