

Credits

24 ways is the advent calendar for web
geeks. For twenty-four days each December
we publish a daily dose of web design and
development goodness to bring you all a
little Christmas cheer.

▪ 24 ways is brought to you by Perch CMS

▪ Produced by Drew McLellan, Brian Suda, Anna

Debenham and Owen Gregory.

▪ Designed by Paul Robert Lloyd.

▪ eBook published by edgeofmyseat.com and produced

by Rachel Andrew.

▪ Possible only with the help and dedication of our

authors.

2 24 ways 2006 edition

http://grabaperch.com/?ref=24w01
http://allinthehead.com/
http://suda.co.uk/
http://maban.co.uk/
http://maban.co.uk/
http://fullcreammilk.co.uk/
http://paulrobertlloyd.com/
http://edgeofmyseat.com
http://rachelandrew.co.uk/
http://24ways.org/authors/
http://24ways.org/authors/

2006

In March, the first tweets were tweeted; in
August, jQuery 1.0 appeared. In its second
year, 24 ways wrote responsible JavaScript
and hinted at a mobile web, although mobile
phones didn’t yet have proper browsers.
Using CSS3 in client work was still a
pipedream. And in October, IE7 was
officially released by Microsoft — no words.

Tasty Text Trimmer ... 5

Faster Development with CSS Constants13

Flickr Photos On Demand with getFlickr19

Rounded Corner Boxes the CSS3 Way25

Accessible Dynamic Links..29

Hide And Seek in The Head...37

Making XML Beautiful Again: Introducing Client-Side

XSL...42

Random Lines Made With Mesh ...53

2006

24 ways 2006 edition 3

Marking Up a Tag Cloud..59

Writing Responsible JavaScript ..66

Showing Good Form...75

Compose to a Vertical Rhythm ..83

Revealing Relationships Can Be Good Form91

Styling hCards with CSS ...98

A Message To You, Rudy - CSS Production Notes117

Fast and Simple Usability Testing ..126

Knockout Type - Thin Is Always In...135

Boost Your Hyperlink Power ...140

The Mobile Web, Simplified ...147

Intricate Fluid Layouts in Three Easy Steps.......................153

A Scripting Carol...163

Photographic Palettes ..171

Cheating Color ..177

Gravity-Defying Page Corners..182

4 24 ways 2006 edition

Drew McLellan 24ways.org/200601

1. Tasty Text Trimmer

In most cases, when designing a user
interface it’s best to make a decision about
how data is best displayed and stick with it.
Failing to make a decision ultimately leads
to too many user options, which in turn can
be taxing on the poor old user.

Under some circumstances, however, it’s good to give the

user freedom in customising their workspace. One good

example of this is the ‘Article Length’ tool in Apple’s Safari

RSS reader. Sliding a slider left of right dynamically

changes the length of each article shown. It’s that kind of

awesomey magic stuff that’s enough to keep you from

sleeping. Let’s build one.

Tasty Text Trimmer

24 ways 2006 edition 5

http://24ways.org/200601

THE SETUP

Let’s take a page that has lots of long text items, a bit like a

news page or like Safari’s RSS items view. If we were to

attach a class name to each element we wanted to resize,

that would give us something to hook onto from the

JavaScript.

Example 1: The basic page.

As you can see, I’ve wrapped my items in a DIV and added

a class name of chunk to them. It’s these chunks that we’ll

be finding with the JavaScript. Speaking of which …

OUR CORE FUNCTIONS

There are two main tasks that need performing in our

script. The first is to find the chunks we’re going to be

resizing and store their original contents away

somewhere safe. We’ll need this so that if we trim the text

down we’ll know what it was if the user decides they want

it back again. We’ll call this loadChunks.

var loadChunks = function(){

var everything = document.getElementsByTagName('*');

var i, l;

chunks = [];

for (i=0, l=everything.length; i<l; i++){

if (everything[i].className.indexOf(chunkClass) >

-1){

chunks.push({

ref: everything[i],

6 24 ways 2006 edition

http://24ways.org/examples/tasty-text-trimmer/basic_page.html

original: everything[i].innerHTML

});

}

}

};

The variable chunks is stored outside of this function so

that we can access it from our next core function, which is

doTrim.

var doTrim = function(interval) {

if (!chunks) loadChunks();

var i, l;

for (i=0, l=chunks.length; i<l; i++){

var a = chunks[i].original.split(' ');

a = a.slice(0, interval);

chunks[i].ref.innerHTML = a.join(' ');

}

};

The first thing that needs to be done is to call loadChunks

if the chunks variable isn’t set. This should only happen

the first time doTrim is called, as from that point the

chunks will be loaded.

Then all we do is loop through the chunks and trim them.

The trimming itself (lines 6-8) is very simple. We split the

text into an array of words (line 6), then select only a

portion from the beginning of the array up until the

number we want (line 7). Finally the words are glued back

together (line 8).

Tasty Text Trimmer

24 ways 2006 edition 7

In essense, that’s it, but it leaves us needing to know how

to get the number into this function in the first place, and

how that number is generated by the user. Let’s look at

the latter case first.

THE YUI SLIDER WIDGET

There are lots of JavaScript libraries available at the

moment. A fair few of those are really good. I use the

Yahoo! User Interface Library professionally, but have

only recently played with their pre-build slider widget.

Turns out, it’s pretty good and perfect for this task.

Once you have the library files linked in (check the docs

linked above) it’s fairly straightforward to create yourself

a slider.

slider = YAHOO.widget.Slider.getHorizSlider("sliderbg",

"sliderthumb", 0, 100, 5);

slider.setValue(50);

slider.subscribe("change", doTrim);

All that’s needed then is some CSS to make the slider look

like a slider, and of course a few bits of HTML. We’ll see

those later.

SEE IT WORKING!

Rather than spell out all the nuts and bolts of

implementing this fairly simple script, let’s just look at in it

action and then pick on some interesting bits I’ve added.

8 24 ways 2006 edition

http://developer.yahoo.com/yui/
http://developer.yahoo.com/yui/

Example 2: Try the Tasty Text Trimmer.

At the top of the JavaScript file I’ve added a small number

of settings.

var chunkClass = 'chunk';

var minValue = 10;

var maxValue = 100;

var multiplier = 5;

Obvious candidates for configuration are the class name

used to find the chunks, and also the some minimum and

maximum values. The minValue is the fewest number of

words we wish to display when the slider is all the way

down. The maxValue is the length of the slider, in this case

100.

Moving the slider makes a call to our doTrim function with

the current value of the slider. For a slider 100 pixels long,

this is going to be in the range of 0-100. That might be

okay for some things, but for longer items of text you’ll

want to allow for displaying more than 100 words. I’ve

accounted for this by adding in a multiplier – in my code

I’m multiplying the value by 5, so a slider value of 50

shows 250 words. You’ll probably want to tailor the

multiplier to the type of content you’re using.

Tasty Text Trimmer

24 ways 2006 edition 9

http://24ways.org/examples/tasty-text-trimmer/trimmer.html
http://24ways.org/examples/tasty-text-trimmer/trimmer.js

KEEPING IT ACCESSIBLE

This effect isn’t something we can really achieve without

JavaScript, but even so we must make sure that this

functionality has no adverse impact on the page when

JavaScript isn’t available. This is achieved by adding the

slider markup to the page from within the

insertSliderHTML function.

var insertSliderHTML = function(){

var s = '<img

src="icon_min.gif" width="10" height="10" alt="Less

text" class="first" />';

s +=' <div id="sliderbg"><div id="sliderthumb"><img

src="sliderthumbimg.gif" /></div></div>';

s +=' <img

src="icon_max.gif" width="10" height="10" alt="More

text" />';

document.getElementById('slider').innerHTML = s;

}

The other important factor to consider is that a slider can

be tricky to use unless you have good eyesight and pretty

well controlled motor skills. Therefore we should provide

a method of changing the value by the keyboard.

I’ve done this by making the icons at either end of the

slider links so they can be tabbed to. Clicking on either

icon fires the appropriate JavaScript function to show

more or less of the text.

