

Credits

24 ways is the advent calendar for web
geeks. For twenty-four days each December
we publish a daily dose of web design and
development goodness to bring you all a
little Christmas cheer.

▪ 24 ways is brought to you by Perch CMS

▪ Produced by Drew McLellan, Brian Suda, Anna

Debenham and Owen Gregory.

▪ Designed by Paul Robert Lloyd.

▪ eBook published by edgeofmyseat.com and produced

by Rachel Andrew.

▪ Possible only with the help and dedication of our

authors.

2 24 ways 2005 edition

http://grabaperch.com/?ref=24w01
http://allinthehead.com/
http://suda.co.uk/
http://maban.co.uk/
http://maban.co.uk/
http://fullcreammilk.co.uk/
http://paulrobertlloyd.com/
http://edgeofmyseat.com
http://rachelandrew.co.uk/
http://24ways.org/authors/
http://24ways.org/authors/

2005

It all started here, in the heady days of Web
2.0. Ajax was the first new browser
technology we’d seen in years, and
combined with a new breed of libraries such
as Prototype, it kick-started the JavaScript
renaissance.

Easy Ajax with Prototype... 5

An Explanation of Ems...13

Improving Form Accessibility with DOM Scripting...........16

CSS Layout Starting Points..21

DOM Scripting Your Way to Better Blockquotes...............27

Practical Microformats with hCard ...33

Don't be eval()...40

Centered Tabs with CSS..44

Putting the World into "World Wide Web"..........................51

Auto-Selecting Navigation ..62

The Attribute Selector for Fun and (no ad) Profit66

2005

24 ways 2005 edition 3

Introduction to Scriptaculous Effects71

Transitional vs. Strict Markup ..80

Broader Border Corners ..86

Splintered Striper..91

"Z's not dead baby, Z's not dead" ..95

Avoiding CSS Hacks for Internet Explorer105

Introducing UDASSS! ...110

Tables with Style ...118

Naughty or Nice? CSS Background Images........................122

Swooshy Curly Quotes Without Images.............................129

Debugging CSS with the DOM Inspector138

Edit-in-Place with Ajax...144

Have Your DOM and Script It Too ...156

4 24 ways 2005 edition

Drew McLellan 24ways.org/200501

1. Easy Ajax with
Prototype

There’s little more impressive on the web
today than a appropriate touch of Ajax. Used
well, Ajax brings a web interface much
closer to the experience of a desktop app,
and can turn a bear of an task into a
pleasurable activity.

But it’s really hard, right? It involves all the nasty

JavaScript that no one ever does often enough to get

really good at, and the browser support is patchy, and

urgh it’s just so much damn effort. Well, the good news is

that – ta-da – it doesn’t have to be a headache. But man

does it still look impressive. Here’s how to amaze your

friends.

Easy Ajax with Prototype

24 ways 2005 edition 5

http://24ways.org/200501

INTRODUCING PROTOTYPE.JS

Prototype is a JavaScript framework by Sam Stephenson

designed to help make developing dynamic web apps a

whole lot easier. In basic terms, it’s a JavaScript file which

you link into your page that then enables you to do cool

stuff.

There’s loads of capability built in, a portion of which

covers our beloved Ajax. The whole thing is freely

distributable under an MIT-style license, so it’s good to

go. What a nice man that Mr Stephenson is – friends, let

us raise a hearty cup of mulled wine to his good name.

Cheers! sluurrrrp.

First step is to download the latest Prototype and put it

somewhere safe. I suggest underneath the Christmas

tree.

CUTTING TO THE CHASE

Before I go on and set up an example of how to use this,

let’s just get to the crux. Here’s how Prototype enables

you to make a simple Ajax call and dump the results back

to the page:

var url = 'myscript.php';

var pars = 'foo=bar';

var target = 'output-div';

var myAjax = new Ajax.Updater(target, url, {method:

'get', parameters: pars});

6 24 ways 2005 edition

http://prototype.conio.net/
http://conio.net/
http://prototype.conio.net/

This snippet of JavaScript does a GET to myscript.php,

with the parameter foo=bar, and when a result is

returned, it places it inside the element with the ID

output-div on your page.

KNOCKING UP A BASIC EXAMPLE

So to get this show on the road, there are three files we

need to set up in our site alongside prototype.js.

Obviously we need a basic HTML page with prototype.js

linked in. This is the page the user interacts with.

Secondly, we need our own JavaScript file for the glue

between the interface and the stuff Prototype is doing.

Lastly, we need the page (a PHP script in my case) that the

Ajax is going to make its call too.

So, to that basic HTML page for the user to interact with.

Here’s one I found whilst out carol singing:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"

lang="en">

<head>

<meta http-equiv="Content-Type" content="text/html;

charset=utf-8"/>

<title>Easy Ajax</title>

<script type="text/javascript"

src="prototype.js"></script>

<script type="text/javascript"

src="ajax.js"></script>

Easy Ajax with Prototype

24 ways 2005 edition 7

</head>

<body>

<form method="get" action="greeting.php"

id="greeting-form">

<div>

<label for="greeting-name">Enter your

name:</label>

<input id="greeting-name" type="text" />

<input id="greeting-submit" type="submit"

value="Greet me!" />

</div>

<div id="greeting"></div>

</form>

</body>

</html>

As you can see, I’ve linked in prototype.js, and also a file

called ajax.js, which is where we’ll be putting our glue.

(Careful where you leave your glue, kids.)

Our basic example is just going to take a name and then

echo it back in the form of a seasonal greeting. There’s a

form with an input field for a name, and crucially a DIV

(greeting) for the result of our call. You’ll also notice that

the form has a submit button – this is so that it can

function as a regular form when no JavaScript is available.

It’s important not to get carried away and forget the

basics of accessibility.

8 24 ways 2005 edition

MEANWHILE, BACK AT THE SERVER

So we need a script at the server which is going to take

input from the Ajax call and return some output. This is

normally where you’d hook into a database and do

whatever transaction you need to before returning a

result. To keep this as simple as possible, all this example

here will do is take the name the user has given and add it

to a greeting message. Not exactly Web 2-point-HoHoHo,

but there you have it.

Here’s a quick PHP script – greeting.php – that Santa

brought me early.

<?php

$the_name =

htmlspecialchars($_GET['greeting-name']);

echo "<p>Season's Greetings, $the_name!</p>";

?>

You’ll perhaps want to do something a little more complex

within your own projects. Just sayin’.

GLUING IT ALL TOGETHER

Inside our ajax.js file, we need to hook this all together.

We’re going to take advantage of some of the handy

listener routines and such that Prototype also makes

available. The first task is to attach a listener to set the

Easy Ajax with Prototype

24 ways 2005 edition 9

scene once the window has loaded. He’s how we attach an

onload event to the window object and get it to call a

function named init():

Event.observe(window, 'load', init, false);

Now we create our init() function to do our evil bidding.

Its first job of the day is to hide the submit button for

those with JavaScript enabled. After that, it attaches a

listener to watch for the user typing in the name field.

function init(){

$('greeting-submit').style.display = 'none';

Event.observe('greeting-name', 'keyup', greet,

false);

}

As you can see, this is going to make a call to a function

called greet() onkeyup in the greeting-name field. That

function looks like this:

function greet(){

var url = 'greeting.php';

var pars =

'greeting-name='+escape($F('greeting-name'));

var target = 'greeting';

var myAjax = new Ajax.Updater(target, url, {method:

'get', parameters: pars});

}

10 24 ways 2005 edition

The key points to note here are that any user input needs

to be escaped before putting into the parameters so that

it’s URL-ready. The target is the ID of the element on the

page (a DIV in our case) which will be the recipient of the

output from the Ajax call.

THAT’S IT

No, seriously. That’s everything. Try the example. Amaze

your friends with your 1337 Ajax sk1llz.

Easy Ajax with Prototype

24 ways 2005 edition 11

http://24ways.org/examples/easy-ajax-with-prototype/

ABOUT THE AUTHOR

Drew McLellan is lead developer on your favourite small CMS,

Perch. He is Director and Senior Developer at UK-based web

development agency edgeofmyseat.com, and formerly Group

Lead at the Web Standards Project. When not publishing 24

ways, Drew keeps a personal site covering web development

issues and themes, takes photos and tweets a lot.

12 24 ways 2005 edition

http://grabaperch.com/
http://allinthehead.com/
http://flickr.com/drewm/
http://twitter.com/drewm

Richard Rutter 24ways.org/200502

2. An Explanation of Ems

Ems are so-called because they are thought
to approximate the size of an uppercase
letter M (and so are pronounced “emm”),
although 1em is actually significantly larger
than this. The typographer Robert
Bringhurst describes the em thus:

The em is a sliding measure. One em is a
distance equal to the type size. In 6 point type,
an em is 6 points; in 12 point type an em is 12
points and in 60 point type an em is 60 points.
Thus a one em space is proportionately the
same in any size.

To illustrate this principle in terms of CSS, consider these

styles:

#box1 {

font-size: 12px;

width: 1em;

An Explanation of Ems

24 ways 2005 edition 13

http://24ways.org/200502

height: 1em;

border:1px solid black;

}

#box2 {

font-size: 60px;

width: 1em;

height: 1em;

border: 1px solid black;

}

These styles will render like:

M

and

M
Note that both boxes have a height and width of 1em but

because they have different font sizes, one box is bigger

than the other. Box 1 has a font-size of 12px so its width

and height is also 12px; similarly the text of box 2 is set to

60px and so its width and height are also 60px.

14 24 ways 2005 edition

ABOUT THE AUTHOR

Richard Rutter is a user experience consultant and director of

Clearleft. In 2009 he cofounded the webfont service, Fontdeck.

He runs an ongoing project called The Elements of Typographic

Style Applied to the Web, where he extols the virtues of good

web typography. Richard occasionally blogs at Clagnut, where

he writes about design, accessibility and web standards issues,

as well as his passion for music and mountain biking.

An Explanation of Ems

24 ways 2005 edition 15

http://clearleft.com/
http://fontdeck.com/
http://webtypography.net/
http://webtypography.net/
http://clagnut.com/

Ian Lloyd 24ways.org/200503

3. Improving Form
Accessibility with DOM
Scripting

The form label element is an incredibly
useful little element – it lets you link the
form field unquestionably with the
descriptive label text that sits alongside or
above it. This is a very useful feature for
people using screen readers, but there are
some problems with this element.

What happens if you have one piece of data that, for

various reasons (validation, the way your data is

collected/stored etc), needs to be collected using several

form elements?

The classic example is date of birth – ideally, you’ll ask for

the date of birth once but you may have three inputs, one

each for day, month and year, that you also need to

provide hints about the format required. The problem is

that to be truly accessible you need to label each field. So

you end up needing something to say “this is a date of

16 24 ways 2005 edition

http://24ways.org/200503

birth”, “this is the day field”, “this is the month field” and

“this is the day field”. Seems like overkill, doesn’t it? And it

can uglify a form no end.

There are various ways that you can approach it (and I

think I’ve seen them all). Some people omit the label and

rely on the title attribute to help the user through;

others put text in a label but make the text 1 pixel high

and merging in to the background so that screen readers

can still get that information. The most common method,

though, is simply to set the label to not display at all using

the CSS display:none property/value pairing (a

technique which, for the time being, seems to work on

most screen readers). But perhaps we can do more with

this?

The technique I am suggesting as another alternative is as

follows (here comes the pseudo-code):

▪ Start with a totally valid and accessible form

▪ Ensure that each form input has a label that is linked to

its related form control

▪ Apply a class to any label that you don’t want to be

visible (for example superfluous)

Then, through the magic of unobtrusive JavaScript/the

DOM, manipulate the page as follows once the page has

loaded:

Improving Form Accessibility with DOM Scripting

24 ways 2005 edition 17

http://juicystudio.com/article/invisible-form-prompts.php#displaynone
http://juicystudio.com/article/invisible-form-prompts.php#displaynone

▪ Find all the label elements that are marked as

superfluous and hide them

▪ Find out what input element each of these label

elements is related to

▪ Then apply a hint about formatting required for input

(gleaned from the original, now-hidden label text) – add it

to the form input as default text

▪ Finally, add in a behaviour that clears or selects the

default text (as you choose)

So, here’s the theory put into practice – a date of birth,

grouped using a fieldset, and with the behaviours added

in using DOM, and here’s the JavaScript that does the

heavy lifting.

But why not just use display:none? As demonstrated at

Juicy Studio, display:none seems to work quite well for

hiding label elements. So why use a sledge hammer to

crack a nut? In all honesty, this is something of an

experiment, but consider the following:

▪ Using the DOM, you can add extra levels of help,

potentially across a whole form – or even range of forms –

without necessarily increasing your markup (it goes

beyond simply hiding labels)

▪ Screen readers today may identify a label that is set

not to display, but they may not in the future – this might

provide a way around

18 24 ways 2005 edition

http://24ways.org/examples/improving-form-accessibility-with-dom-scripting/
http://24ways.org/examples/improving-form-accessibility-with-dom-scripting/
http://24ways.org/examples/improving-form-accessibility-with-dom-scripting/
http://24ways.org/examples/improving-form-accessibility-with-dom-scripting/unobtrusive-scripts.js
http://24ways.org/examples/improving-form-accessibility-with-dom-scripting/unobtrusive-scripts.js

▪ By expanding this technique above, it might be possible

to visually change the parent container that groups these

items – in this case, a fieldset and legend, which are

notoriously difficult to style consistently across different

browsers – while still retaining the underlying semantic/

logical structure

Well, it’s an idea to think about at least. How is it for you?

How else might you use DOM scripting to improve the

accessiblity or usability of your forms?

ABOUT THE AUTHOR

Ian Lloyd founded Accessify.com, a web accessibility site, back

in 2002 and has been a member of the Web Standards Project

since 2003, where he is part of the Accessibility Task Force. He

Improving Form Accessibility with DOM Scripting

24 ways 2005 edition 19

http://www.accessify.com
http://www.webstandards.org/about/members/lloydi/

has written or co-authored a number of books on the topic of

standards-based web design/development, most recently co-

authoring on Pro CSS for Apress. He lives in Swindon, UK, a

place best known for its ‘Magic Roundabout‘ and Doctor Who’s

Billie Piper. (It’s not all bad, though.)

20 24 ways 2005 edition

http://www.amazon.com/exec/obidos/ASIN/159059732X/httpbeginncom-20/104-0301049-0956745
http://en.wikipedia.org/wiki/Magic_Roundabout_%28Swindon%29

Rachel Andrew 24ways.org/200504

4. CSS Layout Starting
Points

I build a lot of CSS layouts, some incredibly
simple, others that cause sleepless nights
and remind me of the torturous puzzle
books that were given to me at Christmas by
aunties concerned for my education.
However, most of the time these layouts fit
quite comfortably into one of a very few
standard formats. For example:

▪ Liquid, multiple column with no footer

▪ Liquid, multiple column with footer

▪ Fixed width, centred

Rather than starting out with blank CSS and (X)HTML

documents every time you need to build a layout, you can

fairly quickly create a bunch of layout starting points, that

will give you a solid basis for creating the rest of the

CSS Layout Starting Points

24 ways 2005 edition 21

http://24ways.org/200504

design and mean that you don’t have to remember how a

three column layout with a footer is best achieved every

time you come across one!

These starting points can be really basic, in fact that’s

exactly what you want as the final design, the fonts, the

colours and so on will be different every time. It’s just the

main sections we want to be able to quickly get into place.