10 24 ways 2006 edition

IN CONCLUSION

The upshot of all this is that without JavaScript the page

just shows all the text as it normally would. With

JavaScript we have a slider for trimming the text excepts

that can be controlled with the mouse or with a keyboard.

If you’re like me and have just scrolled to the bottom to

find the working demo, here it is again:

Try the Tasty Text Trimmer

Trimmer for Christmas? Don’t say I never give you

anything!

Tasty Text Trimmer

24 ways 2006 edition 11

http://24ways.org/examples/tasty-text-trimmer/trimmer.html

ABOUT THE AUTHOR

Drew McLellan is lead developer on your favourite small CMS,

Perch. He is Director and Senior Developer at UK-based web

development agency edgeofmyseat.com, and formerly Group

Lead at the Web Standards Project. When not publishing 24

ways, Drew keeps a personal site covering web development

issues and themes, takes photos and tweets a lot.

12 24 ways 2006 edition

http://grabaperch.com/
http://allinthehead.com/
http://flickr.com/drewm/
http://twitter.com/drewm

Rachel Andrew 24ways.org/200602

2. Faster Development
with CSS Constants

Anyone even slightly familiar with a
programming language will have come
across the concept of constants – a fixed
value that can be used through your code.
For example, in a PHP script I might have a
constant which is the email address that all
emails generated by my application get sent
to.

$adminEmail = 'info@example.com';

I could then use $adminEmail in my script whenever I

wanted an email to go to that address. The benefit of this

is that when the client decides they want the email to go

to a different address, I only need change it in one place –

the place where I initially set the constant. I could also

quite easily make this value user defined and enable the

administrator to update the email address.

Faster Development with CSS Constants

24 ways 2006 edition 13

http://24ways.org/200602

Unfortunately CSS doesn’t support constants. It would be

really useful to be able to define certain values initially

and then use them throughout a CSS file, so in this article

I’m going to take a look at some of the methods we do

have available and provide pointers to more in depth

commentary on each. If you have a different method, or

tip to share please add it to the comments.

SO WHAT OPTIONS DO WE HAVE?

One way to get round the lack of constants is to create

some definitions at the top of your CSS file in comments,

to define ‘constants’. A common use for this is to create a

‘color glossary’. This means that you have a quick

reference to the colors used in the site to avoid using

alternates by mistake and, if you need to change the

colors, you have a quick list to go down and do a search

and replace.

In the below example, if I decide I want to change the mid

grey to #999999, all I need to do is search and replace

#666666 with #999999 – assuming I’ve remember to

always use that value for things which are mid grey.

/*

Dark grey (text): #333333

Dark Blue (headings, links) #000066

Mid Blue (header) #333399

14 24 ways 2006 edition

Light blue (top navigation) #CCCCFF

Mid grey: #666666

*/

This is a fairly low-tech method, but if used throughout

the development of the CSS files can make changes far

simpler and help to ensure consistency in your color

scheme.

I’ve seen this method used by many designers however

Garrett Dimon documents the method, with more ideas in

the comments.

GOING SERVER-SIDE

To truly achieve constants you will need to use something

other than CSS to process the file before it is sent to the

browser. You can use any scripting language – PHP, ASP,

ColdFusion etc. to parse a CSS file in which you have

entered constants. So that in a constants section of the

CSS file you would have:

$darkgrey = '#333333';

$darkblue = '#000066';

The rest of the CSS file is as normal except that when you

come to use the constant value you would use the

constant name instead of adding the color:

p {

color: $darkgrey;

}

Faster Development with CSS Constants

24 ways 2006 edition 15

http://www.garrettdimon.com/archives/css-maintenance-tip-use-a-color-glossary

Your server-side script could then parse the CSS file,

replace the constant names with the constant values and

serve a valid CSS file to the browser. Christian Heilmann

has done just this for PHP however this could be adapted

for any language you might have available on your server.

Shaun Inman came up with another way of doing this that

removes the need to link to a PHP script and also enables

the adding of constants using the syntax of at-rules . This

method is again using PHP and will require you to edit an

.htaccess file.

A further method is to generate static CSS files either

using a script locally – if the constants are just to enable

speed of development – or as part of the web application

itself. Storing a template stylesheet with constant names

in place of the values you will want to update means that

your script can simply open the template, replace the

variables and save the result as a new stylesheet file.

While CSS constants are a real help to developers, they

can also be used to add new functionality to your

applications. As with the email address example that I

used at the beginning of this article, using a combination

of CSS and server-side scripting you could enable a site

administrator to select the colours for a new theme to be

used on a page of a content managed site. By using

16 24 ways 2006 edition

http://www.wait-till-i.com/index.php?p=24
http://www.shauninman.com/post/heap/2005/08/09/css_constants

constants you need only give them the option to change

certain parts of the CSS and not upload a whole different

CSS file, which could lead to some interesting results!

As we are unlikely to find real CSS constants under the

tree this Christmas the above methods are some

possibilities for better management of your stylesheets.

However if you have better methods, CSS Constant

horror stories or any other suggestions, add your

comments below.

ABOUT THE AUTHOR

Rachel Andrew is a Director of edgeofmyseat.com, a UK web

development consultancy and creators of the small content

management system, Perch. She is the author of a number of

Faster Development with CSS Constants

24 ways 2006 edition 17

http://grabaperch.com

books, most recently The Profitable Side Project Handbook and

CSS3 Layout Modules, and is a regular columnist for A List

Apart.

When not writing about business and technology on her blog at

rachelandrew.co.uk or speaking at conferences, you will usually

find Rachel running up and down one of the giant hills in Bristol.

18 24 ways 2006 edition

http://rachelandrew.co.uk/books
http://rachelandrew.co.uk/books/the-profitable-side-project
http://rachelandrew.co.uk/books/css3-layout-modules
http://alistapart.com/author/rachelandrew
http://alistapart.com/author/rachelandrew
http://rachelandrew.co.uk
http://lanyrd.com/profile/rachelandrew/

Christian Heilmann 24ways.org/200603

3. Flickr Photos On
Demand with getFlickr

In case you don’t know it yet, Flickr is great.
It is a lot of fun to upload, tag and caption
photos and it is really handy to get a vast
network of contacts through it.

Using Flickr photos outside of it is a bit of a problem

though. There is a Flickr API, and you can get almost every

page as an RSS feed, but in general it is a bit tricky to use

Flickr photos inside your blog posts or web sites. You

might not want to get into the whole API game or use a

server side proxy script as you cannot retrieve RSS with

Ajax because of the cross-domain security settings.

However, Flickr also provides an undocumented JSON

output, that can be used to hack your own solutions in

JavaScript without having to use a server side script.

▪ If you enter the URL http://flickr.com/photos/tags/

panda you get to the flickr page with photos tagged

“panda”.

Flickr Photos On Demand with getFlickr

24 ways 2006 edition 19

http://24ways.org/200603
http://flickr.com/
http://www.flickr.com/services/api/
http://www.json.org
http://flickr.com/photos/tags/panda
http://flickr.com/photos/tags/panda

▪ If you enter the URL http://api.flickr.com/services/

feeds/photos_public.gne?tags=panda&format=rss_200

you get the same page as an RSS feed.

▪ If you enter the URL http://api.flickr.com/services/

feeds/photos_public.gne?tags=panda&format=json you

get a JavaScript function called jsonFlickrFeed with a

parameter that contains the same data in JSON format

You can use this to easily hack together your own output

by just providing a function with the same name. I wanted

to make it easier for you, which is why I created the helper

getFlickr for you to download and use.

GETFLICKR FOR NON-SCRIPTERS

Simply include the javascript file getflickr.js and the

style getflickr.css in the head of your document:

<script type="text/javascript"

src="getflickr.js"></script>

<link rel="stylesheet" href="getflickr.css" type="text/

css">

Once this is done you can add links to Flickr pages

anywhere in your document, and when you give them the

CSS class getflickrphotos they get turned into gallery

links. When a visitor clicks these links they turn into

loading messages and show a “popup” gallery with the

connected photos once they were loaded. As the JSON

returned is very small it won’t take long. You can close the

20 24 ways 2006 edition

http://api.flickr.com/services/feeds/photos_public.gne?tags=panda&format=rss_200
http://api.flickr.com/services/feeds/photos_public.gne?tags=panda&format=rss_200
http://api.flickr.com/services/feeds/photos_public.gne?tags=panda&format=json
http://api.flickr.com/services/feeds/photos_public.gne?tags=panda&format=json
http://icant.co.uk/articles/24ways/getflickr.zip

gallery, or click any of the thumbnails to view a photo.

Clicking the photo makes it disappear and go back to the

thumbnails.

Check out the example page and click the different gallery

links to see the results.

Notice that getFlickr works with Unobtrusive JavaScript

as when scripting is disabled the links still get to the

photos on Flickr.

GETFLICKR FOR JAVASCRIPT HACKERS

If you want to use getFlickr with your own JavaScripts

you can use its main method leech():

getFlickr.leech(sTag, sCallback);

sTagsTag

the tag you are looking for

sCallbacksCallback

an optional function to call when the data was

retrieved.

After you called the leech() method you have two strings

to use:

Flickr Photos On Demand with getFlickr

24 ways 2006 edition 21

http://icant.co.uk/articles/24ways/
http://onlinetools.org/articles/unobtrusivejavascript

getFlickr.html[sTag]getFlickr.html[sTag]

contains an HTML list (without the outer UL element)

of all the images linked to the correct pages at flickr.

The images are the medium size, you can easily

change that by replacing _m.jpg with _s.jpg for

thumbnails.

getFlickr.tags[sTag]getFlickr.tags[sTag]

contains a string of all the other tags flickr users

added with the tag you searched for(space

separated)

You can call getFlickr.leech() several times when the

page has loaded to cache several result feeds before the

page gets loaded. This’ll make the photos quicker for the

end user to show up. If you want to offer a form for people

to search for flickr photos and display them immediately

you can use the following HTML:

<form

onsubmit="getFlickr.leech(document.getElementById('tag').value,

'populate');return false">

<label for="tag">Enter Tag</label>

<input type="text" id="tag" name="tag" />

<input type="submit" value="energize" />

<h3>Tags:</h3><div id="tags"></div>

<h3>Photos:</h3><ul id="photos">

</form>

All the JavaScript you’ll need (for a basic display) is this:

22 24 ways 2006 edition

function populate(){

var tag = document.getElementById('tag').value;

document.getElementById('photos').innerHTML =

getFlickr.html[tag].replace(/_m\.jpg/g,'_s.jpg');

document.getElementById('tags').innerHTML =

getFlickr.tags[tag];

return false;

}

Easy as pie, enjoy!

Check out the example page and try the form to see the

results.

Flickr Photos On Demand with getFlickr

24 ways 2006 edition 23

http://icant.co.uk/articles/24ways/
http://www.webkrauts.de/2006/12/03/photos-von-flickr-nachladen/

ABOUT THE AUTHOR

Christian Heilmann grew up in Germany and, after a year

working for the red cross, spent a year as a radio producer.

From 1997 onwards he worked for several agencies in Munich

as a web developer. In 2000 he moved to the States to work for

Etoys and, after the .com crash, he moved to the UK where he

lead the web development department at Agilisys. In April 2006

he joined Yahoo! UK as a web developer and moved on to be the

Lead Developer Evangelist for the Yahoo Developer Network.

In December 2010 he moved on to Mozilla as Principal

Developer Evangelist for HTML5 and the Open Web. He

publishes an almost daily blog at http://wait-till-i.com and runs

an article repository at http://icant.co.uk. He also authored

Beginning JavaScript with DOM Scripting and Ajax: From

Novice to Professional.

24 24 ways 2006 edition

http://uk.yahoo.com/
http://wait-till-i.com
http://icant.co.uk
http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FBeginning-JavaScript-DOM-Scripting-Ajax%2Fdp%2F1590596803%2F&tag=24ways-20&linkCode=ur2&camp=1789&creative=9325
http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FBeginning-JavaScript-DOM-Scripting-Ajax%2Fdp%2F1590596803%2F&tag=24ways-20&linkCode=ur2&camp=1789&creative=9325

Andy Budd 24ways.org/200604

4. Rounded Corner Boxes
the CSS3 Way

If you’ve been doing CSS for a while you’ll
know that there are approximately 3,762
ways to create a rounded corner box. The
simplest techniques rely on the addition of
extra mark-up directly to your page, while
the more complicated ones add the mark-up
though DOM manipulation. While these
techniques are all very interesting, they do
seem somewhat of a kludge. The goal of CSS
is to separate structure from presentation,
yet here we are adding superfluous mark-up
to our code in order to create a visual effect.
The reason we are doing this is simple.
CSS2.1 only allows a single background
image per element.

Thankfully this looks set to change with the addition of

multiple background images into the CSS3 specification.

With CSS3 you’ll be able to add not one, not four, but

Rounded Corner Boxes the CSS3 Way

24 ways 2006 edition 25

http://24ways.org/200604

eight background images to a single element. This means

you’ll be able to create all kinds of interesting effects

without the need of those additional elements.

While the CSS working group still seem to be arguing over

the exact syntax, Dave Hyatt went ahead and

implemented the currently suggested mechanism into

Safari. The technique is fiendishly simple, and I think we’ll

all be a lot better off once the W3C stop arguing over the

details and allow browser vendors to get on and provide

the tools we need to build better websites.

To create a CSS3 rounded corner box, simply start with

your box element and apply your 4 corner images,

separated by commas.

.box {

background-image: url(top-left.gif),

url(top-right.gif), url(bottom-left.gif),

url(bottom-right.gif);

}

We don’t want these background images to repeat, which

is the normal behaviour, so lets set all their background-

repeat properties to no-repeat.

.box {

background-image: url(top-left.gif),

url(top-right.gif), url(bottom-left.gif),

url(bottom-right.gif);

26 24 ways 2006 edition

background-repeat: no-repeat, no-repeat, no-repeat,

no-repeat;

}

Lastly, we need to define the positioning of each corner

image.

.box {

background-image: url(top-left.gif),

url(top-right.gif), url(bottom-left.gif),

url(bottom-right.gif);

background-repeat: no-repeat, no-repeat, no-repeat,

no-repeat;

background-position: top left, top right, bottom left,

bottom right;

}

And there we have it, a simple rounded corner box with no

additional mark-up.

As well as using multiple background images, CSS3 also

has the ability to create rounded corners without the

need of any images at all. You can do this by setting the

border-radius property to your desired value as seen in

the next example.

.box {

border-radius: 1.6em;

}

Rounded Corner Boxes the CSS3 Way

24 ways 2006 edition 27

http://24ways.org/examples/rounded-corners-the-css3-way/rounded.html

This technique currently works in Firefox/Camino and

creates a nice, if somewhat jagged rounded corner. If you

want to create a box that works in both Mozilla and

WebKit based browsers, why not combine both

techniques and see what happens.

ABOUT THE AUTHOR

Andy Budd is an internationally renowned web designer,

developer and weblog author based in Brighton, England. He

specialises in building attractive, accessible, and standards

complaint web solutions as a Director of Clearleft. Andy enjoys

writing about web techniques for sites such as digital-web.com

and his work has been featured in numerous magazines, books,

and websites around the world. He is the author of CSS

Mastery: Advanced Web Standards Solutions.

28 24 ways 2006 edition

http://24ways.org/examples/rounded-corners-the-css3-way/rounded2.html
http://24ways.org/examples/rounded-corners-the-css3-way/rounded3.html
http://24ways.org/examples/rounded-corners-the-css3-way/rounded3.html
http://www.andybudd.com/
http://clearleft.com/
http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2Fo%2FASIN%2F1590596145%2F&tag=24ways-20&linkCode=ur2&camp=1789&creative=9325
http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2Fo%2FASIN%2F1590596145%2F&tag=24ways-20&linkCode=ur2&camp=1789&creative=9325

Mike Davies 24ways.org/200605

5. Accessible Dynamic
Links

Although hyperlinks are the soul of the
World Wide Web, it’s worth using them in
moderation. Too many links becomes a
barrier for visitors navigating their way
through a page. This difficulty is multiplied
when the visitor is using assistive
technology, or is using a keyboard; being
able to skip over a block of links doesn’t
make the task of finding a specific link any
easier.