For example, here is a basic starting point CSS and

XHTML document for a fixed width, centred layout with a

footer.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Fixed Width and Centred starting point

document</title>

<link rel="stylesheet" type="text/css"

href="fixed-width-centred.css" />

<meta http-equiv="Content-Type" content="text/html;

charset=utf-8" />

</head>

<body>

<div id="wrapper">

<div id="side">

<div class="inner">

<p>Sidebar content here</p>

</div>

</div>

<div id="content">

<div class="inner">

22 24 ways 2005 edition

http://24ways.org/examples/css-layout-starting-points/
http://24ways.org/examples/css-layout-starting-points/

<p>Your main content goes here.</p>

</div>

</div>

<div id="footer">

<div class="inner">

<p>Ho Ho Ho!</p>

</div>

</div>

</div>

</body>

</html>

body {

text-align: center;

min-width: 740px;

padding: 0;

margin: 0;

}

#wrapper {

text-align: left;

width: 740px;

margin-left: auto;

margin-right: auto;

padding: 0;

}

#content {

margin: 0 200px 0 0;

}

#content .inner {

padding-top: 1px;

margin: 0 10px 10px 10px;

CSS Layout Starting Points

24 ways 2005 edition 23

}

#side {

float: right;

width: 180px;

margin: 0;

}

#side .inner {

padding-top: 1px;

margin: 0 10px 10px 10px;

}

#footer {

margin-top: 10px;

clear: both;

}

#footer .inner {

margin: 10px;

}

9 times out of 10, after figuring out exactly what main

elements I have in a layout, I can quickly grab the ‘one I

prepared earlier’, mark-up the relevant sections within

the ready-made divs, and from that point on, I only need

to worry about the contents of those different areas. The

actual layout is tried and tested, one that I know works

well in different browsers and that is unlikely to throw me

any nasty surprises later on. In addition, considering how

the layout is going to work first prevents the problem of

24 24 ways 2005 edition

developing a layout, then realising you need to put a

footer on it, and needing to redevelop the layout as the

method you have chosen won’t work well with a footer.

While enjoying your mince pies and mulled wine during

the ‘quiet time’ between Christmas and New Year, why

not create some starting point layouts of your own? The

css-discuss Wiki, CSS layouts section is a great place to

find examples that you can try out and find your favourite

method of creating the various layout types.

ABOUT THE AUTHOR

Rachel Andrew is a Director of edgeofmyseat.com, a UK web

development consultancy and creators of the small content

management system, Perch. She is the author of a number of

CSS Layout Starting Points

24 ways 2005 edition 25

http://css-discuss.incutio.com/?page=CssLayouts
http://grabaperch.com

books, most recently The Profitable Side Project Handbook and

CSS3 Layout Modules, and is a regular columnist for A List

Apart.

When not writing about business and technology on her blog at

rachelandrew.co.uk or speaking at conferences, you will usually

find Rachel running up and down one of the giant hills in Bristol.

26 24 ways 2005 edition

http://rachelandrew.co.uk/books
http://rachelandrew.co.uk/books/the-profitable-side-project
http://rachelandrew.co.uk/books/css3-layout-modules
http://alistapart.com/author/rachelandrew
http://alistapart.com/author/rachelandrew
http://rachelandrew.co.uk
http://lanyrd.com/profile/rachelandrew/

Jeremy Keith 24ways.org/200505

5. DOM Scripting Your
Way to Better
Blockquotes

Block quotes are great. I don’t mean they’re
great for indenting content – that would be
an abuse of the browser’s default styling. I
mean they’re great for semantically
marking up a chunk of text that is being
quoted verbatim. They’re especially useful
in blog posts.

<blockquote>

<p>Progressive Enhancement, as a label for a

strategy for Web design,

was coined by Steven Champeon in a series of

articles and presentations

for Webmonkey and the SxSW Interactive

conference.</p>

</blockquote>

DOM Scripting Your Way to Better Blockquotes

24 ways 2005 edition 27

http://24ways.org/200505

Notice that you can’t just put the quoted text directly

between the <blockquote> tags. In order for your markup

to be valid, block quotes may only contain block-level

elements such as paragraphs.

There is an optional cite attribute that you can place in

the opening <blockquote> tag. This should contain a URL

containing the original text you are quoting:

<blockquote cite="http://en.wikipedia.org/wiki/

Progressive_Enhancement">

<p>Progressive Enhancement, as a label for a

strategy for Web design,

was coined by Steven Champeon in a series of

articles and presentations

for Webmonkey and the SxSW Interactive

conference.</p>

</blockquote>

Great! Except… the default behavior in most browsers is

to completely ignore the cite attribute. Even though it

contains important and useful information, the URL in the

cite attribute is hidden.

You could simply duplicate the information with a

hyperlink at the end of the quoted text:

<blockquote cite="http://en.wikipedia.org/wiki/

Progressive_Enhancement">

<p>Progressive Enhancement, as a label for a

strategy for Web design,

was coined by Steven Champeon in a series of

28 24 ways 2005 edition

articles and presentations

for Webmonkey and the SxSW Interactive

conference.</p>

<p class="attribution">

<a href="http://en.wikipedia.org/wiki/

Progressive_Enhancement">source

</p>

</blockquote>

But somehow it feels wrong to have to write out the same

URL twice every time you want to quote something. It

could also get very tedious if you have a lot of quotes.

Well, “tedious” is no problem to a programming language,

so why not use a sprinkling of DOM Scripting? Here’s a

plan for generating an attribution link for every block

quote with a cite attribute:

1. Write a function called prepareBlockquotes.

2. Begin by making sure the browser understands the

methods you will be using.

3. Get all the blockquote elements in the document.

4. Start looping through each one.

5. Get the value of the cite attribute.

6. If the value is empty, continue on to the next iteration

of the loop.

7. Create a paragraph.

8. Create a link.

9. Give the paragraph a class of “attribution”.

DOM Scripting Your Way to Better Blockquotes

24 ways 2005 edition 29

10. Give the link an href attribute with the value from

the cite attribute.

11. Place the text “source” inside the link.

12. Place the link inside the paragraph.

13. Place the paragraph inside the block quote.

14. Close the for loop.

15. Close the function.

Here’s how that translates to JavaScript:

function prepareBlockquotes() {

if (!document.getElementsByTagName ||

!document.createElement || !document.appendChild) return;

var quotes =

document.getElementsByTagName("blockquote");

for (var i=0; i<quotes.length; i++) {

var source = quotes[i].getAttribute("cite");

if (!source) continue;

var para = document.createElement("p");

var link = document.createElement("a");

para.className = "attribution";

link.setAttribute("href",source);

link.appendChild(document.createTextNode("source"));

para.appendChild(link);

quotes[i].appendChild(para);

}

}

Now all you need to do is trigger that function when the

document has loaded:

window.onload = prepareBlockquotes;

30 24 ways 2005 edition

Better yet, use Simon Willison’s handy addLoadEvent

function to queue this function up with any others you

might want to execute when the page loads.

That’s it. All you need to do is save this function in a

JavaScript file and reference that file from the head of

your document using <script> tags.

You can style the attribution link using CSS. It might look

good aligned to the right with a smaller font size.

If you’re looking for something to do to keep you busy this

Christmas, I’m sure that this function could be greatly

improved. Here are a few ideas to get you started:

▪ Should the text inside the generated link be the URL

itself?

▪ If the block quote has a title attribute, how would you

take its value and use it as the text inside the generated

link?

▪ Should the attribution paragraph be placed outside the

block quote? If so, how would you that (remember, there

is an insertBefore method but no insertAfter)?

▪ Can you think of other instances of useful information

that’s locked away inside attributes? Access keys?

Abbreviations?

DOM Scripting Your Way to Better Blockquotes

24 ways 2005 edition 31

http://simon.incutio.com/archive/2004/05/26/addLoadEvent
http://24ways.org/examples/dom-scripting-your-way-to-better-blockquotes/prepareBlockquotes.js
http://24ways.org/examples/dom-scripting-your-way-to-better-blockquotes/prepareBlockquotes.js
http://24ways.org/examples/dom-scripting-your-way-to-better-blockquotes/

ABOUT THE AUTHOR

Jeremy Keith is an Irish web developer living in Brighton,

England where he works with the web consultancy firm

Clearleft. He wrote the books, DOM Scripting, Bulletproof Ajax,

and most recently HTML5 For Web Designers.

His latest project is Huffduffer, a service for creating podcasts

of found sounds. When he’s not making websites, Jeremy plays

bouzouki in the band Salter Cane. His loony bun is fine benny

lava.

32 24 ways 2005 edition

http://adactio.com/
http://clearleft.com/
http://domscripting.com/
http://bulletproofajax.com/
http://html5forwebdesigners.com/
http://huffduffer.com/
http://saltercane.com/

Drew McLellan 24ways.org/200506

6. Practical Microformats
with hCard

You’ve probably heard about microformats
over the last few months. You may have
even read the easily digestible introduction
at Digital Web Magazine, but perhaps you’ve
not found time to actually implement much
yet. That’s understandable, as it can
sometimes be difficult to see exactly what
you’re adding by applying a microformat to
a page. Sure, you’re semantically enhancing
the information you’re marking up, and the
Semantic Web is a great idea and all, but
what benefit is it right now, today?

Well, the answer to that question is simple: you’re adding

lots of information that can be and is being used on the

web here and now. The big ongoing battle amongst the big

web companies if one of territory over information.

Everyone’s grasping for as much data as possible. Some of

that information many of us are cautious to give away, but

Practical Microformats with hCard

24 ways 2005 edition 33

http://24ways.org/200506
http://microformats.org/
http://www.digital-web.com/articles/microformats_primer/
http://www.digital-web.com/articles/microformats_primer/
http://en.wikipedia.org/wiki/Semantic_web

a lot of is happy to be freely available. Of the data you’re

giving away, it makes sense to give it as much meaning as

possible, thus enabling anyone from your friends and

family to the giant search company down the road to

make the most of it.

Ok, enough of the waffle, let’s get working.

INTRODUCING HCARD

You may have come across hCard. It’s a microformat for

describing contact information (or really address book

information) from within your HTML. It’s based on the

vCard format, which is the format the contacts/address

book program on your computer uses. All the usual fields

are available – name, address, town, website, email, you

name it.

If you’re running Firefox and Greasemonkey (or if you can,

just to try this out), install this user script. What it does is

look for instances of the hCard microformat in a page, and

then add in a link to pass any hCards it finds to a web

service which will convert it to a vCard. Take a look at the

About the author box at the bottom of this article. It’s a

hCard, so you should be able to click the icon the user

script inserts and add me to your Outlook contacts or OS

X Address Book with just a click.

So microformats are useful after all. Free microformats all

round!

34 24 ways 2005 edition

http://microformats.org/wiki/hcard
http://greasemonkey.mozdev.org/
http://george.hotelling.net/projects/converthcard/converthcard.user.js

IMPLEMENTING HCARD

This is the really easy bit. All the hCard microformat is, is a

bunch of predefined class names that you apply to the

markup you’ve probably already got around your contact

information. Let’s take the example of the About the author

box from this article. Here’s how the markup looks

without hCard:

<div class="bio">

<h3>About the author</h3>

<p>Drew McLellan is a web developer, author and

no-good swindler from

just outside London, England. At the

Web

Standards Project he works

on press, strategy and tools. Drew keeps a

personal

weblog covering web

development issues and themes.</p>

</div>

This is a really simple example because there’s only two

key bits of address book information here:- my name and

my website address. Let’s push it a little and say that the

Web Standards Project is the organisation I work for –

that gives us Name, Company and URL.

To kick off an hCard, you need a containing object with a

class of vcard. The div I already have with a class of bio is

perfect for this – all it needs to do is contain the rest of

the contact information.

Practical Microformats with hCard

24 ways 2005 edition 35

The next thing to identify is my name. hCard uses a class

of fn (meaning Full Name) to identify a name. As is this

case there’s no element surrounding my name, we can just

use a span. These changes give us:

<div class="bio vcard">

<h3>About the author</h3>

<p>Drew McLellan is a web

developer...

The two remaining items are my URL and the organisation

I belong to. The class names designated for those are url

and org respectively. As both of those items are links in

this case, I can apply the classes to those links. So here’s

the finished hCard.

<div class="bio vcard">

<h3>About the author</h3>

<p>Drew McLellan is a web

developer, author and

no-good swindler from just outside London, England.

At the <a class="org"

href="http://www.webstandards.org/">Web Standards

Project

he works on press, strategy and tools. Drew keeps a

<a class="url"

href="http://www.allinthehead.com/">personal weblog

covering web

development issues and themes.</p>

</div>

36 24 ways 2005 edition

OK, that was easy. By just applying a few easy class names

to the HTML I was already publishing, I’ve implemented

an hCard that right now anyone with Greasemonkey can

click to add to their address book, that Google and Yahoo!

and whoever else can index and work out important

things like which websites are associated with my name if

they so choose (and boy, will they so choose), and in the

future who knows what. In terms of effort, practically nil.

WHERE NEXT?

So that was a trivial example, but to be honest it doesn’t

really get much more complex even with the most

pernickety permutations. Because hCard is based on

vCard (a mature and well thought-out standard), it’s all

tried and tested. Here’s some good next steps.

▪ Play with the hCard Creator

▪ Take a deep breath and read the spec

▪ Start implementing hCard as you go on your own

projects – it takes very little time

hCard is just one of an ever-increasing number of

microformats. If this tickled your fancy, I suggest

subscribing to the microformats site in your RSS reader to

keep in touch with new developments.

Practical Microformats with hCard

24 ways 2005 edition 37

http://microformats.org/code/hcard/creator
http://microformats.org/wiki/hcard
http://microformats.org/

WHAT’S THE TAKE-AWAY?

The take-away is this. They may sound like just more Web

2-point-HoHoHo hype, but microformats are a well

thought-out, and easy to implement way of adding

greater depth to the information you publish online. They

have some nice benefits right away – certainly at geek-

level – but in the longer term they become much more

significant. We’ve been at this long enough to know that

the web has a long, long memory and that what you

publish today will likely be around for years. But putting

the extra depth of meaning into your documents now you

can help guard that they’ll continue to be useful in the

future, and not just a bunch of flat ASCII.

38 24 ways 2005 edition

ABOUT THE AUTHOR

Drew McLellan is lead developer on your favourite small CMS,

Perch. He is Director and Senior Developer at UK-based web

development agency edgeofmyseat.com, and formerly Group

Lead at the Web Standards Project. When not publishing 24

ways, Drew keeps a personal site covering web development

issues and themes, takes photos and tweets a lot.

Practical Microformats with hCard

24 ways 2005 edition 39

http://grabaperch.com/
http://allinthehead.com/
http://flickr.com/drewm/
http://twitter.com/drewm

Simon Willison 24ways.org/200507

7. Don't be eval()

JavaScript is an interpreted language, and
like so many of its peers it includes the all
powerful eval() function. eval() takes a
string and executes it as if it were regular
JavaScript code. It’s incredibly powerful and
incredibly easy to abuse in ways that make
your code slower and harder to maintain. As
a general rule, if you’re using eval() there’s
probably something wrong with your
design.

COMMON MISTAKES

Here’s the classic misuse of eval(). You have a JavaScript

object, foo, and you want to access a property on it – but

you don’t know the name of the property until runtime.

Here’s how NOT to do it:

var property = 'bar';

var value = eval('foo.' + property);

40 24 ways 2005 edition

http://24ways.org/200507

Yes it will work, but every time that piece of code runs

JavaScript will have to kick back in to interpreter mode,

slowing down your app. It’s also dirt ugly.

Here’s the right way of doing the above:

var property = 'bar';

var value = foo[property];

In JavaScript, square brackets act as an alternative to

lookups using a dot. The only difference is that square

bracket syntax expects a string.

SECURITY ISSUES

In any programming language you should be extremely

cautious of executing code from an untrusted source. The

same is true for JavaScript – you should be extremely

cautious of running eval() against any code that may

have been tampered with – for example, strings taken

from the page query string. Executing untrusted code can

leave you vulnerable to cross-site scripting attacks.

WHAT’S IT GOOD FOR?

Some programmers say that eval() is B.A.D. – Broken As

Designed – and should be removed from the language.

However, there are some places in which it can

dramatically simplify your code. A great example is for use

with XMLHttpRequest, a component of the set of tools

Don't be eval()

24 ways 2005 edition 41

http://en.wikipedia.org/wiki/Cross_site_scripting

more popularly known as Ajax. XMLHttpRequest lets you

make a call back to the server from JavaScript without

refreshing the whole page. A simple way of using this is to

have the server return JavaScript code which is then

passed to eval(). Here is a simple function for doing

exactly that – it takes the URL to some JavaScript code (or

a server-side script that produces JavaScript) and loads

and executes that code using XMLHttpRequest and eval().

function evalRequest(url) {

var xmlhttp = new XMLHttpRequest();

xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState==4 &&

xmlhttp.status==200) {

eval(xmlhttp.responseText);

}

}

xmlhttp.open("GET", url, true);

xmlhttp.send(null);

}

If you want this to work with Internet Explorer you’ll need

to include this compatibility patch.

42 24 ways 2005 edition

http://www.scss.com.au/family/andrew/webdesign/xmlhttprequest/

ABOUT THE AUTHOR

Simon Willison is a freelance client- and server-side Web

developer and the co-creator of the Django Web framework.

Simon’s interests include OpenID and decentralised systems,

unobtrusive JavaScript, rapid application development and

RESTful Web Service APIs. Before going frelance Simon worked

on Yahoo!‘s Technology Development team, and prior to that at

the Lawrence Journal-World, an award winning local

newspaper in Kansas. Simon maintains a popular Web

development weblog at simonwillison.net

Photo: Tom Coates

Don't be eval()

24 ways 2005 edition 43

http://www.djangoproject.com/
http://simonwillison.net/
http://flickr.com/photos/plasticbag/1358487255/

Ethan Marcotte 24ways.org/200508

8. Centered Tabs with
CSS

Doug Bowman’s Sliding Doors is pretty
much the de facto way to build tabbed
navigation with CSS, and rightfully so – it is,
as they say, rockin’ like Dokken. But since it
relies heavily on floats for the positioning of
its tabs, we’re constrained to either left- or
right-hand navigation. But what if we need
a bit more flexibility? What if we need to
place our navigation in the center?

Styling the li as a floated block does give us a great deal

of control over margin, padding, and other presentational

styles. However, we should learn to love the inline box –

with it, we can create a flexible, centered alternative to

floated navigation lists.

HUMBLE BEGINNINGS

Do an extra shot of ‘nog, because you know what’s coming

next. That’s right, a simple unordered list:

44 24 ways 2005 edition

http://24ways.org/200508
http://stopdesign.com/
http://alistapart.com/articles/slidingdoors/

<div id="navigation">

Home

About

Our Work

Products

<li class="last">Contact

Us

</div>

If we were wedded to using floats to style our list, we

could easily fix the width of our ul, and trick it out with

some margin: 0 auto; love to center it accordingly. But

this wouldn’t net us much flexibility: if we ever changed

the number of navigation items, or if the user increased

her browser’s font size, our design could easily break.

Instead of worrying about floats, let’s take the most basic

approach possible: let’s turn our list items into inline

elements, and simply use text-align to center them

within the ul:

#navigation ul, #navigation ul li {

list-style: none;

margin: 0;

padding: 0;

}

#navigation ul {

text-align: center;

}

Centered Tabs with CSS

24 ways 2005 edition 45

#navigation ul li {

display: inline;

margin-right: .75em;

}

#navigation ul li.last {

margin-right: 0;

}

Our first step is sexy, no? Well, okay, not really – but it

gives us a good starting point. We’ve tamed our list by

removing its default styles, set the list items to display:

inline, and centered the lot. Adding a background color

to the links shows us exactly how the different elements

are positioned.

Now the fun stuff.

INLINE ELEMENTS, PADDING, AND YOU

So how do we give our links some dimensions? Well, as

the CSS specification tells us, the height property isn’t an

option for inline elements such as our anchors. However,

what if we add some padding to them?

#navigation li a {

padding: 5px 1em;

}

46 24 ways 2005 edition

http://24ways.org/examples/centered-tabs-with-css/basic.html
http://www.alistapart.com/articles/taminglists/
http://24ways.org/examples/centered-tabs-with-css/colors.html
http://24ways.org/examples/centered-tabs-with-css/colors.html
http://www.w3.org/TR/CSS21/visudet.html#inline-non-replaced
http://www.w3.org/TR/CSS21/visudet.html#inline-non-replaced

I just love leading questions. Things are looking good, but

something’s amiss: as you can see, the padded anchors

seem to be escaping their containing list.

Thankfully, it’s easy to get things back in line. Our anchors

have 5 pixels of padding on their top and bottom edges,

right? Well, by applying the same vertical padding to the

list, our list will finally “contain” its child elements once

again.

’TIS THE SEASON FOR TABBING

Now, we’re finally able to follow the “Sliding Doors”

model, and tack on some graphics:

#navigation ul li a {

background: url("tab-right.gif") no-repeat 100% 0;

color: #06C;

padding: 5px 0;

text-decoration: none;

}

#navigation ul li a span {

background: url("tab-left.gif") no-repeat;

padding: 5px 1em;

}

#navigation ul li a:hover span {

color: #69C;

text-decoration: underline;

}

Centered Tabs with CSS

24 ways 2005 edition 47

http://24ways.org/examples/centered-tabs-with-css/padding.html
http://24ways.org/examples/centered-tabs-with-css/padding-2.html

Finally, our navigation’s looking appropriately sexy. By

placing an equal amount of padding on the top and

bottom of the ul, our tabs are properly “contained”, and

we can subsequently style the links within them.

But what if we want them to bleed over the bottom-most

border? Easy: we can simply decrease the bottom padding

on the list by one pixel, like so.

A SPECIAL NOTE FOR SPECIAL BROWSERS

The Mac IE5 users in the audience are likely hopping up

and down by now: as they’ve discovered, our centered

navigation behaves rather annoyingly in their browser. As

Philippe Wittenbergh has reported, Mac IE5 is known to

create “phantom links” in a block-level element when

text-align is set to any value but the default value of

left. Thankfully, Philippe has documented a workaround

48 24 ways 2005 edition

http://24ways.org/examples/centered-tabs-with-css/tabs.html
http://24ways.org/examples/centered-tabs-with-css/bleed.html
http://www.l-c-n.com/IE5tests/phantom-links/

that gets that [censored] venerable browser to behave.

Simply place the following code into your CSS, and the

links will be restored to their appropriate width:

/**//*/

#navigation ul li a {

display: inline-block;

white-space: nowrap;

width: 1px;

}

/**/

IE for Windows, however, displays an extra kind of crazy.

The padding I’ve placed on my anchors is offsetting the

spans that contain the left curve of my tabs; thankfully,

these shenanigans are easily straightened out:

/**/

* html #navigation ul li a {

padding: 0;

}

/**/

And with that, we’re finally finished.

ALL SET.

And that’s it. With your centered navigation in hand, you

can finally enjoy those holiday toddies and uncomfortable

conversations with your skeevy Uncle Eustace.

Centered Tabs with CSS

24 ways 2005 edition 49

http://24ways.org/examples/centered-tabs-with-css/final.html

ABOUT THE AUTHOR

Ethan Marcotte is a web designer and developer who cares

about beautiful design, elegant code, and how the two intersect.

He is currently working on a book about responsive web design,

and drinking entirely too much coffee.

He swears profusely on Twitter, and would like to be an

unstoppable robot ninja when he grows up. Beep.

Photo: Brian Warren

50 24 ways 2005 edition

http://ethanmarcotte.com/
http://books.alistapart.com/products/responsive-web-design
http://www.alistapart.com/articles/responsive-web-design/
http://twitter.com/beep
http://unstoppablerobotninja.com/
http://begoodnotbad.com/

Molly Holzschlag 24ways.org/200509

9. Putting the World into
"World Wide Web"

Despite the fact that the Web has been
international in scope from its inception,
the predominant mass of Web sites are
written in English or another left-to-right
language. Sites are typically designed
visually for Western culture, and rely on an
enormous body of practices for usability,
information architecture and interaction
design that are by and large centric to the
Western world.

There are certainly many reasons this is true, but as more

and more Web sites realize the benefits of bringing their

products and services to diverse, global markets, the more

demand there will be on Web designers and developers to

understand how to put the World into World Wide Web.

Putting the World into "World Wide Web"

24 ways 2005 edition 51

http://24ways.org/200509

INTERNATIONALIZATION

According to the W3C, Internationalization is:

“…the design and development of a product,
application or document content that enables
easy localization for target audiences that vary
in culture, region, or language.”

Many Web designers and developers have at least heard,

if not read, about Internationalization. We understand

that the Web is in fact worldwide, but many of us never

have the opportunity to work with Internationalization.

Or, when we do, think of it in purely technical terms, such

as “which character set do I use?”

At first glance, it might seem to many that

Internationalization is the act of making Web sites

available to international audiences. And while that is in

fact true, this isn’t done by broad-stroking techniques and

technologies. Instead, it involves a far more narrow

understanding of geographical, cultural and linguistic

differences in specific areas of the world. This is referred

to as localization and is the act of making a Web site make

sense in the context of the region, culture and language(s)

the people using the site are most familiar with.

Internationalization itself includes the following technical

tasks:

52 24 ways 2005 edition

http://www.w3.org/International/questions/qa-i18n

▪ Ensuring no barrier exists to the localization of sites.

Of critical importance in the planning stages of a site for

Internationalized audiences, the role of the developer is

to ensure that no barrier exists. This means being able to

perform such tasks as enabling Unicode and making sure

legacy character encodings are properly handled.

▪ Preparing markup and CSS with Internationalization

in mind. The earlier in the site development process this

occurs, the better. Issues such as ensuring that you can

support bidirectional text, identifying language, and using

CSS to support non-Latin typographic features.

▪ Enabling code to support local, regional, language or

culturally related references. Examples in this category

would include time/date formats, localization of

calendars, numbering systems, sorting of lists and

managing international forms of addresses.

▪ Empowering the user. Sites must be architected so the

user can easily choose or implement the localized

alternative most appropriate to them.

Localization

According to the W3C, Localization is the:

…adaptation of a product, application or
document content to meet the language,
cultural and other requirements of a specific
target market (a “locale”).

Putting the World into "World Wide Web"

24 ways 2005 edition 53

http://www.w3.org/International/questions/qa-i18n

So here’s where we get down to thinking about the more

sociological and anthropological concerns. Some of the

primary localization issues are:

▪ Numeric formats. Different languages and cultures use

numbering systems unlike ours. So, any time we need to

use numbers, such as in an ordered list, we have to have a

means of representing the accurate numbering system for

the locale in question.

▪ Money, honey! That’s right. I’ve got a pocketful of ugly

U.S. dollars (why is U.S. money so unimaginative?). But I

also have a drawer full of Japanese Yen, Australian

Dollars, and Great British Pounds. Currency, how it’s

calculated and how it’s represented is always a

consideration when dealing with localization.

▪ Using symbols, icons and colors properly. Using

certain symbols or icons on sites where they might offend

or confuse is certainly not in the best interest of a site that

wants to sell or promote a product, service or information

type. Moreover, the colors we use are surprisingly

persuasive – or detrimental. Think about colors that

represent death, for example. In many parts of Asia, white

is the color of death. In most of the Western world, black

represents death. For Catholic Europe, shades of purple

(especially lavender) have represented Christ on the cross

and mourning since at least Victorian times. When Walt

Disney World Europe launched an ad campaign using a lot

of purple and very glitzy imagery, millions of dollars were

54 24 ways 2005 edition

lost as a result of this seeming subtle issue. Instead of

experiencing joy and celebration at the ads, the European

audience, particularly the French, found the marketing to

be overly American, aggressive, depressing and basically

unappealing. Along with this and other cultural blunders,

Disney Europe has become a well-known case study for

businesses wishing to become international. By failing to

understand localization differences, and how powerful

color and imagery act on the human psyche, designers and

developers are put to more of a disadvantage when

attempting to communicate with a given culture.

▪ Choosing appropriate references to objects and ideas.

What seems perfectly natural in one culture in terms of

visual objects and ideas can get confused in another

environment. One of my favorite cases of this has to do

with Gerber baby food. In the U.S., the baby food is

marketed using a cute baby on the package. Most people

in the U.S. culturally do not make an immediate

association that what is being represented on the label is

what is inside the container. However, when Gerber

expanded to Africa, where many people don’t read, and

where visual associations are less abstract, people made

the inference that a baby on the cover of a jar of food

represented what is in fact in the jar. You can imagine how

confused and even angry people became. Using such

approaches as a marketing ploy in the wrong locale can

and will render the marketing a failure.

Putting the World into "World Wide Web"

24 ways 2005 edition 55

As you can see, the act of localization is one that can have

profound impact on the success of a business or

organization as it seeks to become available to more and

more people across the globe.

RETHINKING DESIGN IN THE CONTEXT OF
CULTURE

While well-educated designers and those individuals

working specifically for companies that do a lot of

localization understand these nuances, most of us don’t

get exposed to these ideas. Yet, we begin to see how

necessary it becomes to have an awareness of not just the

technical aspects of Internationalization, but the socio-

cultural ones within localization.

What’s more, the bulk of information we have when it

comes to designing sites typically comes from studies and

work done on sites built in English and promoted to

Western culture at large. We’re making a critical mistake

by not including diverse languages and cultural issues

within our usability and information architecture studies.

Consider the following design from the BBC:

56 24 ways 2005 edition

In this case, we’re dealing with English, which is read left

to right. We are also dealing with U.K. cultural norms.

Notice the following:

▪ Location of of navigation

▪ Use of the color red

▪ Use of diverse symbols

▪ Mix of symbols, icons and photos

▪ Location of Search

Putting the World into "World Wide Web"

24 ways 2005 edition 57

Now look at this design, which is the Arabic version of the

BBC News, read right to left, and dealing with cultural

norms within the Arabic-speaking world.

Notice the following:

▪ Location of of navigation (location switches to the

right)

▪ Use of the color blue (blue is considered the “safest”

global color)

▪ No use of symbols and icons whatsoever

58 24 ways 2005 edition

▪ Limitation of imagery to photos

▪ In most cases, the photos show people, not objects

▪ Location of Search

Admittedly, some choices here are more obvious than

others in terms of why they were made. But one thing that

stands out is that the placement of search is the same for

both versions. Is this the result of a specific localization

decision, or based on what we believe about usability at

large? This is exactly the kind of question that designers

working on localization have to seek answers to, instead

of relying on popular best practices and belief systems

that exist for English-only Web sites.

IT’S A WIDE WORLD WEB AFTER ALL

From this brief article on Internationalization, it becomes

apparent that the art and science of creating sites for

global audiences requires a lot more preparation and

planning than one might think at first glance. Developers

and designers not working to address these issues

specifically due to time or awareness will do well to at

least understand the basic process of making sites more

culturally savvy, and better prepared for any future global

expansion.

One thing is certain: We not only are on a dramatic

learning curve for designing and developing Web sites as

it is, the need to localize sites is going to become more and

Putting the World into "World Wide Web"

24 ways 2005 edition 59

more a part of the day to day work. Understanding

aspects of what makes a site international and local will

not only help you expand your skill set and make you more

marketable, but it will also expand your understanding of

the world and the people within it, how they relate to and

use the Web, and how you can help make their experience

the best one possible.

ABOUT THE AUTHOR

Molly E. Holzschlag works to educate designers and developers

on using Web technologies in practical ways to create highly

sustainable, maintainable, accessible, interactive and beautiful

60 24 ways 2005 edition

http://molly.com/

Web sites for the global community. A popular and colorful

individual, Molly has a particular passion for people, blogs, and

the use of technology for social progress.

Photo: Pete LePage

Putting the World into "World Wide Web"

24 ways 2005 edition 61

Drew McLellan 24ways.org/200510

10. Auto-Selecting
Navigation

In the article Centered Tabs with CSS Ethan
laid out a tabbed navigation system which
can be centred on the page. A frequent
requirement for any tab-based navigation is
to be able to visually represent the currently
selected tab in some way.

If you’re using a server-side language such as PHP, it’s

quite easy to write something like class="selected" into

your markup, but it can be even simpler than that.

Let’s take the navigation div from Ethan’s article as an

example.