In an effort to make sites easier to use, various user

interfaces based on the hiding and showing of links have

been crafted. From drop-down menus to expose the

deeper structure of a website, to a decluttering of skip

links so as not to impact design considerations. Both are

well intentioned with the aim of preserving a good

Accessible Dynamic Links

24 ways 2006 edition 29

http://24ways.org/200605

usability experience for the majority of a website’s

audience; hiding the real complexity of a page until the

visitor interacts with the element.

WHEN JAVASCRIPT IS NOT AVAILABLE

The modern dynamic link techniques rely on JavaScript

and CSS, but regardless of whether scripting and styles

are enabled or not, we should consider the accessibility

implications, particularly for screen-reader users, and

people who rely on keyboard access.

In typical web standards-based drop-down navigation

implementations, the rough consensus is that the

navigation should be structured as nested lists so when

JavaScript is not available the entire navigation map is

available to the visitor. This creates a situation where a

visitor is faced with potentially well over 50 links on every

page of the website. Keyboard access to such structures is

frustrating, there’s far too many options, and the method

of serially tabbing through each link looking for a specific

one is tedious.

Instead of offering the visitor an indigestible chunk of

links when JavaScript is not available, consider instead

having the minimum number of links on a page, and when

JavaScript is available bringing in the extra links

dynamically. Santa Chris Heilmann offers an excellent

proof of concept in making Ajax navigation optional.

30 24 ways 2006 edition

http://udm4.com/
http://www.wait-till-i.com/
http://www.wait-till-i.com/index.php?p=266

When JavaScript is enabled, we need to decide how to

hide links. One technique offers a means of

comprehensively hiding links from keyboard users and

assistive technology users. Another technique allows

keyboard and screen-reader users to access links while

they are hidden, and making them visible when reached.

HIDING THE LINKS

In JavaScript enhanced pages whether a link displays on

screen depends on a certain event happening first. For

example, a visitor needs to click a top-level navigation link

that makes a set of sub-navigation links appear. In these

cases, we need to ensure that these links are not available

to any user until that event has happened.

The typical way of hiding links is to style the anchor

elements, or its parent nodes with display: none. This

has the advantage of taking the links out of the tab order,

so they are not focusable. It’s useful in reducing the

number of links presented to a screen-reader or keyboard

user to a minimum. Although the links are still in the

document (they can be referenced and manipulated using

DOM Scripting), they are not directly triggerable by a

visitor.

Once the necessary event has happened, like our visitor

has clicked on a top-level navigation link which shows our

hidden set of links, then we can display the links to the

Accessible Dynamic Links

24 ways 2006 edition 31

visitor and make them triggerable. This is done simply by

undoing the display: none, perhaps by setting the display

back to block for block level elements, or inline for inline

elements. For as long as this display style remains, the

links are in the tab order, focusable by keyboard, and

triggerable.

A common mistake in this situation is to use visibility:

hidden, text-indent: -999em, or position: absolute

with left: -999em to position these links off-screen. But

all of these links remain accessible via keyboard tabbing

even though the links remain hidden from screen view. In

some ways this is a good idea, but for hiding sub-

navigation links, it presents the screen-reader user and

keyboard user with too many links to be of practical use.

MOVING THE LINKS OUT OF SIGHT

If you want a set of text links accessible to screen-readers

and keyboard users, but don’t want them cluttering up

space on the screen, then style the links with position:

absolute; left: -999em. Links styled this way remain in

the tab order, and are accessible via keyboard. (The

position: absolute is added as a style to the link, not to

a parent node of the link – this will give us a useful hook to

solve the next problem).

32 24 ways 2006 edition

a.helper {

position: absolute;

left: -999em;

}

One important requirement when displaying links off-

screen is that they are visible to a keyboard user when

they receive focus. Tabbing on a link that is not visible is a

usability mudpit, since the visitor has no visible cue as to

what a focused link will do, or where it will go.

The simple answer is to restyle the link so that it appears

on the screen when the hidden link receives focus. The

anchor’s :focus pseudo-class is a logical hook to use, and

with the following style repositions the link onscreen

when it receives the focus:

a.helper:focus, a.helper.focus {

top: 0;

left: 0;

}

This technique is useful for hiding skip links, and options

you want screen-reader and keyboard users to use, but

don’t want cluttering up the page. Unfortunately Internet

Explorer 6 and 7 don’t support the focus pseudo-class,

which is why there’s a second CSS selector

a.helper.focus so we can use some JavaScript to help

out. When the page loads, we look for all links that have a

class of helper and add in onfocus and onblur event

handlers:

Accessible Dynamic Links

24 ways 2006 edition 33

if (anchor.className == "helper") {

anchor.onfocus = function() {

this.className = 'helper focus';

}

anchor.onblur = function() {

this.className = 'helper';

}

}

Since we are using JavaScript to cover up for deficiencies

in Internet Explorer, it makes sense to use JavaScript

initially to place the links off-screen. That way an Internet

Explorer user with JavaScript disabled can still use the

skip link functionality.

It is vital that the number of links rendered in this way is

kept to a minimum. Every link you offer needs to be

tabbed through, and gets read out in a screen reader.

Offer these off-screen links that directly benefit these

types of visitor.

Andy Clarke and Kimberly Blessing use a similar

technique in the Web Standards Project‘s latest design,

but their technique involves hiding the skip link in plain

sight and making it visible when it receives focus.

Navigate the page using just the tab key to see the

accessibility-related links appear when they receive

focus.

34 24 ways 2006 edition

http://www.stuffandnonsense.co.uk/
http://www.kimberlyblessing.com/
http://www.webstandards.org/

This technique is also a good way of hiding image replaced

text. That way the screen-readers still get the actual text,

and the website still gets its designed look.

WHICH WAY?

If the links are not meant to be reachable until a certain

event has occurred, then the display: none technique is

the preferred approach. If you want the links accessible

but out of the way until they receive focus, then the off-

screen positioning (or Andy’s hiding in plain sight

technique) is the way to go.

ABOUT THE AUTHOR

Accessible Dynamic Links

24 ways 2006 edition 35

http://alastairc.ac/2006/10/image-replacement-and-voiceover/
http://alastairc.ac/2006/10/image-replacement-and-voiceover/

Mike Davies works for Yahoo! Europe as a Web Developer with

a focus on web accessibility. Online, he uses the moniker

Isofarro and blogs about web accessibility and universality on

isolani. His last project in his previous company (Legal &

General) was presented at the launch of PAS 78 as a case study

into the business benefits of web accessibility.

Photo: Neil Crosby

36 24 ways 2006 edition

http://uk.yahoo.com/
http://www.isolani.co.uk/blog/
http://en.wikipedia.org/wiki/Pas_78
http://flickr.com/photos/thevoicewithin/374414594/

Peter-Paul Koch 24ways.org/200606

6. Hide And Seek in The
Head

If you want your JavaScript-enhanced pages
to remain accessible and understandable to
scripted and noscript users alike, you have
to think before you code. Which
functionalities are required (ie. should work
without JavaScript)? Which ones are merely
nice-to-have (ie. can be scripted)? You
should only start creating the site when
you’ve taken these decisions.

SPECIAL HTML ELEMENTS

Once you have a clear idea of what will work with and

without JavaScript, you’ll likely find that you need a few

HTML elements for the noscript version only.

Take this example: A form has a nifty bit of Ajax that

automatically and silently sends a request once the user

enters something in a form field. However, in order to

Hide And Seek in The Head

24 ways 2006 edition 37

http://24ways.org/200606

preserve accessibility, the user should also be able to

submit the form normally. So the form should have a

submit button in noscript browsers, but not when the

browser supports sufficient JavaScript.

Since the button is meant for noscript browsers, it must

be hard-coded in the HTML:

<input type="submit" value="Submit form"

id="noScriptButton" />

When JavaScript is supported, it should be removed:

var checkJS = [check JavaScript support];

window.onload = function () {

if (!checkJS) return;

document.getElementById('noScriptButton').style.display

= 'none';

}

PROBLEM: THE LOADLOAD EVENT

Although this will likely work fine in your testing

environment, it’s not completely correct. What if a user

with a modern, JavaScript-capable browser visits your

page, but has to wait for a huge graphic to load? The load

event fires only after all assets, including images, have

been loaded. So this user will first see a submit button, but

then all of a sudden it’s removed. That’s potentially

confusing.