<div id="navigation">

Home

About

Our Work

Products

<li class="last">Contact

62 24 ways 2005 edition

http://24ways.org/200510
http://24ways.org/advent/centered-tabs-with-css

Us

</div>

As you can see we have a standard unordered list which is

then styled with CSS to look like tabs. By giving each tab a

class which describes it’s logical section of the site, if we

were to then apply a class to the body tag of each page

showing the same, we could write a clever CSS selector to

highlight the correct tab on any given page.

Sound complicated? Well, it’s not a trivial concept, but

actually applying it is dead simple.

MODIFYING THE MARKUP

First thing is to place a class name on each li in the list:

<div id="navigation">

<li class="home">Home

<li class="about">About

<li class="work">Our

Work

<li class="products">Products

<li class="last contact">Contact Us

</div>

Auto-Selecting Navigation

24 ways 2005 edition 63

Then, on each page of your site, apply the a matching class

to the body tag to indicate which section of the site that

page is in. For example, on your About page:

<body class="about">...</body>

WRITING THE CSS SELECTOR

You can now write a single CSS rule to match the selected

tab on any given page. The logic is that you want to match

the ‘about’ tab on the ‘about’ page and the ‘products’ tab

on the ‘products’ page, so the selector looks like this:

body.home #navigation li.home,

body.about #navigation li.about,

body.work #navigation li.work,

body.products #navigation li.products,

body.contact #navigation li.contact{

... whatever styles you need to show the tab

selected ...

}

So all you need to do when you create a new page in your

site is to apply a class to the body tag to say which section

it’s in. The CSS will do the rest for you – without any

server-side help.

64 24 ways 2005 edition

ABOUT THE AUTHOR

Drew McLellan is lead developer on your favourite small CMS,

Perch. He is Director and Senior Developer at UK-based web

development agency edgeofmyseat.com, and formerly Group

Lead at the Web Standards Project. When not publishing 24

ways, Drew keeps a personal site covering web development

issues and themes, takes photos and tweets a lot.

Auto-Selecting Navigation

24 ways 2005 edition 65

http://grabaperch.com/
http://allinthehead.com/
http://flickr.com/drewm/
http://twitter.com/drewm

Andy Budd 24ways.org/200511

11. The Attribute
Selector for Fun and (no
ad) Profit

If I had a favourite CSS selector, it would
undoubtedly be the attribute selector (Ed:
You really need to get out more). For those
of you not familiar with the attribute
selector, it allows you to style an element
based on the existence, value or partial
value of a specific attribute.

At it’s very basic level you could use this selector to style

an element with particular attribute, such as a title

attribute.

<abbr title="Cascading Style Sheets">CSS</abbr>

In this example I’m going to make all <abbr> elements with

a title attribute grey. I am also going to give them a dotted

bottom border that changes to a solid border on hover.

Finally, for that extra bit of feedback, I will change the

cursor to a question mark on hover as well.

66 24 ways 2005 edition

http://24ways.org/200511
http://www.w3.org/TR/CSS21/selector.html#attribute-selectors

abbr[title] {

color: #666;

border-bottom: 1px dotted #666;

}

abbr[title]:hover {

border-bottom-style: solid;

cursor: help;

}

This provides a nice way to show your site users that

<abbr> elements with title tags are special, as they contain

extra, hidden information.

Most modern browsers such as Firefox, Safari and Opera

support the attribute selector. Unfortunately Internet

Explorer 6 and below does not support the attribute

selector, but that shouldn’t stop you from adding nice

usability embellishments to more modern browsers.

Internet Explorer 7 looks set to implement this CSS2.1

selector, so expect to see it become more common over

the next few years.

Styling an element based on the existence of an attribute

is all well and good, but it is still pretty limited. Where

attribute selectors come into their own is their ability to

target the value of an attribute. You can use this for a

variety of interesting effects such as styling VoteLinks.

The Attribute Selector for Fun and (no ad) Profit

24 ways 2005 edition 67

VOTEWHATS?

If you haven’t heard of VoteLinks, it is a microformat that

allows people to show their approval or disapproval of a

links destination by adding a pre-defined keyword to the

rev attribute.

For instance, if you had a particularly bad meal at a

restaurant, you could signify your dissaproval by adding a

rev attribute with a value of vote-against.

<a href="http://www.mommacherri.co.uk/"

rev="vote-against">Momma Cherri's

You could then highlight these links by adding an image to

the right of these links.

a[rev="vote-against"]{

padding-right: 20px;

background: url(images/vote-against.png) no-repeat

right top;

}

This is a useful technique, but it will only highlight

VoteLinks on sites you control. This is where user

stylesheets come into effect. If you create a user

stylesheet containing this rule, every site you visit that

uses VoteLinks will receive your new style.

68 24 ways 2005 edition

http://microformats.org/wiki/votelinks
http://microformats.org/

COOL HUH?

However my absolute favourite use for attribute

selectors is as a lightweight form of ad blocking. Most

online adverts conform to industry-defined sizes. So if you

wanted to block all banner-ad sized images, you could

simply add this line of code to your user stylesheet.

img[width="468"][height="60"],

img[width="468px"][height="60px"] {

display: none !important;

}

To hide any banner-ad sized element, such as flash movies,

applets or iFrames, simply apply the above rule to every

element using the universal selector.

*[width="468"][height="60"],

*[width="468px"][height="60px"] {

display: none !important;

}

Just bare in mind when using this technique that you may

accidentally hide something that isn’t actually an advert; it

just happens to be the same size.

The Interactive Advertising Bureau lists a number of

common ad sizes. Using these dimensions, you can create

stylesheet that blocks all the popular ad formats. Apply

this as a user stylesheet and you never need to suffer

another advert again.

Here’s wishing you a Merry, ad-free Christmas.

The Attribute Selector for Fun and (no ad) Profit

24 ways 2005 edition 69

http://www.iab.net/standards/adunits.asp
http://24ways.org/examples/the-attribute-selector-for-fun-and-no-ad-profit/adBlock.css

ABOUT THE AUTHOR

Andy Budd is an internationally renowned web designer,

developer and weblog author based in Brighton, England. He

specialises in building attractive, accessible, and standards

complaint web solutions as a Director of Clearleft. Andy enjoys

writing about web techniques for sites such as digital-web.com

and his work has been featured in numerous magazines, books,

and websites around the world. He is the author of CSS

Mastery: Advanced Web Standards Solutions.

70 24 ways 2005 edition

http://www.andybudd.com/
http://clearleft.com/
http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2Fo%2FASIN%2F1590596145%2F&tag=24ways-20&linkCode=ur2&camp=1789&creative=9325
http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2Fo%2FASIN%2F1590596145%2F&tag=24ways-20&linkCode=ur2&camp=1789&creative=9325

Michael Heilemann 24ways.org/200512

12. Introduction to
Scriptaculous Effects

Gather around kids, because this year, much
like in that James Bond movie with Denise
Richards, Christmas is coming early… in the
shape of scrumptuous smooth javascript
driven effects at your every whim.

Now what I’m going to do, is take things down a notch.

Which is to say, you don’t need to know much beyond how

to open a text file and edit it to follow this article.

Personally, I for instance can’t code to save my life.

Well, strictly speaking, that’s not entirely true. If my life

was on the line, and the code needed was really simple

and I wasn’t under any time constraints, then yeah maybe

I could hack my way out of it

Introduction to Scriptaculous Effects

24 ways 2005 edition 71

http://24ways.org/200512

But my point is this: I’m not a programmer in the

traditional sense of the word. In fact, what I do best, is

scrounge code off of other people, take it apart and then

put it back together with duct tape, chewing gum and

dumb blind luck.

No, don’t run! That happens to be a good thing in this

case. You see, we’re going to be implementing some really

snazzy effects (which are considerably more relevant than

most people are willing to admit) on your site, and we’re

going to do it with the aid of Thomas Fuchs’ amazing

Script.aculo.us library. And it will be like stealing candy

from a child.

WHAT ARE WE DOING?

I’m going to show you the very basics of implementing the

Script.aculo.us javascript library’s Combination Effects.

These allow you to fade elements on your site in or out,

slide them up and down and so on.

WHY USE EFFECTS AT ALL?

Before get started though, let me just take a moment to

explain how I came to see smooth transitions as

something more than smoke and mirror-like effects

included for with little more motive than to dazzle and

make parents go ‘uuh, snazzy’.

72 24 ways 2005 edition

http://script.aculo.us/
http://script.aculo.us
http://wiki.script.aculo.us/scriptaculous/show/CombinationEffectsDemo

Earlier this year, I had the good fortune of meeting the

kind, gentle and quite knowledgable Matt Webb at a

conference here in Copenhagen where we were both

speaking (though I will be the first to admit my little talk

on Open Source Design was vastly inferior to Matt’s talk).

Matt held a talk called Fixing Broken Windows (based on

the Broken Windows theory), which really made an

impression on me, and which I have since then referred

back to several times.

You can listen to it yourself, as it’s available from

Archive.org. Though since Matt’s session uses many visual

examples, you’ll have to rely on your imagination for some

of the examples he runs through during it. Also, I think it

looses audio for a few seconds every once in a while.

Anyway, one of the things Matt talked a lot about, was

how our eyes are wired to react to movement. The world

doesn’t flickr. It doesn’t disappear or suddenly change and

force us to look for the change. Things move smoothly in

the real world. They do not pop up.

HOW IT WORKS

Once the necessary files have been included, you trigger

an effect by pointing it at the ID of an element. Simple as

that.

Introduction to Scriptaculous Effects

24 ways 2005 edition 73

http://en.wikipedia.org/wiki/Broken_windows
http://www.archive.org/download/Reboot70HallAspeakerssaturday/9.Matt_Webb.mp4
http://www.archive.org/download/Reboot70HallAspeakerssaturday/9.Matt_Webb.mp4

IMPLEMENTING THE EFFECTS

So now you know why I believe these effects have a place

in your site, and that’s half the battle. Because you see,

actually getting these effects up and running, is

deceptively simple.

First, go and download the latest version of the library (as

of this writing, it’s version 1.5 rc5). Unzip itand open it up.

Now we’re going to bypass the instructions in the readme

file. Script.aculo.us can do a bunch of quite advanced

things, but all we really want from it is its effects. And by

sidestepping the rest of the features, we can shave off

roughly 80KB of unnecessary javascript, which is well

worth it if you ask me.

As with Drew’s article on Easy Ajax with Prototype,

script.aculo.us also uses the Prototype framework by Sam

Stephenson. But contrary to Drew’s article, you don’t

have to download Prototype, as a version comes bundled

with script.aculo.us (though feel free to upgrade to the

latest version if you so please).

So in the unzipped folder, containing the script.aculo.us

files and folder, go into ‘lib’ and grab the ‘prototype.js’ file.

Move it to whereever you want to store the javascript

files. Then fetch the ‘effects.js’ file from the ‘src’ folder and

put it in the same place.

74 24 ways 2005 edition

http://script.aculo.us/downloads
http://24ways.org/advent/easy-ajax-with-prototype
http://prototype.conio.net/

To make things even easier for you to get this up and

running, I have prepared a small javascript snippet which

does some checking to see what you’re trying to do. The

script.aculo.us effects are all either ‘turn this off’ or ‘turn

this on’. What this snippet does, is check to see what state

the target currently has (is it on or off?) and then use the

necessary effect.

You can either skip to the end and download the example

code, or copy and paste this code into a file manually (I’ll

refer to that file as combo.js):

Effect.OpenUp = function(element) {

element = $(element);

new Effect.BlindDown(element, arguments[1] || {});

}

Effect.CloseDown = function(element) {

element = $(element);

new Effect.BlindUp(element, arguments[1] || {});

}

Effect.Combo = function(element) {

element = $(element);

if(element.style.display == 'none') {

new Effect.OpenUp(element, arguments[1] ||

{});

}else {

new Effect.CloseDown(element, arguments[1] ||

{});

}

}

Introduction to Scriptaculous Effects

24 ways 2005 edition 75

Currently, this code uses the BlindUp and BlindDown

code, which I personally like, but there’s nothing wrong

with you changing the effect-type into one of the other

effects available.

Now, include the three files in the header of your code,

like so:

<script src="prototype.js" type="text/

javascript"></script>

<script src="effects.js" type="text/javascript"></script>

<script src="combo.js" type="text/javascript"></script>

Now insert the element you want to use the effect on, like

so:

<div id="content" style="display: none;">Lorem ipsum

dolor sit amet.</div>

The above element will start out invisible, and when

triggered will be revealed. If you want it to start visible,

simply remove the style parameter.

And now for the trigger

Click

Here

And that, is pretty much it. Clicking the link should unfold

the DIV targeted by the effect, in this case ‘content’.

76 24 ways 2005 edition

http://wiki.script.aculo.us/scriptaculous/show/CombinationEffectsDemo
http://wiki.script.aculo.us/scriptaculous/show/CombinationEffectsDemo

EFFECT OPTIONS

Now, it gets a bit long-haired though. The documentation

for script.aculo.us is next to non-existing, and because of

that you’ll have to do some digging yourself to appreciate

the full potentialof these effects.

First of all, what kind of effects are available? Well you

can go to the demo page and check them out, or you can

open the ‘effects.js’ file and have a look around, something

I recommend doing regardlessly, to gain an overview of

what exactly you’re dealing with.

If you dissect it for long enough, you can even distill some

of the options available for the various effects. In the case

of the BlindUp and BlindDown effect, which we’re using in

our example (as triggered from combo.js), one of the

things that would be interesting to play with would be the

duration of the effect. If it’s too long, it will feel slow and

unresponsive. Too fast and it will be imperceptible.

You set the options like so:

<a href="javascript:Effect.Combo('content', {duration:

.2});">Click Here

The change from the previous link being the inclusion of ,

{duration: .2}. In this case, I have lowered the duration

to 0.2 second, to really make it feel snappy.

Introduction to Scriptaculous Effects

24 ways 2005 edition 77

http://wiki.script.aculo.us/scriptaculous/show/CombinationEffectsDemo

You can also go all-out and turn on all the bells and

whistles of the Blind effect like so (slowed down to a

duration of three seconds so you can see what’s going on):

<a href="javascript:Effect.Combo('content', {duration:

3, scaleX: true, scaleContent: true});">Click Here

CONCLUSION

And that’s pretty much it. The rest is a matter of getting to

know the rest of the effects and their options as well as

finding out just when and where to use them. Remember

the ancient Chinese saying: Less is more.

DOWNLOAD EXAMPLE

I have prepared a very basic example, which you can

download and use as a reference point.

78 24 ways 2005 edition

http://24ways.org/examples/introduction-to-scriptaculous-effects/

ABOUT THE AUTHOR

Michael Heilemann is a 30-year-old Computer Game

Developer and Interface Design Enthusiast from Copenhagen,

Denmark.

Introduction to Scriptaculous Effects

24 ways 2005 edition 79

http://binarybonsai.com/

Roger Johansson 24ways.org/200513

13. Transitional vs. Strict
Markup

When promoting web standards,
standardistas often talk about XHTML as
being more strict than HTML. In a sense it
is, since it requires that all elements are
properly closed and that attribute values are
quoted. But there are two flavours of XHTML
1.0 (three if you count the Frameset
DOCTYPE, which is outside the scope of this
article), defined by the Transitional and
Strict DOCTYPEs. And HTML 4.01 also comes
in those flavours.

The names reveal what they are about: Transitional

DOCTYPEs are meant for those making the transition

from older markup to modern ways. Strict DOCTYPEs are

actually the default – the way HTML 4.01 and XHTML 1.0

were constructed to be used.

A Transitional DOCTYPE may be used when you have a

lot of legacy markup that cannot easily be converted to

comply with a Strict DOCTYPE. But Strict is what you

80 24 ways 2005 edition

http://24ways.org/200513

should be aiming for. It encourages, and in some cases

enforces, the separation of structure and presentation,

moving the presentational aspects from markup to CSS.

From the HTML 4 Document Type Definition:

This is HTML 4.01 Strict DTD, which excludes
the presentation attributes and elements that
W3C expects to phase out as support for style
sheets matures. Authors should use the Strict
DTD when possible, but may use the
Transitional DTD when support for
presentation attribute and elements is
required.

An additional benefit of using a Strict DOCTYPE is that

doing so will ensure that browsers use their strictest,

most standards compliant rendering modes.

Tommy Olsson provides a good summary of the benefits

of using Strict over Transitional in Ten questions for

Tommy Olsson at Web Standards Group:

In my opinion, using a Strict DTD, either HTML
4.01 Strict or XHTML 1.0 Strict, is far more
important for the quality of the future web
than whether or not there is an X in front of
the name. The Strict DTD promotes a
separation of structure and presentation,
which makes a site so much easier to maintain.

Transitional vs. Strict Markup

24 ways 2005 edition 81

http://www.w3.org/TR/html4/sgml/dtd.html
http://webstandardsgroup.org/features/tommy-olsson.cfm
http://webstandardsgroup.org/features/tommy-olsson.cfm

For those looking to start using web standards and valid,

semantic markup, it is important to understand the

difference between Transitional and Strict DOCTYPEs.

For complete listings of the differences between

Transitional and Strict DOCTYPEs, see XHTML:

Differences between Strict & Transitional, Comparison of

Strict and Transitional XHTML, and XHTML1.0 Element

Attributes by DTD.

Some of the differences are more likely than others to

cause problems for developers moving from a Transitional

DOCTYPE to a Strict one, and I’d like to mention a few of

those.

ELEMENTS THAT ARE NOT ALLOWED IN STRICT
DOCTYPES

▪ center

▪ font

▪ iframe

▪ strike

▪ u

ATTRIBUTES NOT ALLOWED IN STRICT
DOCTYPES

▪ align (allowed on elements related to tables: col,

colgroup, tbody, td, tfoot, th, thead, and tr)

▪ language

82 24 ways 2005 edition

http://liorean.web-graphics.com/xhtml/comparison.loose-strict.html
http://liorean.web-graphics.com/xhtml/comparison.loose-strict.html
http://www.zvon.org/xxl/xhtmlReference/Output/comparison.html
http://www.zvon.org/xxl/xhtmlReference/Output/comparison.html
http://www.blackwidows.org.uk/resources/tutorials/xhtml/attribute-comparison.html
http://www.blackwidows.org.uk/resources/tutorials/xhtml/attribute-comparison.html

▪ background

▪ bgcolor

▪ border (allowed on table)

▪ height (allowed on img and object)

▪ hspace

▪ name (allowed in HTML 4.01 Strict, not allowed on form

and img in XHTML 1.0 Strict)

▪ noshade

▪ nowrap

▪ target

▪ text, link, vlink, and alink

▪ vspace

▪ width (allowed on img, object, table, col, and

colgroup)

CONTENT MODEL DIFFERENCES

An element type’s content model describes what may be

contained by an instance of the element type. The most

important difference in content models between

Transitional and Strict is that blockquote, body, and form

elements may only contain block level elements. A few

examples:

▪ text and images are not allowed immediately inside the

body element, and need to be contained in a block level

element like p or div

Transitional vs. Strict Markup

24 ways 2005 edition 83

▪ input elements must not be direct descendants of a

form element

▪ text in blockquote elements must be wrapped in a

block level element like p or div

GO STRICT AND MOVE ALL PRESENTATION TO
CSS

Something that can be helpful when doing the transition

from Transitional to Strict DOCTYPEs is to focus on what

each element of the page you are working on is instead of

how you want it to look.

Worry about looks later and get the structure and

semantics right first.

84 24 ways 2005 edition

ABOUT THE AUTHOR

Roger Johansson is a Swedish web professional who has been

working with the web and other interactive media since 1994.

Photo: Paul Hammond

Transitional vs. Strict Markup

24 ways 2005 edition 85

http://www.456bereastreet.com/
http://www.flickr.com/photos/paulhammond/168606878/

Patrick Griffiths 24ways.org/200514

14. Broader Border
Corners

A note

from

the editors: Since this article was written the CSS border-

radius property has become widely supported in

browsers. It should be preferred to this image technique.

A quick and easy recipe for turning those
single-pixel borders that the kids love so
much into into something a little less right-
angled.

Here’s the principle: We have a box with a one-pixel wide

border around it. Inside that box is another box that has a

little rounded-corner background image sitting snugly in

one of its corners. The inner-box is then nudged out a bit

so that it’s actually sitting on top of the outer box. If it’s all

done properly, that little background image can mask the

hard right angle of the default border of the outer-box,

giving the impression that it actually has a rounded

corner.

86 24 ways 2005 edition

http://24ways.org/200514

TAKE AN IMAGE, FINELY CHOPPED

ADD A SPRINKLE OF MARKUP

<div id="content">

<p>Lorem ipsum etc. etc. etc.</p>

</div>

THROW IN A DOLLOP OF CSS

#content {

border: 1px solid #c03;

}

#content p {

background: url(corner.gif) top left no-repeat;

position: relative;

left: -1px;

top: -1px;

padding: 1em;

margin: 0;

}

Broader Border Corners

24 ways 2005 edition 87

BUBBLIN’ HOT

▪ The content div has a one-pixel wide red border around

it.

▪ The paragraph is given a single instance of the

background image, created to look like a one-pixel wide

arc.

▪ The paragraph is shunted outside of the box – back one

pixel and up one pixel – so that it is sitting over the div’s

border. The white area of the image covers up that part of

the border’s corner, and the arc meets up with the top and

left border.

▪ Because, in this example, we’re applying a background

image to a paragraph, its top margin needs to be zeroed so

that it starts at the top of its container.

Et voilà. Bon appétit.

EXTRA TOPPINGS

▪ If you want to apply a curve to each one of the corners

and you run out of meaningful markup to hook the

background images on to, throw some spans or divs in the

mix (there’s nothing wrong with this if that’s the effect you

truly want – they don’t hurt anybody) or use some nifty

DOM Scripting to put the scaffolding in for you.

88 24 ways 2005 edition

http://24ways.org/examples/broader-border-corners/eg1.html
http://24ways.org/examples/broader-border-corners/eg2.html

▪ Note that if you’ve got more than one of these relative

corners, you will need to compensate for the starting

position of each box which is nested in an already nudged

parent.

▪ You’re not limited to one pixel wide, rounded corners –

the same principles apply to thicker borders, or corners

with different shapes.

ABOUT THE AUTHOR

Patrick Griffiths has been doing the professional web

developer thing since 1999, and HTML and CSS has pretty

much always been his specialty. He has worked for the likes of

Broader Border Corners

24 ways 2005 edition 89

http://24ways.org/examples/broader-border-corners/eg3.html
http://24ways.org/examples/broader-border-corners/eg3.html

Vodafone, Wiley, and on various UK Government projects, and

has contributed a number of articles and projects to well

respected web design resources.

90 24 ways 2005 edition

Patrick Lauke 24ways.org/200515

15. Splintered Striper

Back in March 2004, David F. Miller
demonstrated a little bit of DOM scripting
magic in his A List Apart article Zebra
Tables.

His script programmatically adds two alternating CSS

background colours to table rows, making them more

readable and visually pleasing, while saving the document

author the tedious task of manually assigning the styling

to large static data tables.

Although David’s original script performs its duty well, it

is nonetheless very specific and limited in its application.

It only:

▪ works on a single table, identified by its id, with at

least a single tbody section

▪ assigns a background colour

▪ allows two colours for odd and even rows

▪ acts on data cells, rather than rows, and then only if

they have no class or background colour already defined

Splintered Striper

24 ways 2005 edition 91

http://24ways.org/200515
http://www.fivevoltlogic.com/
http://www.alistapart.com
http://www.alistapart.com/articles/zebratables/
http://www.alistapart.com/articles/zebratables/
http://www.alistapart.com/d/stripedtables/script.txt

TAKING IT FURTHER

In a recent project I found myself needing to apply a

striped effect to a medium sized unordered list. Instead of

simply modifying the Zebra Tables code for this particular

case, I decided to completely recode the script to make it

more generic.

Being more general purpose, the function in my splintered

striper experiment is necessarily more complex. Where

the original script only expected a single parameter (the

id of the target table), the new function is called as

follows:

striper('[parent element tag]','[parent element class or

null]','[child element tag]','[comma separated list of

classes]')

This new, fairly self-explanatory function:

▪ targets any type of parent element (and, if specified,

only those with a certain class)

▪ assigns two or more classes (rather than just two

background colours) to the child elements inside the

parent

▪ preserves any existing classes already assigned to the

child elements

92 24 ways 2005 edition

http://24ways.org/examples/splintered-striper/striper.js
http://24ways.org/examples/splintered-striper/striper.js

SEE IT IN ACTION

View the demonstration page for three usage examples.

For simplicity’s sake, we’re making the calls to the striper

function from the body’s onload attribute. In a real

deployment situation, we would look at attaching a

behaviour to the onload programmatically — just

remember that, as we need to pass variables to the striper

function, this would involve creating a wrapper function

which would then be attached…something like:

function stripe() {

striper('tbody','splintered','tr','odd,even');

}

window.onload=stripe;

A FINAL THOUGHT

Just because the function is called striper does not mean

that it’s limited to purely applying a striped look; as it’s

more of a general purpose “alternating class assignment”

script, you can achieve a whole variety of effects with it.

Splintered Striper

24 ways 2005 edition 93

http://24ways.org/examples/splintered-striper/demo.html

ABOUT THE AUTHOR

Patrick H. Lauke works as Web Evangelist in the Developer

Relations team at Opera Software. He has been engaged in the

discourse on standards and accessibility since early 2001 –

regularly speaking at conferences and contributing to a variety

of web development and accessibility related mailing lists and

initiatives such as the Web Standards Project and the

Webkrauts. For more of his ruminations and weird experiments

you can visit Patrick’s personal site.

94 24 ways 2005 edition

http://my.opera.com/ODIN/
http://my.opera.com/ODIN/
http://www.opera.com
http://www.webstandards.org
http://www.webkrauts.de
http://www.splintered.co.uk/

Andrew Clarke 24ways.org/200516

16. "Z's not dead baby, Z's
not dead"

While Mr. Moll and Mr. Budd have pipped
me to the post with their predictions for
2006, I’m sure they won’t mind if I sneak in
another. “The use of positioning together
with z-index will be one of next year’s hot
techniques”

Both has been a little out of favour recently. For many,

positioned layouts made way for the flexibility of floats.

Developers I speak to often associate z-index with

Dreamweaver’s layers feature. But in combination with

alpha transparency support for PNG images in IE7 and full

implementation of position property values, the stacking

of elements with z-index is going to be big. I’m going to

cover the basics of z-index and how it can be used to

create designs which ‘break out of the box’.

"Z's not dead baby, Z's not dead"

24 ways 2005 edition 95

http://24ways.org/200516
http://www.cameronmoll.com/archives/000666.html
http://www.andybudd.com/archives/2005/12/web_design_and_development_trends_for_2006/
http://www.microsoft.com/windows/IE/ie7/default.mspx

NO POSITIONING? NO Z!

Remember geometry? The x axis represents the

horizontal, the y axis represents the vertical. The z axis,

which is where we get the z-index, represents /depth/.

Elements which are stacked using z-index are stacked

from front to back and z-index is only applied to elements

which have their position property set to relative or

absolute. No positioning, no z-index. Z-index values can

be either negative or positive and it is the element with

the highest z-index value appears closest to the viewer,

regardless of its order in the source. Furthermore, if more

than one element are given the same z-index, the element

which comes last in source order comes out top of the

pile.

Let’s take three <div>s.

<div id="one"></div>

<div id="two"></div>

<div id="three"></div>

#one {

position: relative;

z-index: 3;

}

#two {

position: relative;

z-index: 1;

}

96 24 ways 2005 edition

#three {

position: relative;

z-index: 2;

}

As you can see, the <div> with the z-index of 3 will appear

closest, even though it comes before its siblings in the

source order. As these three <div>s have no defined

positioning context in the form of a positioned parent

such as a <div>, their stacking order is defined from the

root element <html>. Simple stuff, but these building

blocks are the basis on which we can create interesting

interfaces (particularly when used in combination with

image replacement and transparent PNGs).

"Z's not dead baby, Z's not dead"

24 ways 2005 edition 97

BRAND BUILDING

Now let’s take three more basic elements, an <h1>,

<blockquote> and <p>, all inside a branding <div> which

acts a new positioning context. By enclosing them inside a

positioned parent, we establish a new stacking order

which is independent of either the root element or other

positioning contexts on the page.

<div id="branding">

<h1>Worrysome.com</h1>

<blockquote><p>Don' worry 'bout a

thing...</p></blockquote>

<p>Take the weight of the world off your

shoulders.</p>

</div>

Applying a little positioning and z-index magic we can

both set the position of these elements inside their

positioning context and their stacking order. As we are

going to use background images made from transparent

PNGs, each element will allow another further down the

stacking order to show through. This makes for some

novel effects, particularly in liquid layouts.

(Ed: We’re using n below to represent whatever values

you require for your specific design.)

#branding {

position: relative;

width: n;

height: n;

98 24 ways 2005 edition

background-image: url(n);

}

#branding>h1 {

position: absolute;

left: n;

top: n;

width: n;

height: n;

background-image: url(h1.png);

text-indent: n;

}

#branding>blockquote {

position: absolute;

left: n;

top: n;

width: n;

height: n;

background-image: url(bq.png);

text-indent: n;

}

#branding>p {

position: absolute;

right: n;

top: n;

width: n;

height: n;

background-image: url(p.png);

text-indent: n;

}

"Z's not dead baby, Z's not dead"

24 ways 2005 edition 99

Next we can begin to see how the three elements build

upon each other.

1. Elements outlined

2. Positioned elements overlayed to show context

3. Our final result

100 24 ways 2005 edition

MULTIPLE STACKING ORDERS

Not only can elements within a positioning context be

given a z-index, but those positioning contexts themselves

can also be stacked.

Two positioning contexts, each with their own stacking

order

Interestingly each stacking order is independent of that of

either the root element or its siblings and we can exploit

this to make complex layouts from just a few semantic

elements. This technique was used heavily on my recent

redesign of Karova.com.

DISSECTING PART OF KAROVA.COM

First the XHTML. The default template markup used for

the site places <div id="nav_main"> and <div

id="content"> as siblings inside their container.

"Z's not dead baby, Z's not dead"

24 ways 2005 edition 101

<div id="container">

<div id="content">

<h2></h2>

<p></p>

</div>

<div id="nav_main"></div>

</div>

By giving the navigation <div> a lower z-index than the

content <div> we can ensure that the positioned content

elements will always appear closest to the viewer, despite

the fact that the navigation comes after the content in the

source.

#content {

position: relative;

z-index: 2;

}

#nav_main {

position: absolute;

z-index: 1;

}

Now applying absolute positioning with a negative top

value to the <h2> and a higher z-index value than the

following <p> ensures that the header sits not only on top

of the navigation but also the styled paragraph which

follows it.

h2 {

position: absolute;

z-index: 200;

102 24 ways 2005 edition

top: -n;

}

h2+p {

position: absolute;

z-index: 100;

margin-top: -n;

padding-top: n;

}

Dissecting part of Karova.com

You can see the full effect in the wild on the Karova.com

site.

Have a great holiday season!

"Z's not dead baby, Z's not dead"

24 ways 2005 edition 103

ABOUT THE AUTHOR

Andrew Clarke runs Stuff and Nonsense, a tiny web design

company where they make fashionably flexible websites.

Andrew’s the author of Transcending CSS and Hardboiled Web

Design and hosts the popular weekly podcast Unfinished

Business where he discusses the business side of web, design

and creative industries with his guests. He tweets as

@malarkey.

104 24 ways 2005 edition

http://stuffandnonsense.co.uk/
http://unfinished.bz/
http://unfinished.bz/
http://twitter.com/malarkey

Kimberly Blessing 24ways.org/200517

17. Avoiding CSS Hacks
for Internet Explorer

Back in October, IEBlog issued a call to
action, asking developers to clean up their
CSS hacks for IE7 testing. Needless to say, a
lot of hubbub ensued… both on IEBlog and
elsewhere. My contribution to all of the
noise was to suggest that developers review
their code and use good CSS hacks. But what
makes a good hack?