38 24 ways 2006 edition

Fortunately there’s a simple solution: play a bit of hide and

seek in the <head>:

var checkJS = [check JavaScript support];

if (checkJS) {

document.write('<style>#noScriptButton{display:

none}</style>');

}

First, check if the browser supports enough JavaScript. If

it does, document.write an extra <style> element that

hides the button.

The difference with the previous technique is that the

document.write command is outside any function, and is

therefore executed while the JavaScript is being parsed.

Thus, the #noScriptButton{display: none} rule is

written into the document before the actual HTML is

received.

That’s exactly what we want. If the rule is already present

at the moment the HTML for the submit button is

received and parsed, the button is hidden immediately.

Even if the user (and the load event) have to wait for a

huge image, the button is already hidden, and both

scripted and noscript users see the interface they need,

without any potentially confusing flashes of useless

content.

Hide And Seek in The Head

24 ways 2006 edition 39

In general, if you want to hide content that’s not relevant

to scripted users, give the hide command in CSS, and

make sure it’s given before the HTML element is loaded

and parsed.

ALTERNATIVE

Some people won’t like to use document.write. They could

also add an empty <link /> element to the <head> and

give it an href attribute once the browser’s JavaScript

capabilities have been evaluated. The <link /> element is

made to refer to a style sheet that contains the crucial

#noScriptButton{display: none}, and everything works

fine.

Important note: The script needs access to the <link />,

and the only way to ensure that access is to include the

empty <link /> element before your <script> tag.

40 24 ways 2006 edition

ABOUT THE AUTHOR

Peter-Paul Koch (ppk for those In The Know) is a JavaScript

guru residing in Amsterdam, the Netherlands. His cunning

masterplan to get filthy rich consists of pimping his book, ppk on

JavaScript, without which it’s impossible to lead a succesful, or

even happy, life.

Hide And Seek in The Head

24 ways 2006 edition 41

http://www.quirksmode.org
http://www.quirksmode.org/book/

Ian Forrester 24ways.org/200607

7. Making XML Beautiful
Again: Introducing
Client-Side XSL

Remember that first time you saw XML and
got it? When you really understood what was
possible and the deep meaning each
element could carry? Now when you see
XML, it looks ugly, especially when you
navigate to a page of XML in a browser. Well,
with every modern browser now supporting
XSL 1.0, I’m going to show you how you can
turn something as simple as an ATOM feed
into a customised page using a browser,
Notepad and some XSL.

WHAT ON EARTH IS THIS XSL?

XSL is a family of recommendations for defining XML

document transformation and presentation. It consists of

three parts:

▪ XSLT 1.0 – Extensible Stylesheet Language

Transformation, a language for transforming XML

42 24 ways 2006 edition

http://24ways.org/200607
http://www.w3.org/Style/XSL/

▪ XPath 1.0 – XML Path Language, an expression

language used by XSLT to access or refer to parts of an

XML document. (XPath is also used by the XML Linking

specification)

▪ XSL-FO 1.0 – Extensible Stylesheet Language

Formatting Objects, an XML vocabulary for specifying

formatting semantics

XSL transformations are usually a one-to-one

transformation, but with newer versions (XSL 1.1 and XSL

2.0) its possible to create many-to-many transformations

too. So now you have an overview of XSL, on with the

show…

SO WHAT DO I NEED?

So to get going you need a browser an supports client-

side XSL transformations such as Firefox, Safari, Opera or

Internet Explorer. Second, you need a source XML file –

for this we’re going to use an ATOM feed from Flickr.com.

And lastly, you need an editor of some kind. I find

Notepad++ quick for short XSLs, while I tend to use

XMLSpy or Oxygen for complex XSL work.

Because we’re doing a client-side transformation, we

need to modify the XML file to tell it where to find our yet-

to-be-written XSL file. Take a look at the source XML file,

which originates from my Flickr photos tagged sky, in

ATOM format.

Making XML Beautiful Again: Introducing Client-Side XSL

24 ways 2006 edition 43

http://api.flickr.com/services/feeds/photos_public.gne?id=37421747@N00&tags=sky&format=atom_100
http://notepad-plus.sourceforge.net/
http://xmlspy.com/products/xmlspy/xml_editor.html
http://www.oxygenxml.com/
http://24ways.org/examples/beautiful-xml-with-xsl/source_atom_flickr.xml

The top of the ATOM file now has an additional <?xml-

stylesheet /> instruction, as can been seen on Line 2

below. This instructs the browser to use the XSL file to

transform the document.

<?xml version="1.0" encoding="utf-8" standalone="yes"?>

<?xml-stylesheet type="text/xsl"

href="flickr_transform.xsl"?>

<feed xmlns="http://www.w3.org/2005/Atom"

xmlns:dc="http://purl.org/dc/elements/1.1/">

YOUR FIRST TRANSFORMATION

Your first XSL will look something like this:

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:atom="http://www.w3.org/2005/Atom"

xmlns:dc="http://purl.org/dc/elements/1.1/">

<xsl:output method="html" encoding="utf-8"/>

</xsl:stylesheet>

This is pretty much the starting point for most XSL files.

You will notice the standard XML processing instruction

at the top of the file (line 1). We then switch into XSL

mode using the XSL namespace on all XSL elements (line

2). In this case, we have added namespaces for ATOM (line

4) and Dublin Core (line 5). This means the XSL can now

read and understand those elements from the source XML.

44 24 ways 2006 edition

After we define all the namespaces, we then move onto

the xsl:output element (line 6). This enables you to

define the final method of output. Here we’re specifying

html, but you could equally use XML or Text, for example.

The encoding attributes on each element do what they

say on the tin. As with all XML, of course, we close every

element including the root.

The next stage is to add a template, in this case an

<xsl:template /> as can be seen below:

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:atom="http://www.w3.org/2005/Atom"

xmlns:dc="http://purl.org/dc/elements/1.1/">

<xsl:output method="html" encoding="utf-8"/>

<xsl:template match="/">

<html>

<head>

<title>Making XML beautiful again : Transforming

ATOM</title>

</head>

<body>

<xsl:apply-templates select="/atom:feed"/>

</body>

</html>

</xsl:template>

</xsl:stylesheet>

The beautiful thing about XSL is its English syntax, if you

say it out loud it tends to make sense.

Making XML Beautiful Again: Introducing Client-Side XSL

24 ways 2006 edition 45

The / value for the match attribute on line 8 is our first

example of XPath syntax. The expression / matches any

element – so this <xsl:template/> will match against any

element in the document. As the first element in any XML

document is the root element, this will be the one

matched and processed first.

Once we get past our standard start of a HTML

document, the only instruction remaining in this

<xsl:template/> is to look for and match all

<atom:feed/> elements using the <xsl:apply-

templates/> in line 14, above.

<?xml version="1.0" encoding="utf-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:atom="http://www.w3.org/2005/Atom"

xmlns:dc="http://purl.org/dc/elements/1.1/">

<xsl:output method="html" encoding="utf-8"/>

<xsl:template match="/">

<xsl:apply-templates select="/atom:feed"/>

</xsl:template>

<xsl:template match="/atom:feed">

<div id="content">

<h1>

<xsl:value-of select="atom:title"/>

</h1>

<p>

<xsl:value-of select="atom:subtitle"/>

</p>

<ul id="entries">

<xsl:apply-templates select="atom:entry"/>

46 24 ways 2006 edition

</div>

</xsl:template>

</xsl:stylesheet>

This new template (line 12, above) matches <feed/> and

starts to write the new HTML elements out to the output

stream. The <xsl:value-of/> does exactly what you’d

expect – it finds the value of the item specifed in its

select attribute. With XPath you can select any element

or attribute from the source XML.