Tantek Çelik, the Godfather of CSS hacks, gave us the

answer by explaining how CSS hacks should be designed.

In short, they should (1) be valid, (2) target only old/

frozen/abandoned user-agents/browsers, and (3) be ugly.

Tantek also went on to explain that using a feature of CSS

is not a hack.

Now, I’m not a frequent user of CSS hacks, but Tantek’s

post made sense to me. In particular, I felt it gave

developers direction on how we should be coding to

Avoiding CSS Hacks for Internet Explorer

24 ways 2005 edition 105

http://24ways.org/200517
http://blogs.msdn.com/ie/
http://blogs.msdn.com/ie/archive/2005/10/12/480242.aspx
http://blogs.msdn.com/ie/archive/2005/10/12/480242.aspx
http://technorati.com/search/blogs.msdn.com%2Fie%2Farchive%2F2005%2F10%2F12%2F480242.aspx
http://webstandards.org/buzz/archive/2005_10.html#a000582
http://webstandards.org/buzz/archive/2005_10.html#a000582
http://tantek.com
http://tantek.com/log/2005/11.html#d26t1820

accommodate that sometimes troublesome browser,

Internet Explorer. But what I’ve found, through my work

with other developers, is that there is still much confusion

over the use of CSS hacks and IE. Using examples from the

code I’ve seen recently, allow me to demonstrate how to

clean up some IE-specific CSS hacks.

The two hacks that I’ve found most often in the code I’ve

seen and worked with are the star html bug and the

underscore hack. We know these are both IE-specific by

checking Kevin Smith’s CSS Filters chart. Let’s look at

each of these hacks and see how we can replace them

with the same CSS feature-based solution.

THE STAR HTML BUG

This hack violates Tantek’s second rule as it targets

current (and future) UAs. I’ve seen this both as a stand

alone rule, as well as an override to some other rule in a

style sheet. Here are some code samples:

* html div#header {margin-top:-3px;}

.promo h3 {min-height:21px;}

* html .promo h3 {height:21px;}

THE UNDERSCORE HACK

This hack violates Tantek’s first two rules: it’s invalid

(according to the W3C CSS Validator) and it targets

current UAs. Here’s an example:

106 24 ways 2005 edition

http://centricle.com/
http://centricle.com/ref/css/filters/
http://jigsaw.w3.org/css-validator/

ol {padding:0; _padding-left:5px;}

USING CHILD SELECTORS

We can use the child selector to replace both the star

html bug and underscore hack. Here’s how:

1. Write rules with selectors that would be successfully

applied to all browsers. This may mean starting with no

declarations in your rule!
div#header {}

.promo h3 {}

ol {padding:0;}

2. To these rules, add the IE-specific declarations.
div#header {margin-top:-3px;}

.promo h3 {height:21px;}

ol {padding:0 0 0 5px;}

3. After each rule, add a second rule. The selector of the

second rule must use a child selector. In this new rule,

correct any IE-specific declarations previously made.
div#header {margin-top:-3px;}

body > div#header {margin-top:0;}

.promo h3 {height:21px;}

.promo > h3 {height:auto; min-height:21px;}

ol {padding:0 0 0 5px;}

html > body ol {padding:0;}

Avoiding CSS Hacks for Internet Explorer

24 ways 2005 edition 107

http://www.w3.org/TR/CSS21/selector.html#child-selectors

Voilà – no more hacks! There are a few caveats to this that

I won’t go into… but assuming you’re operating in strict

mode and barring any really complicated stuff you’re

doing in your code, your CSS will still render perfectly

across browsers. And while this may make your CSS

slightly heftier in size, it should future-proof it for IE7 (or

so I hope). Happy holidays!

ABOUT THE AUTHOR

Kimberly Blessing has been developing Web sites since 1994

and has been a professional standards evangelist since 2000.

She has worked for large companies like AOL and PayPal,

leading their transitions to Web standards. She has also

consulted for institutions large and small, helping them migrate

108 24 ways 2005 edition

http://www.kimberlyblessing.com/

to Web standards. She is a member and former Group Lead of

the Web Standards Project and is active in other local, grass-

roots Web standards efforts. (Geez, can we say “Web

standards” any more in this bio?) An instructor in and a

graduate of Bryn Mawr College‘s Computer Science program,

Kimberly is also passionate about increasing the number of

women in technology.

Avoiding CSS Hacks for Internet Explorer

24 ways 2005 edition 109

http://www.webstandards.org/
http://www.brynmawr.edu/
http://cs.brynmawr.edu/

Dustin Diaz 24ways.org/200518

18. Introducing UDASSS!

Okay. What’s that mean?

UNOBTRUSIVE DEGRADABLE AJAX STYLE
SHEET SWITCHER!

Boy are you in for treat today ‘cause we’re gonna have a

whole lotta Ajaxifida Unobtrucitosity CSS swappin’ Fun!

Okay are you really kidding? Nope. I’ve even impressed

myself on this one. Unfortunately, I don’t have much time

to tell you the ins and outs of what I actually did to get this

to work. We’re talking JavaScript, CSS, PHP…Ajax. But

don’t worry about that. I’ve always believed that a good

A.P.I. is an invisible A.P.I… and this I felt I achieved. The

only thing you need to know is how it works and what to

do.

110 24 ways 2005 edition

http://24ways.org/200518

A QUICK INTRODUCTION ANYWAY…

First of all, the idea is very simple. I wanted something just

like what Paul Sowden put together in

Alternative Style: Working With Alternate Style Sheets

from Alistapart Magazine EXCEPT a few minor (not-so-

minor actually) differences which I’ve listed briefly below:

▪ Allow users to switch styles without JavaScript enabled

(degradable)

▪ Preventing the F.O.U.C. before the window ‘load’ when

getting preferred styles

▪ Keep the JavaScript entirely off our markup (no

onclick’s or onload’s)

▪ Make it very very easy to implement (ok, Paul did that

too)

What I did to achieve this was used server-side cookies

instead of JavaScript cookies. Hence, PHP. However this

isn’t a “PHP style switcher” – which is where Ajax comes

in. For the extreme technical folks, no, there is no xml

involved here, or even a callback response. I only say Ajax

because everyone knows what ‘it’ means. With that said,

it’s the Ajax that sets the cookies ‘on the fly’. Got it?

Awesome!

Introducing UDASSS!

24 ways 2005 edition 111

http://www.alistapart.com/articles/alternate/
http://www.alistapart.com
http://www.bluerobot.com/web/css/fouc.asp

WHAT YOU NEED

Luckily, I’ve done the work for you. It’s all packaged up in a

nice zip file (at the end…keep reading for now) – so from

here on out,

just follow these instructions

As I’ve mentioned, one of the things we’ll be working with

is PHP. So, first things first, open up a file called index and

save it with a ‘.php’ extension.

Next, place the following text at the top of your document

(even above your DOCTYPE)

<?php

require_once('utils/style-switcher.php');

// style sheet path[, media, title, bool(set as

alternate)]

$styleSheet = new AlternateStyles();

$styleSheet->add('css/global.css','screen,projection');

// [Global Styles]

$styleSheet->add('css/

preferred.css','screen,projection','Wog Standard'); //

[Preferred Styles]

$styleSheet->add('css/

alternate.css','screen,projection','Tiny Fonts',true);

// [Alternate Styles]

$styleSheet->add('css/

alternate2.css','screen,projection','Big O Fonts',true);

// // [Alternate Styles]

$styleSheet->getPreferredStyles();

?>

112 24 ways 2005 edition

The way this works is REALLY EASY. Pay attention

closely.

Notice in the first line we’ve included our style-

switcher.php file.

Next we instantiate a PHP class called

AlternateStyles() which will allow us to configure our

style sheets.

So for kicks, let’s just call our object $styleSheet

As part of the AlternateStyles object, there lies a public

method called add. So naturally with our $styleSheet

object, we can call it to (da – da-da-da!) Add Style Sheets!

HOW THE ADD()ADD()METHOD WORKS

The add method takes in a possible four arguments, only

one is required. However, you’ll want to add some… since

the whole point is working with alternate style sheets.

$path can simply be a uri, absolute, or relative path to

your style sheet. $media adds a media attribute to your

style sheets. $title gives a name to your style sheets (via

title attribute).$alternate (which shows boolean) simply

tells us that these are the alternate style sheets.

Introducing UDASSS!

24 ways 2005 edition 113

ADD()ADD()TIPS

For all global style sheets (meaning the ones that will

always be seen and will not be swapped out), simply use

the add method as shown next to // [Global Styles].

To add preferred styles, do the same, but add a ‘title’.

To add the alternate styles, do the same as what we’ve

done to add preferred styles, but add the extra boolean

and set it to true.

Note following when adding style sheets

▪ Multiple global style sheets are allowed

▪ You can only have one preferred style sheet (That’s a

browser rule)

▪ Feel free to add as many alternate style sheets as you

like

MOVING ON

Simply add the following snippet to the <head> of your

web document:

<script type="text/javascript" src="js/

prototype.js"></script>

<script type="text/javascript" src="js/

common.js"></script>

<script type="text/javascript" src="js/

alternateStyles.js"></script>

114 24 ways 2005 edition

<?php

$styleSheet->drop();

?>

Nothing much to explain here. Just use your copy & paste

powers.

HOW TO SWITCH STYLES

Whether you knew it or not, this baby already has the

built in ‘ubobtrusive’ functionality that lets you switch

styles by the drop of any link with a class name of ‘altCss‘.

Just drop them where ever you like in your document as

follows:

Bog

Standard

<a class="altCss"

href="index.php?css=Really_Small_Fonts">Small Fonts

<a class="altCss"

href="index.php?css=Large_Fonts">Large Fonts

Take special note where the file is linking to. Yep. Just

linking right back to the page we’re on. The only extra

parameters we pass in is a variable called ‘css’ – and within

that we append the names of our style sheets.

Also take very special note on the names of the style

sheets have an under_score to take place of any spaces we

might have.

Introducing UDASSS!

24 ways 2005 edition 115

Go ahead… play around and change the style sheet on the

example page. Try disabling JavaScript and refreshing

your browser. Still works!

COOL EH?

Well, I put this together in one night so it’s still a work in

progress and very beta. If you’d like to hear more about it

and its future development, be sure stop on by my site

where I’ll definitely be maintaining it.

DOWNLOAD THE BETA ANYWAY

Well this wouldn’t be fun if there was nothing to

download. So we’re hooking you up so you don’t go home

(or logoff) unhappy

Download U.D.A.S.S.S | V0.8

MERRY CHRISTMAS!

Thanks for listening and I hope U.D.A.S.S.S. has been well

worth your time and will bring many years of Ajaxy Style

Switchin’ Fun!

Many Blessings, Merry Christmas and have a great new

year!

116 24 ways 2005 edition

http://24ways.org/examples/introducing-udasss/
http://www.dustindiaz.com
http://www.dustindiaz.com/downloads/udasss.zip

ABOUT THE AUTHOR

Dustin Diaz is a User Interface Engineer at Goooooogle who

enjoys writing JavaScript, CSS, and HTML as well as making

interactive and usable interfaces to create passionate users

(real people (not fake ones)).

Introducing UDASSS!

24 ways 2005 edition 117

http://dustindiaz.com/
http://google.com

Jonathan Snook 24ways.org/200519

19. Tables with Style

It might not seem like it but styling tabular
data can be a lot of fun. From a semantic
point of view, there are plenty of elements
to tie some style into. You have cells, rows,
row groups and, of course, the table element
itself. Adding CSS to a paragraph just isn’t
as exciting.

WHERE DO I START?

First, if you have some tabular data (you know, like a

spreadsheet with rows and columns) that you’d like to

spiffy up, pop it into a table — it’s rightful place!

To add more semantics to your table — and coincidentally

to add more hooks for CSS — break up your table into row

groups. There are three types of row groups: the header

(thead), the body (tbody) and the footer (tfoot). You can

only have one header and one footer but you can have as

many table bodies as is appropriate.

Sample table example

118 24 ways 2005 edition

http://24ways.org/200519
http://24ways.org/examples/tables-with-style/table_default.html

INSPIRATION

Table Striping

To improve scanning information within a table, a

common technique is to style alternating rows. Also

known as zebra tables. Whether you apply it using a class

on every other row or turn to JavaScript to accomplish

the task, a handy-dandy trick is to use a semi-transparent

PNG as your background image. This is especially useful

over patterned backgrounds.

tbody tr.odd td {

background:transparent url(background.png) repeat

top left;

}

* html tbody tr.odd td {

background:#C00;

filter:

progid:DXImageTransform.Microsoft.AlphaImageLoader(

src='background.png', sizingMethod='scale');

}

We turn off the default background and apply our PNG

hack to have this work in Internet Explorer.

Tables with Style

24 ways 2005 edition 119

http://www.alistapart.com/articles/zebratables/
http://24ways.org/advent/splintered-striper

Styling Columns

Did you know you could style a column? That’s right. You

can add special column (col) or column group (colgroup)

elements. With that you can add border or background

styles to the column.

<table>

<col id="ingredients">

<col id="serve12">

<col id="serve24">

...

Check out the example.

Fun with Backgrounds

Pop in a tiled background to give your table some

character! Internet Explorer’s PNG hack unfortunately

only works well when applied to a cell.

To figure out which background will appear over another,

just remember the hierarchy:

(bottom) Table → Column → Row Group → Row → Cell

(top)

THE FUTURE IS BRIGHT

Once browser-makers start implementing CSS3, we’ll

have more power at our disposal. Just with :first-child

and :last-child, you can pull off a scalable version of our

120 24 ways 2005 edition

http://24ways.org/examples/tables-with-style/table_columns.html
http://24ways.org/examples/tables-with-style/table_fixed.html
http://24ways.org/examples/tables-with-style/table_fixed.html
http://24ways.org/examples/tables-with-style/table_child.html

previous table with rounded corners and all —

unfortunately, only Firefox manages to pull this one off

successfully. And the selector the masses are clamouring

for, nth-child, will make zebra tables easy as eggnog.

ABOUT THE AUTHOR

Jonathan Snook writes about tips, tricks, and bookmarks on his

blog at Snook.ca. He has also written for A List Apart and .net

magazine, and has co-authored two books, The Art and Science

of CSS and Accelerated DOM Scripting. He has also authored

and received world-wide acclaim for the self-published book,

Scalable and Modular Architecture for CSS sharing his

experience and best practices on CSS architecture.

Photo: Patrick H. Lauke

Tables with Style

24 ways 2005 edition 121

http://24ways.org/examples/tables-with-style/table_child.html
http://snook.ca/
http://snook.ca/archives/writing/art_science_of_css
http://snook.ca/archives/writing/art_science_of_css
http://snook.ca/archives/javascript/accelerated_dom_scripting/
http://smacss.com
http://splintered.co.uk

Derek Featherstone 24ways.org/200520

20. Naughty or Nice? CSS
Background Images

Web Standards based development involves
many things – using semantically sound
HTML to provide structure to our documents
or web applications, using CSS for
presentation and layout, using JavaScript
responsibly, and of course, ensuring that all
that we do is accessible and interoperable to
as many people and user agents as we can.

This we understand to be good.

And it is good.

Except when we don’t clearly think through the full

implications of using those techniques.

Which often happens when time is short and we need to

get things done.

Here are some naughty examples of CSS background

images with their nicer, more accessible counterparts.

122 24 ways 2005 edition

http://24ways.org/200520

TRANSACTION RELATED MESSAGES

I’m as guilty of this as others (or, perhaps, I’m the only one

that has done this, in which case this can serve as my

holiday season confessional) We use lovely little icons to

show status messages for a transaction to indicate if the

action was successful, or was there a warning or error?

For example:

“Your postal/zip code was not in the correct format.”

Notice that we place a nice little icon there, and use

background colours and borders to convey a specific

message: there was a problem that needs to be fixed.

Notice that all of this visual information is now contained

in the CSS rules for that div:

<div class="error">

<p>Your postal/zip code was not in the correct

format.</p>

</div>

div.error {

background: #ffcccc url(../images/error_small.png)

no-repeat 5px 4px;

color: #900;

border-top: 1px solid #c00;

border-bottom: 1px solid #c00;

padding: 0.25em 0.5em 0.25em 2.5em;

font-weight: bold;

}

Naughty or Nice? CSS Background Images

24 ways 2005 edition 123

Using this approach also makes it very easy to create a

div.success and div.warning CSS rules meaning we have

less to change in our HTML.

Nice, right?

No. Naughty.

VISUAL DESIGN COMMUNICATES

The CSS is being used to convey very specific information.

The choice of icon, the choice of background colour and

borders tell us visually that there is something wrong.

With the icon as a background image – there is no way to

specify any alt text for the icon, and significant meaning is

lost. A screen reader user, for example, misses the fact

that it is an “error.”

The solution? Ask yourself: what is the bare minimum

needed to indicate there was an error? Currently in the

absence of CSS there will be no icon – which (I’m hoping

you agree) is critical to communicating there was an error.

The icon should be considered content and not simply

presentational.

The borders and background colour are certainly much

less critical – they belong in the CSS.

124 24 ways 2005 edition

Lets change the code to place the image directly in the

HTML and using appropriate alt text to better

communicate the meaning of the icon to all users:

<div class="bettererror">

<p>Your postal/zip code was not in the correct

format.</p>

</div>

div.bettererror {

background-color: #ffcccc;

color: #900;

border-top: 1px solid #c00;

border-bottom: 1px solid #c00;

padding: 0.25em 0.5em 0.25em 2.5em;

font-weight: bold;

position: relative;

min-height: 1.25em;

}

div.bettererror img {

display: block;

position: absolute;

left: 0.25em;

top: 0.25em;

padding: 0;

margin: 0;

}

div.bettererror p {

position: absolute;

left: 2.5em;

Naughty or Nice? CSS Background Images

24 ways 2005 edition 125

padding: 0;

margin: 0;

}

Compare these two examples of transactional messages

STATUS OF A RECORD

This example is pretty straightforward. Consider the

following: a real estate listing on a web site. There are

three “states” for a listing: new, normal, and sold. Here’s

how they look:

Example of a New Listing

Example of A Sold Listing

If we (forgive the pun) blindly apply the “use a CSS

background image” technique we clearly run into

problems with the new and sold images – they actually

contain content with no way to specify an alternative

when placed in the CSS.

In this case of the “new” image, we can use the same

strategy as we used in the first example (the transaction

result). The “new” image should be considered content

and is placed in the HTML as part of the <h2>...</h2>

that identifies the listing.

126 24 ways 2005 edition

http://24ways.org/examples/naughty-or-nice-css-background-images/transactionexample.html
http://24ways.org/examples/naughty-or-nice-css-background-images/newexample.html
http://24ways.org/examples/naughty-or-nice-css-background-images/soldexample.html

However when considering the “sold” listing, there are

less changes to be made to keep the same look by leaving

the “SOLD” image as a background image and providing

the equivalent information elsewhere in the listing –

namely, right in the heading.

For those that can’t see the background image, the status

is communicated clearly and right away. A screen reader

user that is navigating by heading or viewing a listing will

know right away that a particular property is sold.

Of note here is that in both cases (new and sold) placing

the status near the beginning of the record helps with a

zoom layout as well.

Better Example of A Sold Listing

SUMMARY

Remember: in the holiday season, its what you give that

counts!! Using CSS background images is easy and saves

time for you but think of the children. And everyone else

for that matter…

CSS background images should only be used for

presentational images, not for those that contain content

(unless that content is already represented and readily

available elsewhere).

Naughty or Nice? CSS Background Images

24 ways 2005 edition 127

http://24ways.org/examples/naughty-or-nice-css-background-images/soldexamplebetter.html

ABOUT THE AUTHOR

Derek Featherstone is a web developer and experienced

accessibility consultant based in Ottawa, Canada where he runs

Further Ahead. He serves as the Lead for the WaSP

Accessibility Task Force. He is insane and thinks that somehow

he’ll manage to find time to train for an IronMan triathlon

amidst work and family life with wife and three children. Insane.

128 24 ways 2005 edition

http://boxofchocolates.ca/
http://furtherahead.com
http://webstandards.org/action/atf/
http://webstandards.org/action/atf/

Simon Collison 24ways.org/200521

21. Swooshy Curly
Quotes Without Images

The problem

Take a quote and render it within blockquote tags,

applying big, funky and stylish curly quotes both at the

beginning and the end without using any images – at all.

The traditional way

Feint background images under the text, or an image in

the markup housed in a little float. Often designers only

use the opening curly quote as it’s just too difficult to float

a closing one.

Swooshy Curly Quotes Without Images

24 ways 2005 edition 129

http://24ways.org/200521

Why is the traditional way bad?

Well, for a start there are no actual curly quotes in the

text (unless you’re doing some nifty image replacement).

Thus with CSS disabled you’ll only have default

blockquote styling to fall back on. Secondly, images don’t

resize, so scaling text will have no affect on your graphic

curlies.

The solution

Use really big text. Then it can be resized by the browser,

resized using CSS, and even be restyled with a new font

style if you fancy it. It’ll also make sense when CSS is

unavailable.

The problem

Creating “Drop Caps” with CSS has been around for a

while (Big Dan Cederholm discusses a neat solution in

that first book of his), but drop caps are normal characters

– the A to Z or 1 to 10 – and these can all be pulled into a

set space and do not serve up a ton of whitespace, unlike

punctuation characters.

Curly quotes aren’t like traditional characters. Like full

stops, commas and hashes they float within the character

space and leave lots of dead white space, making it bloody

difficult to manipulate them with CSS. Styles generally fit

around text, so cutting into that character is tricky indeed.

130 24 ways 2005 edition

Also, all that extra white space is going to push into the

quote text and make it look pretty uneven. This grab

highlights the actual character space:

See how this is emphasized when we add a normal

alphabetical character within the span. This is what we’re

dealing with here:

Then, there’s size. Call in a curly quote at less than 300%

font-size and it ain’t gonna look very big. The white space

it creates will be big enough, but the curlies will be way

too small. We need more like 700% (as in this example) to

make an impression, but that sure makes for a big

character space.

Swooshy Curly Quotes Without Images

24 ways 2005 edition 131

Prepare the curlies

Firstly, remove the opening “ from the quote. Replace it

with the opening curly quote character entity “. Then

replace the closing “ with the entity reference for that,

which is ”. Now at least the curlies will look nice and

swooshy.

Add the hooks

Two reasons why we aren’t using :first-letter pseudo

class to manipulate the curlies. Firstly, only CSS2-friendly

browsers would get what we’re doing, and secondly we

need to affect the last “letter” of our text also – the closing

curly quote.

So, add a span around the opening curly, and a second

span around the closing curly, giving complete control of

the characters:

<blockquote>“Speech marks.

Curly quotes. That annoying thing cool people do with

their fingers to emphasize a buzzword, shortly before

you hit them.”</blockquote>

So far nothing will look any different, aside form the

curlies looking a bit nicer. I know we’ve just added extra

markup, but the benefits as far as accessibility are

concerned are good enough for me, and of course there

are no images to download.

132 24 ways 2005 edition

The CSS

OK, easy stuff first. Our first rule .bqstart floats the span

left, changes the color, and whacks the font-size up to an

exuberant 700%. Our second rule .bqend does the same

tricks aside from floating the curly to the right.

.bqstart {

float: left;

font-size: 700%;

color: #FF0000;

}

.bqend {

float: right;

font-size: 700%;

color: #FF0000;

}

That gives us this, which is rubbish. I’ve highlighted the

actual span area with outlines:

Swooshy Curly Quotes Without Images

24 ways 2005 edition 133

Note that the curlies don’t even fit inside the span! At this

stage on IE 6 PC you won’t even see the quotes, as it only

places focus on what it thinks is in the div. Also, the quote

text is getting all spangled.

Fiddle with margin and padding

Think of that span outline box as a window, and that you

need to position the curlies within that window in order to

see them. By adding some small adjustments to the

margin and padding it’s possible to position the curlies

exactly where you want them, and remove the excess

white space by defining a height:

.bqstart {

float: left;

height: 45px;

margin-top: -20px;

padding-top: 45px;

margin-bottom: -50px;

font-size: 700%;

color: #FF0000;

}

.bqend {

float: right;

height: 25px;

margin-top: 0px;

padding-top: 45px;

font-size: 700%;

color: #FF0000;

}

134 24 ways 2005 edition

I wanted the blocks of my curlies to align with the quote

text, whereas you may want them to dig in or stick out

more. Be aware however that my positioning works for IE

PC and Mac, Firefox and Safari. Too much tweaking seems

to break the magic in various browsers at various times.

Now things are fitting beautifully:

I must admit that the heights, margins and spacing don’t

make a lot of sense if you analyze them. This was a real

trial and error job. Get it working on Safari, and IE would

fail. Sort IE, and Firefox would go weird.

Finished

The final thing looks ace, can be resized, looks cool

without styles, and can be edited with CSS at any time.

Here’s a real example (note that I’m specifying Lucida

Grande and then Verdana for my curlies):

“Speech marks. Curly quotes. That annoying thing cool

people do with their fingers to emphasize a buzzword,

shortly before you hit them.”

Browsers happy

As I said, too much tweaking of margins and padding can

break the effect in some browsers. Even now, Firefox

insists on dropping the closing curly by approximately 6 or

7 pixels, and if I adjust the padding for that, it’ll crush it

Swooshy Curly Quotes Without Images

24 ways 2005 edition 135

into the text on Safari or IE. Weird. Still, as I close now it

seems solid through resizing tests on Safari, Firefox,

Camino, Opera and IE PC and Mac. Lovely.

It’s probably not perfect, but together we can beat the evil

typographic limitations of the web and walk together

towards a brighter, more aligned world. Merry Christmas.

ABOUT THE AUTHOR

Simon Collison is a designer, author and speaker with a decade

of experience at the sharp end. He co-founded Erskine Design

back in 2006, but left in early 2010 to pursue new and exciting

challenges, including writing an ambitious new book, and

136 24 ways 2005 edition

http://colly.com

organising the New Adventures in Web Design event. Simon

has lived in London and Reykjavik, but now lives back in his

hometown of Nottingham, where he is owned by a cat.

Photo: Lachlan Hardy

Swooshy Curly Quotes Without Images

24 ways 2005 edition 137

http://newadventuresconf.com
http://www.flickr.com/photos/lachlanhardy/5198367160/

Jon Hicks 24ways.org/200522

22. Debugging CSS with
the DOM Inspector

AN
INSPECTOR CALLS

The larger your site and your CSS becomes,
the more likely that you will run into
bizarre, inexplicable problems. Why does
that heading have all that extra padding?
Why is my text the wrong colour? Why does
my navigation have a large moose dressed as
Noel Coward on top of all the links?

Perhaps you work in a collaborative environment, where

developers and other designers are adding code? In which

case, the likelihood of CSS strangeness is higher.

You need to debug. You need Firefox’s wise-guy know-it-

all, the DOM Inspector.

The DOM Inspector knows where everything is in your

layout, and more importantly, what causes it to look the

way it does. So without further ado, load up any css based

site in your copy of Firefox (or Flock for that matter), and

launch the DOM Inspector from the Tools menu.

138 24 ways 2005 edition

http://24ways.org/200522
http://flock.com

The inspector uses two main panels – the left to show the

DOM tree of the page, and the right to show you detail:

The Inspector will look at whatever site is in the front-

most window or tab, but you can also use it without

another window. Type in a URL at the top (A), press

‘Inspect’ (B) and a third panel appears at the bottom, with

the browser view. I find this layout handier than looking at

a window behind the DOM Inspector.

Debugging CSS with the DOM Inspector

24 ways 2005 edition 139

STEP 1 – FIND YOUR NODE!

Each element on your page – be it a HTML tag or a piece

of text, is called a ‘node’ of the DOM tree. These nodes are

all listed in the left hand panel, with any ID or CLASS

attribute values next to them. When you first look at a

page, you won’t see all those yet. Nested HTML elements

(such as a link inside a paragraph) have a reveal triangle

next to their name, clicking this takes you one level

further down.

This can be fine for finding the node you want to look at,

but there are easier ways. Say you have a complex

rounded box technique that involves 6 nested DIVs? You’d

soon get tired of clicking all those triangles to find the

element you want to inspect. Click the top left icon © –

“Find a node to inspect by clicking on it” and then select

the area you want to inspect. Boom! All that drilling down

the DOM tree has been done for you! Huzzah!

If you’re looking for an element that you know has an ID

(such as <ul id="navigation">), or a specific HTML tag

or attribute, click the binoculars icon (D) for “Finds a node

to inspect by ID, tag or attribute” (You can also use Ctrl-F

or Apple-F to do this if the DOM Inspector is the

frontmost window) :

140 24 ways 2005 edition

Type in the name and Bam! You’re there! Pressing F3 will

take you to any other instances. Notice also, that when

you click on a node in the inspector, it highlights where it

is in the browser view with a flashing red border!

Now that we’ve found the troublesome node on the page,

we can find out what’s up with it…

STEP 2 – DEBUG THAT NODE!

Once the node is selected, we move over to the right hand

panel. Choose ‘CSS Style Rules’ from the document menu

(E), and all the CSS rules that apply to that node are

revealed, in the order that they load:

Debugging CSS with the DOM Inspector

24 ways 2005 edition 141

You’ll notice that right at the top, there is a CSS file you

might not recognise, with a file path beginning with

“resource://”. This is the browsers default CSS, that

creates the basic rendering. You can mostly ignore this,

especially if use the star selector method of resetting

default browser styles.

Your style sheets come next. See how helpful it is? It even

tells you the line number where to find the related CSS

rules! If you use CSS shorthand, you’ll notice that the

values are split up (e.g margin-left, margin-right etc.).

Now that you can see all the style rules affecting that

node, the rest is up to you! Happy debugging!

142 24 ways 2005 edition

http://leftjustified.net/journal/2004/10/19/global-ws-reset/

ABOUT THE AUTHOR

Jon Hicks is one half of the creative partnership Hicksdesign,

designing for a variety of mediums, but with a particular

fondness for icon and logo design. In fact he’s written a book,

about it called The Icon Handbook, released in January 2012.

His recent clients include Skype, Mailchimp, Shopify and Opera

Software, but is best known for his uncanny impression of

Lucius Malfoy singing “I only want to be with you”.

He blogs about design and personal interests (mainly Dr Who

and Cycling) at hicksdesign.co.uk/journal

Debugging CSS with the DOM Inspector

24 ways 2005 edition 143

http://www.hicksdesign.co.uk
http://iconhandbook.co.uk
http://www.hicksdesign.co.uk/journal/

Drew McLellan 24ways.org/200523

23. Edit-in-Place with
Ajax

Back on day one we looked at using the
Prototype library to take all the hard work
out of making a simple Ajax call. While that
was fun and all, it didn’t go that far towards
implementing something really practical.
We dipped our toes in, but haven’t learned
to swim yet.

So here is swimming lesson number one. Anyone who’s

used Flickr to publish their photos will be familiar with the

edit-in-place system used for quickly amending titles and

descriptions on photographs. Hovering over an item turns

its background yellow to indicate it is editable. A simple

click loads the text into an edit box, right there on the

page.

144 24 ways 2005 edition

http://24ways.org/200523
http://24ways.org/advent/easy-ajax-with-prototype
http://prototype.conio.net/
http://www.flickr.com/

Prototype includes all sorts of useful methods to help

reproduce something like this for our own projects. As

well as the simple Ajax GETs we learned how to do last

time, we can also do POSTs (which we’ll need here) and a

whole bunch of manipulations to the user interface – all

through simple library calls. Here’s what we’re building, so

let’s do it.