The last part is a repeat of the now familiar <xsl:apply-

templates/> from before, but this time we’re using it

inside of a called template. Yep, XSL is full of recursion…

<xsl:template match="atom:entry">

<li class="entry">

<h2>

<xsl:value-of select="atom:title"/>

</h2>

<p class="date">

(<xsl:value-of

select="substring-before(atom:updated,'T')"/>)

</p>

<p class="content">

<xsl:value-of select="atom:content"

disable-output-escaping="yes"/>

</p>

Making XML Beautiful Again: Introducing Client-Side XSL

24 ways 2006 edition 47

<xsl:apply-templates select="atom:category"/>

</xsl:template>

The <xsl:template/> which matches atom:entry (line 1)

occurs every time there is a <entry/> element in the

source XML file. So in total that is 20 times, this is

naturally why XSLT is full of recursion. This

<xsl:template/> has been matched and therefore called

higher up in the document, so we can start writing list

elements directly to the output stream. The first part is

simply a <h2/> with a link wrapped within it (lines 3-7). We

can select attributes using XPath using @.

The second part of this template selects the date, but

performs a XPath string function on it. This means that we

only get the date and not the time from the string (line 9).

This is achieved by getting only the part of the string that

exists before the T.

Regular Expressions are not part of the XPath 1.0 string

functions, although XPath 2.0 does include them. Because

of this, in XSL we tend to rely heavily on the available XML

output.

The third part of the template (line 12) is a <xsl:value-

of/> again, but this time we use an attribute of

<xsl:value-of/> called disable output escaping to

turn escaped characters back into XML.

48 24 ways 2006 edition

The very last section is another <xsl:apply-template/>

call, taking us three templates deep. Do not worry, it is not

uncommon to write XSL which go 20 or more templates

deep!

<xsl:template match="atom:category">

<xsl:for-each select=".">

<xsl:element name="a">

<xsl:attribute name="rel">

<xsl:text>tag</xsl:text>

</xsl:attribute>

<xsl:attribute name="href">

<xsl:value-of select="concat(@scheme, @term)"/>

</xsl:attribute>

<xsl:value-of select="@term"/>

</xsl:element>

<xsl:text> </xsl:text>

</xsl:for-each>

</xsl:template>

In our final <xsl:template/>, we see a combination of

what we have done before with a couple of twists. Once

we match atom:category we then count how many

elements there are at that same level (line 2). The XPath .

means ‘self’, so we count how many category elements

are within the <entry/> element.

Making XML Beautiful Again: Introducing Client-Side XSL

24 ways 2006 edition 49

Following that, we start to output a link with a rel

attribute of the predefined text, tag (lines 4-6). In XSL you

can just type text, but results can end up with strange

whitespace if you do (although there are ways to simply

remove all whitespace).

The only new XPath function in this example is concat(),

which simply combines what XPaths or text there might

be in the brackets. We end the output for this tag with an

actual tag name (line 10) and we add a space afterwards

(line 12) so it won’t touch the next tag. (There are better

ways to do this in XSL using the last() XPath function).

After that, we go back to the <xsl:for-each/> element

again if there is another category element, otherwise we

end the <xsl:for-each/> loop and end this

<xsl:template/>.

A TOUCH OF STYLE

Because we’re using recursion through our templates, you

will find this is the end of the templates and the rest of the

XML will be ignored by the parser. Finally, we can add our

CSS to finish up. (I have created one for Flickr and another

for News feeds)

<style type="text/css" media="screen">@import

"flickr_overview.css?v=001";</style>

50 24 ways 2006 edition

http://24ways.org/examples/beautiful-xml-with-xsl/flickr_overview.css
http://24ways.org/examples/beautiful-xml-with-xsl/news_overview.css

So we end up with a nice simple to understand but also

quick to write XSL which can be used on ATOM Flickr

feeds and ATOM News feeds. With a little playing around

with XSL, you can make XML beautiful again.

All the files can be found in the zip file (14k)

ABOUT THE AUTHOR

Ian Forrester heads up the BBC’s Backstage, a developer/

designer network like no other. He’s well known for geek social

events across the capital including London Geekdinners,

BarCampLondon and recently the BBC Backstage London

Christmas Bash. He’s currently master minding plans

BarCampLondon2, a series of backstage social events across

Making XML Beautiful Again: Introducing Client-Side XSL

24 ways 2006 edition 51

http://24ways.org/examples/beautiful-xml-with-xsl/source_atom_flickr.xml
http://24ways.org/examples/beautiful-xml-with-xsl/source_atom_flickr.xml
http://24ways.org/examples/beautiful-xml-with-xsl/source_atom_news.xml
http://24ways.org/examples/beautiful-xml-with-xsl/beautifulxmlwithxsl.zip
http://backstage.bbc.co.uk
http://www.geekdinner.co.uk
http://barcamp.org/barcamplondon
http://backstage.bbc.co.uk/news/archives/2006/11/christmas_bash.html
http://backstage.bbc.co.uk/news/archives/2006/11/christmas_bash.html

the UK and something very special. Somehow, Ian finds time to

blog at cubicgarden.com and think about user generated and

xml pipelines at his new blog called flow *.

52 24 ways 2006 edition

http://www.cubicgarden.com/blojsom/blog/cubicgarden/
http://www.cubicgarden.com/blojsom/blog/pipelines/

Veerle Pieters 24ways.org/200608

8. Random Lines Made
With Mesh

I know that Adobe Illustrator can be a bit
daunting for people who aren’t really
advanced users of the program, but you
would be amazed by how easy you can create
cool effects or backgrounds. In this short
tutorial I show you how to create a cool
looking background only in 5 steps.

STEP 1 – CREATE LINES

Random Lines Made With Mesh

24 ways 2006 edition 53

http://24ways.org/200608

Create lines using random widths and harmonious

suitable colors. If you get stuck on finding the right colors,

check out Adobe’s Kuler and start experimenting.

STEP 2 – CONVERT STROKES TO FILLS

Select all lines and convert them to fills. Go to the Object

menu, select Path > Outline Stroke. Select the Rectangle

tool and draw 1 big rectangle on top the lines. Give the

rectangle a suitable color. With the rectangle still

selected, go to the Object menu, select Arrange > Send to

Back.

54 24 ways 2006 edition

http://kuler.adobe.com/

STEP 3 – CONVERT TO MESH

Select all objects by pressing the command key (for Mac

users), control key (for Windows users) + the “a” key. Go

to the Object menu and select the Envelope Distort >

Make with Mesh option. Enter 2 rows and 2 columns.

Check the preview box to see what happens and click the

OK button.

STEP 4 – PLAY AROUND WITH THE MESH
POINTS

Random Lines Made With Mesh

24 ways 2006 edition 55

Play around with the points of the mesh using the Direct

Selection tool (the white arrow in the Toolbox). Click on

the top right point of the mesh. Once you’re starting to

drag hold down the shift key and move the point upwards.

Now start dragging the bezier handles on the mesh to

achieve the effect as shown in the above picture. Of

course you can try out all kind of different effects here.

56 24 ways 2006 edition

THE FINAL RESULT

This is an example of how the final result can look. You can

try out all kinds of different shapes dragging the handles

of the mesh points. This is just one of the many results you

can get. So next time you haven’t got inspiration for a

background of a header, a banner or whatever, just

experiment with a few basic shapes such as lines and try

out the ‘Envelope Distort’ options in Illustrator or the

‘Make with Mesh’ option and experiment, you’ll be

amazed by the unexpected creative results.

Random Lines Made With Mesh

24 ways 2006 edition 57

ABOUT THE AUTHOR

Veerle Pieters is a graphic/web designer based in Deinze,

Belgium. Starting in ’92 as a freelance graphic designer, Veerle

worked on print design before focussing more on webdesign

and GUI (since ’96). She runs her own design studio Duoh!

together with Geert Leyseele. Veerle has been blogging since

2003 and is considered number 39 on the list of “NxE’s Fifty

Most Influential ‘Female’ Bloggers“.

58 24 ways 2006 edition

http://veerle.duoh.com
http://www.duoh.com
http://northxeast.com/general/nxe�s-fifty-most-influential-female-bloggers/
http://northxeast.com/general/nxe�s-fifty-most-influential-female-bloggers/

Mark Norman Francis 24ways.org/200609

9. Marking Up a Tag Cloud

Everyone’s doing it.

The problem is, everyone’s doing it wrong.