GETTING STARTED

There are two major components to this process; the user

interface manipulation and the Ajax call itself. Our set-up

is much the same as last time (you may wish to read the

first article if you’ve not already done so). We have a basic

HTML page which links in the prototype.js file and our

own editinplace.js. Here’s what Santa dropped down

my chimney:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

xml:lang="en" lang="en">

<head>

Edit-in-Place with Ajax

24 ways 2005 edition 145

http://24ways.org/examples/edit-in-place-with-ajax/
http://24ways.org/advent/easy-ajax-with-prototype

<meta http-equiv="Content-Type" content="text/html;

charset=utf-8"/>

<title>Edit-in-Place with Ajax</title>

<link href="editinplace.css" rel="Stylesheet"

type="text/css" />

<script src="prototype.js" type="text/

javascript"></script>

<script src="editinplace.js" type="text/

javascript"></script>

</head>

<body>

<h1>Edit-in-place</h1>

<p id="desc">Dashing through the snow on a one

horse open sleigh.</p>

</body>

</html>

So that’s our page. The editable item is going to be the <p>

called desc. The process goes something like this:

1. Highlight the area onMouseOver

2. Clear the highlight onMouseOut

3. If the user clicks, hide the area and replace with a

<textarea> and buttons

4. Remove all of the above if the user cancels the

operation

5. When the Save button is clicked, make an Ajax POST

and show that something’s happening

6. When the Ajax call comes back, update the page with

the new content

146 24 ways 2005 edition

EVENTS AND HIGHLIGHTING

The first step is to offer feedback to the user that the item

is editable. This is done by shading the background colour

when the user mouses over. Of course, the CSS :hover

pseudo class is a straightforward way to do this, but for

three reasons, I’m using JavaScript to switch class names.

1. :hover isn’t supported on many elements in Internet

Explorer for Windows

2. I want to keep control over when the highlight

switches off after an update, regardless of mouse position

3. If JavaScript isn’t available we don’t want to end up

with the CSS suggesting it might be

With this in mind, here’s how editinplace.js starts:

Event.observe(window, 'load', init, false);

function init(){

makeEditable('desc');

}

function makeEditable(id){

Event.observe(id, 'click', function(){edit($(id))},

false);

Event.observe(id, 'mouseover',

function(){showAsEditable($(id))}, false);

Event.observe(id, 'mouseout',

function(){showAsEditable($(id), true)}, false);

}

Edit-in-Place with Ajax

24 ways 2005 edition 147

function showAsEditable(obj, clear){

if (!clear){

Element.addClassName(obj, 'editable');

}else{

Element.removeClassName(obj, 'editable');

}

}

The first line attaches an onLoad event to the window, so

that the function init() gets called once the page has

loaded. In turn, init() sets up all the items on the page

that we want to make editable. In this example I’ve just

got one, but you can add as many as you like.

The function madeEditable() attaches the mouseover,

mouseout and click events to the item we’re making

editable. All showAsEditable does is add and remove the

class name editable from the object. This uses the

particularly cunning methods Element.addClassName()

and Element.removeClassName() which enable you to

cleanly add and remove effects without affecting any

styling the object may otherwise have.

Oh, remember to add a rule for .editable to your style

sheet:

.editable{

color: #000;

background-color: #ffffd3;

}

148 24 ways 2005 edition

THE SWITCH

As you can see above, when the user clicks on an editable

item, a call is made to the function edit(). This is where

we switch out the static item for a nice editable textarea.

Here’s how that function looks.

function edit(obj){

Element.hide(obj);

var textarea ='<div id="' + obj.id + '_editor">

<textarea id="' + obj.id + '_edit" name="' +

obj.id + '" rows="4" cols="60">'

+ obj.innerHTML + '</textarea>';

var button = '<input id="' + obj.id + '_save"

type="button" value="SAVE" /> OR

<input id="' + obj.id + '_cancel"

type="button" value="CANCEL" /></div>';

new Insertion.After(obj, textarea+button);

Event.observe(obj.id+'_save', 'click',

function(){saveChanges(obj)}, false);

Event.observe(obj.id+'_cancel', 'click',

function(){cleanUp(obj)}, false);

}

The first thing to do is to hide the object. Prototype comes

to the rescue with Element.hide() (and of course,

Element.show() too). Following that, we build up the

Edit-in-Place with Ajax

24 ways 2005 edition 149

textarea and buttons as a string, and then use

Insertion.After() to place our new editor underneath

the (now hidden) editable object.

The last thing to do before we leave the user to edit is it

attach listeners to the Save and Cancel buttons to call

either the saveChanges() function, or to cleanUp() after a

cancel.

In the event of a cancel, we can clean up behind ourselves

like so:

function cleanUp(obj, keepEditable){

Element.remove(obj.id+'_editor');

Element.show(obj);

if (!keepEditable) showAsEditable(obj, true);

}

SAVING THE CHANGES

This is where all the Ajax fun occurs. Whilst the previous

article introduced Ajax.Updater() for simple Ajax calls, in

this case we need a little bit more control over what

happens once the response is received. For this purpose,

Ajax.Request() is perfect. We can use the onSuccess and

onFailure parameters to register functions to handle the

response.

function saveChanges(obj){

var new_content = escape($F(obj.id+'_edit'));

150 24 ways 2005 edition

obj.innerHTML = "Saving...";

cleanUp(obj, true);

var success = function(t){editComplete(t, obj);}

var failure = function(t){editFailed(t, obj);}

var url = 'edit.php';

var pars = 'id=' + obj.id + '&content=' +

new_content;

var myAjax = new Ajax.Request(url, {method:'post',

postBody:pars, onSuccess:success,

onFailure:failure});

}

function editComplete(t, obj){

obj.innerHTML = t.responseText;

showAsEditable(obj, true);

}

function editFailed(t, obj){

obj.innerHTML = 'Sorry, the update failed.';

cleanUp(obj);

}

As you can see, we first grab in the contents of the

textarea into the variable new_content. We then remove

the editor, set the content of the original object to

“Saving…” to show that an update is occurring, and make

the Ajax POST.

If the Ajax fails, editFailed() sets the contents of the

object to “Sorry, the update failed.” Admittedly, that’s not

a very helpful way to handle the error but I have to limit

Edit-in-Place with Ajax

24 ways 2005 edition 151

the scope of this article somewhere. It might be a good

idea to stow away the original contents of the object

(obj.preUpdate = obj.innerHTML) for later retrieval

before setting the content to “Saving…”. No one likes a

failure – especially a messy one.

If the Ajax call is successful, the server-side script returns

the edited content, which we then place back inside the

object from editComplete, and tidy up.

MEANWHILE, BACK AT THE SERVER

The missing piece of the puzzle is the server-side script

for committing the changes to your database. Obviously,

any solution I provide here is not going to fit your

particular application. For the purposes of getting a

functional demo going, here’s what I have in PHP.

<?php

$id = $_POST['id'];

$content = $_POST['content'];

echo htmlspecialchars($content);

?>

Not exactly rocket science is it? I’m just catching the

content item from the POST and echoing it back. For your

application to be useful, however, you’ll need to know

exactly which record you should be updating. I’m passing

152 24 ways 2005 edition

in the ID of my <div>, which is not a fat lot of use. You can

modify saveChanges() to post back whatever information

your app needs to know in order to process the update.

You should also check the user’s credentials to make sure

they have permission to edit whatever it is they’re editing.

Basically the same rules apply as with any script in your

application.

LIMITATIONS

There are a few bits and bobs that in an ideal world I

would tidy up. The first is the error handling, as I’ve

already mentioned. The second is that from an idealistic

standpoint, I’d rather not be using innerHTML. However,

the reality is that it’s presently the most efficient way of

making large changes to the document. If you’re serving

as XML, remember that you’ll need to replace these with

proper DOM nodes.

It’s also important to note that it’s quite difficult to make

something like this universally accessible. Whenever you

start updating large chunks of a document based on user

interaction, a lot of non-traditional devices don’t cope

well. The benefit of this technique, though, is that if

JavaScript is unavailable none of the functionality gets

implemented at all – it fails silently. It is for this reason

that this shouldn’t be used as a complete replacement

Edit-in-Place with Ajax

24 ways 2005 edition 153

for a traditional, universally accessible edit form. It’s a

great time-saver for those with the ability to use it, but it’s

no replacement.

SEE IT IN ACTION

I’ve put together an example page using the inert PHP

script above. That is to say, your edits aren’t committed to

a database, so the example is reset when the page is

reloaded.

154 24 ways 2005 edition

http://24ways.org/examples/edit-in-place-with-ajax/

ABOUT THE AUTHOR

Drew McLellan is lead developer on your favourite small CMS,

Perch. He is Director and Senior Developer at UK-based web

development agency edgeofmyseat.com, and formerly Group

Lead at the Web Standards Project. When not publishing 24

ways, Drew keeps a personal site covering web development

issues and themes, takes photos and tweets a lot.

Edit-in-Place with Ajax

24 ways 2005 edition 155

http://grabaperch.com/
http://allinthehead.com/
http://flickr.com/drewm/
http://twitter.com/drewm

Shaun Inman 24ways.org/200524

24. Have Your DOM and
Script It Too

When working with the XMLHttpRequest object
it appears you can only go one of three ways:

1. You can stay true to the colorful moniker du jour and

stick strictly to the responseXML property

2. You can play with proprietary – yet widely supported

– fire and inject the value of responseText property into

the innerHTML of an element of your choosing

3. Or you can be eval() and parse JSON or arbitrary

JavaScript delivered via responseText

But did you know that there’s a fourth option giving you

the best of the latter two worlds? Mint uses this

unmentioned approach to grab fresh HTML and run

arbitrary JavaScript simultaneously. Without relying on

eval(). “But wait-”, you might say, “when would I need to

do this?” Besides the example below this technique is

handy for things like tab groups that need initialization

onload but miss the main onload event handler by a mile

thanks to asynchronous scripting.

156 24 ways 2005 edition

http://24ways.org/200524
http://24ways.org/advent/dont-be-eval/
http://www.crockford.com/JSON/
http://www.haveamint.com/

CONSIDER THE PROBLEM

Originally Mint used option 2 to refresh or load new tabs

into individual Pepper panes without requiring a full

roundtrip to the server. This was all well and good until I

introduced the new Client Mode which when enabled

allows anyone to view a Mint installation without being

logged in. If voyeurs are afoot as Client Mode is disabled,

the next time they refresh a pane the entire login page is

inserted into the current document. That’s not very

helpful so I needed a way to redirect the current

document to the login page.

ENTER THE SOLUTION

Wouldn’t it be cool if browsers interpreted the contents

of script tags crammed into innerHTML? Sure, but

unfortunately, that just wasn’t meant to be. However like

the body element, image elements have an onload event

handler. When the image has fully loaded the handler runs

the code applied to it. See where I’m going with this?

Have Your DOM and Script It Too

24 ways 2005 edition 157

http://24ways.org/examples/have-your-dom-and-script-it-too/example-1/

By tacking a tiny image (think single pixel, transparent

spacer gif – shudder) onto the end of the HTML returned

by our Ajax call, we can smuggle our arbitrary JavaScript

into the existing document. The image is added to the

DOM, and our stowaway can go to town.

<p>This is the results of our Ajax call.</p>

<img src="../images/loaded.gif" alt=""

onload="alert('Now that I have your attention...');" />

PLEASE BE NEAT

So we’ve just jammed some meaningless cruft into our

DOM. If our script does anything with images this

addition could have some unexpected side effects.

(Remember The Fly?) So in order to save that poor,

unsuspecting element whose innerHTML we just swapped

out from sharing Jeff Goldblum’s terrible fate we should

tidy up after ourselves. And by using the removeChild

method we do just that.

<p>This is the results of our Ajax call.</p>

<img src="../images/loaded.gif" alt=""

onload="alert('Now that I have your

attention...');this.parentNode.removeChild(this);" />

158 24 ways 2005 edition

http://24ways.org/examples/have-your-dom-and-script-it-too/example-2/
http://www.imdb.com/title/tt0091064/?fr=c2l0ZT1kZnx0dD0xfGZiPXV8cG49MHxrdz0xfHE9dGhlIGZseXxmdD0xfG14PTIwfGxtPTUwMHxjbz0xfGh0bWw9MXxubT0x;fc=1;ft=103;fm=1
http://24ways.org/examples/have-your-dom-and-script-it-too/example-3/

ABOUT THE AUTHOR

Shaun Inman designed and developed Mint, the curiously

successful web site analytic tool. He passes the time (literally)

tinkering on ShaunInman.com while nervously eyeing the dust

gathering on Designologue.

Have Your DOM and Script It Too

24 ways 2005 edition 159

http://www.haveamint.com/
http://www.shauninman.com/post/about/the_heap/
http://www.shauninman.com/
http://www.designologue.com/

	Credits
	2005
	Easy Ajax with Prototype
	Introducing prototype.js
	Cutting to the chase
	Knocking up a basic example
	Meanwhile, back at the server
	Gluing it all together
	That’s it
	About the author

	An Explanation of Ems
	About the author

	Improving Form Accessibility with DOM Scripting
	About the author

	CSS Layout Starting Points
	About the author

	DOM Scripting Your Way to Better Blockquotes
	About the author

	Practical Microformats with hCard
	Introducing hCard
	Implementing hCard
	Where next?
	What’s the take-away?
	About the author

	Don't be eval()
	Common mistakes
	Security issues
	What’s it good for?
	About the author

	Centered Tabs with CSS
	Humble Beginnings
	Inline Elements, Padding, and You
	’Tis the Season for Tabbing
	A Special Note for Special Browsers
	All set.
	About the author

	Putting the World into "World Wide Web"
	Internationalization
	Localization

	Rethinking Design in the Context of Culture
	It’s a Wide World Web After All
	About the author

	Auto-Selecting Navigation
	Modifying the markup
	Writing the CSS selector
	About the author

	The Attribute Selector for Fun and (no ad) Profit
	VoteWhats?
	Cool huh?
	About the author

	Introduction to Scriptaculous Effects
	What Are We Doing?
	Why Use Effects at All?
	How it Works
	Implementing the Effects
	Effect Options
	Conclusion
	Download Example
	About the author

	Transitional vs. Strict Markup
	Elements that are not allowed in Strict DOCTYPEs
	Attributes not allowed in Strict DOCTYPEs
	Content model differences
	Go Strict and move all presentation to CSS
	About the author

	Broader Border Corners
	Take An Image, Finely Chopped
	Add A Sprinkle of Markup
	Throw In A Dollop of CSS
	Bubblin’ Hot
	Extra Toppings
	About the author

	Splintered Striper
	Taking it further
	See it in action
	A final thought
	About the author

	"Z's not dead baby, Z's not dead"
	No positioning? No Z!
	Brand building
	Multiple stacking orders
	Dissecting part of Karova.com
	About the author

	Avoiding CSS Hacks for Internet Explorer
	The star html bug
	The underscore hack
	Using child selectors
	About the author

	Introducing UDASSS!
	Unobtrusive Degradable Ajax Style Sheet Switcher!
	A Quick Introduction Anyway…
	What you need
	How the add() method works
	add() Tips
	Moving on
	How to Switch Styles
	Cool eh?
	Download the beta anyway
	Merry Christmas!
	About the author

	Tables with Style
	Where do I start?
	Inspiration
	Table Striping
	Styling Columns
	Fun with Backgrounds

	The Future is Bright
	About the author

	Naughty or Nice? CSS Background Images
	Transaction related messages
	Visual design communicates
	Status of a Record
	Summary
	About the author

	Swooshy Curly Quotes Without Images
	The problem
	The traditional way
	Why is the traditional way bad?
	The solution
	The problem
	Prepare the curlies
	Add the hooks
	The CSS
	Fiddle with margin and padding
	Finished
	Browsers happy
	About the author

	Debugging CSS with the DOM Inspector
	An Inspector Calls
	Step 1 – find your node!
	Step 2 – Debug that node!
	About the author

	Edit-in-Place with Ajax
	Getting Started
	Events and Highlighting
	The Switch
	Saving the Changes
	Meanwhile, back at the server
	Limitations
	See it in action
	About the author

	Have Your DOM and Script It Too
	Consider the problem
	Enter the solution
	Please be neat
	About the author