Harsh words, you might think. But the crimes against

decent markup are legion in this area. You see, I’m

something of a markup and semantics junkie. So I’m going

to analyse some of the more well-known tag clouds on the

internet, explain what’s wrong, and then show you one

way to do it better.

DEL.ICIO.US

I think the first ever tag cloud I saw was on del.icio.us.

Here’s how they mark it up.

<div class="alphacloud">

.net

advertising

ajax

...

</div>

Marking Up a Tag Cloud

24 ways 2006 edition 59

http://24ways.org/200609
http://del.icio.us/

Unfortunately, that is one of the worst examples of tag

cloud markup I have ever seen. The page states that a tag

cloud is “a list of tags where size reflects popularity”.

However, despite describing it in this way to the human

readers, the page’s author hasn’t described it that way in

the markup. It isn’t a list of tags, just a bunch of anchors in

a <div>. This is also inaccessible because a screenreader

will not pause between adjacent links, and in some

configurations will not announce the individual links, but

rather all of the tags will be read as just one link

containing a whole bunch of words. Markup crime number

one.

FLICKR

Ah, Flickr. The darling photo sharing site of the internet,

and the biggest blind spot in every standardista’s vision.

Forgive it for having atrocious markup and sometimes

confusing UI because it’s just so much damn fun to use.

Let’s see what they do.

<p id="TagCloud">

<a href="/photos/tags/06/" style="font-size:

14px;">06

<a href="/photos/tags/africa/" style="font-size:

12px;">africa

<a href="/photos/tags/amsterdam/" style="font-size:

14px;">amsterdam

...

</p>

60 24 ways 2006 edition

http://flickr.com/

Again we have a simple collection of anchors like

del.icio.us, only this time in a paragraph. But rather than

using a class to represent the size of the tag they use an

inline style. An inline style using a pixel-based font size.

That’s so far away from the goal of separating style from

content, they might as well use a tag. You could

theoretically parse that to extract the information, but

you have more work to guess what the pixel sizes

represent. Markup crime number two (and extra jail time

for using non-breaking spaces purely for visual spacing

purposes.)

TECHNORATI

Ah, now. Here, you’d expect something decent. After all,

the Overlord of microformats and King of Semantics

Tantek Çelik works there. Surely we’ll see something

decent here?

<ol class="heatmap">

<a href="/tag/

Britney+Spears">Britney

Spears

<a href="/tag/

Bush">Bush

<a

href="/tag/

Christmas">Christmas

...

<a href="/tag/

Marking Up a Tag Cloud

24 ways 2006 edition 61

http://microformats.org/
http://tantek.com

SEO">SEO

<a

href="/tag/

Shopping">Shopping

...

Unfortunately it turns out not to be that decent, and stop

calling me Shirley. It’s not exactly terrible code. It does

recognise that a tag cloud is a list of links. And, since

they’re in alphabetical order, that it’s an ordered list of

links. That’s nice. However … fifteen nested tags?

FIFTEEN? That’s emphasis for you. Yes, it is parse-able,

but it’s also something of a strange way of looking at

emphasis. The HTML spec states that is emphasis,

and is for stronger emphasis. Nesting tags

seems counter to the idea that different tags are used for

different levels of emphasis. Plus, if you had a screen

reader that stressed the voice for emphasis, what would it

do? Shout at you? Markup crime number three.

SO WHAT SHOULD IT BE?

As del.icio.us tells us, a tag cloud is a list of tags where the

size that they are rendered at contains extra information.

However, by hiding the extra context purely within the

CSS or the HTML tags used, you are denying that context

62 24 ways 2006 edition

to some users. The basic assumption being made is that all

users will be able to see the difference between font sizes,

and this is demonstrably false.

A better way to code a tag cloud is to put the context of

the cloud within the content, not the markup or CSS

alone. As an example, I’m going to take some of my

favourite flickr tags and put them into a cloud which

communicates the relative frequency of each tag.

To start with a tag cloud in its most basic form is just a list

of links. I am going to present them in alphabetical order,

so I’ll use an ordered list. Into each list item I add the

number of photos I have with that particular tag. The tag

itself is linked to the page on flickr which contains those

photos. So we end up with this first example. To display

this as a traditional tag cloud, we need to alter it in a few

ways:

▪ The items need to be displayed next to each other,

rather than one-per-line

▪ The context information should be hidden from display

(but not from screen readers)

▪ The tag should link to the page of items with that tag

Displaying the items next to each other simply means

setting the display of the list elements to inline. The

context can be hidden by wrapping it in a and then

using the off-left method to hide it. And the link just

Marking Up a Tag Cloud

24 ways 2006 edition 63

http://flickr.com/photos/mn_francis/tags/
http://24ways.org/examples/marking-up-a-tag-cloud/example-sans-css.html
http://css-discuss.incutio.com/?page=OffLeft

means adding an anchor (with rel="tag" for some extra

microformats bonus points). So, now we have a simple

collection of links in our second example.

The last stage is to add the sizes. Since we already have

context in our content, the size is purely for visual

rendering, so we can just use classes to define the

different sizes. For my example, I’ll use a range of class

names from not-popular through ultra-popular, in order

of smallest to largest, and then use CSS to define different

font sizes. If you preferred, you could always use less

verbose class names such as size1 through size6.

Anyway, adding some classes and CSS gives us our final

example, a semantic and more accessible tag cloud.

64 24 ways 2006 edition

http://microformats.org/
http://24ways.org/examples/marking-up-a-tag-cloud/example-sans-sizes.html
http://24ways.org/examples/marking-up-a-tag-cloud/example.html
http://24ways.org/examples/marking-up-a-tag-cloud/example.html

ABOUT THE AUTHOR

Mark Norman Francis is obsessed with HTML, semantics, code

quality and doing things right. He is based in London, England

and hopes one day to start blogging properly at

marknormanfrancis.com.

Marking Up a Tag Cloud

24 ways 2006 edition 65

http://marknormanfrancis.com/

Drew McLellan 24ways.org/200610

10. Writing Responsible
JavaScript

Without a doubt, JavaScript has been
making something of a comeback in the last
year. If you’re involved in client-side
development in any way at all, chances are
that you’re finding yourself writing more
JavaScript now than you have in a long time.

If you learned most of your JavaScript back when DHTML

was all the rage and before DOM Scripting was in vogue,

there have been some big shifts in the way scripts are

written. Most of these are in the way event handlers are

assigned and functions declared. Both of these changes

are driven by the desire to write scripts that are

responsible page citizens, both in not tying behaviour to

content and in taking care not to conflict with other

scripts. I thought it may be useful to look at some of these

more responsible approaches to learn how to best write

scripts that are independent of the page content and are

safely portable between different applications.

66 24 ways 2006 edition

http://24ways.org/200610

EVENT HANDLING

Back in the heady days of Web 1.0, if you wanted to have

an object on the page react to something like a click, you

would simply go ahead and attach an onclick attribute.

This was easy and understandable, but much like the font

tag or the style attribute, it has the downside of mixing

behaviour or presentation in with our content. As we’re

learned with CSS, there are big benefits in keeping those

layers separate. Hey, if it works for CSS, it should work for

JavaScript too.

Just like with CSS, instead of adding an attribute to our

element within the document, the more responsible way

to do that is to look for the item from your script (like CSS

does with a selector) and then assign the behaviour to it.

To give an example, take this oldskool onclick use case:

<a id="anim-link" href="#"

onclick="playAnimation()">Play the animation

This could be rewritten by removing the onclick

attribute, and instead doing the following from within

your JavaScript.

document.getElementById('anim-link').onclick =

playAnimation;

Writing Responsible JavaScript

24 ways 2006 edition 67

IT’S ALL IN THE TIMING

Of course, it’s never quite that easy. To be able to attach

that onclick, the element you’re targeting has to exist in

the page, and the page has to have finished loading for the

DOM to be available. This is where the onload event is

handy, as it fires once everything has finished loading.

Common practise is to have a function called something

like init() (short for initialise) that sets up all these event

handlers as soon as the page is ready.

Back in the day we would have used the onload attibute

on the <body> element to do this, but of course what we

really want is:

window.onload = init;

As an interesting side note, we’re using init here rather

than init() so that the function is assigned to the event.

If we used the parentheses, the init function would have

been run at that moment, and the result of running the

function (rather than the function itself) would be

assigned to the event. Subtle, but important.

As is becoming apparent, nothing is ever simple, and we

can’t just go around assigning our initialisation function to

window.onload. What if we’re using other scripts in the

page that might also want to listen out for that event?

Whichever script got there last would overwrite

everything that came before it. To manage this, we need a

68 24 ways 2006 edition

script that checks for any existing event handlers, and

adds the new handler to it. Most of the JavaScript

libraries have their own systems for doing this. If you’re

not using a library, Simon Willison has a good stand-alone

example

function addLoadEvent(func) {

var oldonload = window.onload;

if (typeof window.onload != 'function') {

window.onload = func;

} else {

window.onload = function() {

if (oldonload) {

oldonload();

}

func();

}

}

}

Obviously this is just a toe in the events model’s complex

waters. Some good further reading is PPK’s Introduction

to Events.

CARVING OUT YOUR OWN SPACE

Another problem that rears its ugly head when combining

multiple scripts on a single page is that of making sure

that the scripts don’t conflict. One big part of that is

Writing Responsible JavaScript

24 ways 2006 edition 69

http://simon.incutio.com/
http://simon.incutio.com/archive/2004/05/26/addLoadEvent
http://simon.incutio.com/archive/2004/05/26/addLoadEvent
http://www.quirksmode.org/js/introevents.html
http://www.quirksmode.org/js/introevents.html

ensuring that no two scripts are trying to create functions

or variables with the same names. Reusing a name in

JavaScript just over-writes whatever was there before it.

When you create a function in JavaScript, you’ll be

familiar with doing something like this.

function foo() {

... goodness ...

}

This is actually just creating a variable called foo and

assigning a function to it. It’s essentially the same as the

following.

var foo = function() {

... goodness ...

}

This name foo is by default created in what’s known as the

‘global namespace’ – the general pool of variables within

the page. You can quickly see that if two scripts use foo as

a name, they will conflict because they’re both creating

those variables in the global namespace.

A good solution to this problem is to add just one name

into the global namespace, make that one item either a

function or an object, and then add everything else you

need inside that. This takes advantage of JavaScript’s

variable scoping to contain you mess and stop it

interfering with anyone else.

70 24 ways 2006 edition

CREATING AN OBJECT

Say I was wanting to write a bunch of functions

specifically for using on a site called ‘Foo Online’. I’d want

to create my own object with a name I think is likely to be

unique to me.

var FOOONLINE = {};

We can then start assigning functions are variables to it

like so:

FOOONLINE.message = 'Merry Christmas!';

FOOONLINE.showMessage = function() {

alert(this.message);

};

Calling FOOONLINE.showMessage() in this example would

alert out our seasonal greeting. The exact same thing

could also be expressed in the following way, using the

object literal syntax.

var FOOONLINE = {

message: 'Merry Christmas!',

showMessage: function() {

alert(this.message);

}

};

Writing Responsible JavaScript

24 ways 2006 edition 71

CREATING A FUNCTION TO CREATE AN OBJECT

We can extend this idea bit further by using a function

that we run in place to return an object. The end result is

the same, but this time we can use closures to give us

something like private methods and properties of our

object.

var FOOONLINE = function(){

var message = 'Merry Christmas!';

return {

showMessage: function(){

alert(message);

}

}

}();

There are two important things to note here. The first is

the parentheses at the end of line 10. Just as we saw

earlier, this runs the function in place and causes its result

to be assigned. In this case the result of our function is the

object that is returned at line 4.

The second important thing to note is the use of the var

keyword on line 2. This ensures that the message variable

is created inside the scope of the function and not in the

global namespace. Because of the way closure works

(which if you’re not familiar with, just suspend your

disbelief for a moment) that message variable is visible to

72 24 ways 2006 edition

everything inside the function but not outside. Trying to

read FOOONLINE.message from the page would return

undefined.

This is useful for simulating the concept of private class

methods and properties that exist in other programming

languages. I like to take the approach of making

everything private unless I know it’s going to be needed

from outside, as it makes the interface into your code a lot

clearer for someone else to read.

ALL CHANGE, PLEASE

So that was just a whistle-stop tour of a couple of the

bigger changes that can help to make your scripts better

page citizens. I hope it makes useful Sunday reading, but

obviously this is only the tip of the iceberg when it comes

to designing modular, reusable code.

For some, this is all familiar ground already. If that’s the

case, I encourage you to perhaps submit a comment with

any useful resources you’ve found that might help others

get up to speed. Ultimately it’s in all of our interests to

make sure that all our JavaScript interoperates well –

share your tips.

Writing Responsible JavaScript

24 ways 2006 edition 73

ABOUT THE AUTHOR

Drew McLellan is lead developer on your favourite small CMS,

Perch. He is Director and Senior Developer at UK-based web

development agency edgeofmyseat.com, and formerly Group

Lead at the Web Standards Project. When not publishing 24

ways, Drew keeps a personal site covering web development

issues and themes, takes photos and tweets a lot.

74 24 ways 2006 edition

http://grabaperch.com/
http://allinthehead.com/
http://flickr.com/drewm/
http://twitter.com/drewm

James Edwards 24ways.org/200611

11. Showing Good Form

Earlier this year, I forget exactly when (it’s
been a good year), I was building a client site
that needed widgets which look like this
(designed, incidentally, by my erstwhile
writing partner, Cameron Adams):

Building this was a challenge not just in CSS, but in

choosing the proper markup – how should such a widget

be constructed?

MMM … MARKUP

It seemed to me there were two key issues to deal with:

Showing Good Form

24 ways 2006 edition 75

http://24ways.org/200611
http://www.sitepoint.com/launch/fee47ea/3/49
http://www.themaninblue.com/

▪ The function of the interface is to input information, so

semantically this is a form, therefore we have to find a

way of building it using form elements: fieldset, legend,

label and input

▪ We can’t use a table for layout, even though that would

clearly be the easiest solution!

Abusing tables for layout is never good – physical layout is

not what table semantics mean. But even if this data can

be described as a table, we shouldn’t mix forms markup

with non-forms markup, because of the behavioral

impact this can have on a screen reader:

To take a prominent example, the screen reader JAWS has

a mode specifically for interacting with forms (cunningly

known as “forms mode”). When running in this mode its

output only includes relevant elements – legends, labels and

form controls themselves. Any other kind of markup – like

text in a previous table cell, a paragraph or list in between

– is simply ignored. The user in this situation would have

to switch continually in and out of forms mode to hear all

the content. (For more about this issue and some test

examples, there’s a thread at accessify forum which

wanders in that direction.)

One further issue for screen reader users is implied by the

design: the input fields are associated together in rows

and columns, and a sighted user can visually scan across

and down to make those associations; but a blind user

76 24 ways 2006 edition

http://www.accessifyforum.com/viewtopic.php?t=6034

can’t do that. For such a user the row and column header

data will need to be there at every axis; in other words,

the layout should be more like this:

And constructed with appropriate semantic markup to

convey those relationships. By this point the selection of

elements seems pretty clear: each row is a fieldset, the

row header is a legend, and each column header is a label,

associated with an input.

Here’s what that form looks like with no CSS:

Showing Good Form

24 ways 2006 edition 77

And here’s some markup for the first row (with most of

the attributes removed just to keep this example

succinct):

<fieldset>

<legend>

Match points

</legend>

<label>

Win

<input value="3" />

</label>

<label>

Draw

<input value="1" />

</label>

<label>

Lose

<input value="0" />

</label>

<label>

Played

<input value="0" />

</label>

</fieldset>

The span inside each legend is because legend elements

are highly resistant to styling! Indeed they’re one of the

most stubborn elements in the browsers’ vocabulary. Oh

man … how I wrestled with the buggers … until this

78 24 ways 2006 edition

obvious alternative occurred to me! So the legend

element itself is just a container, while all the styling is on

the inner span.

OH YEAH, THERE WAS SOME CSS TOO

I’m not gonna dwell too much on the CSS it took to make

this work – this is a short article, and it’s all there in the

demo [demo page, style sheet]

But I do want to touch on the most interesting bit – where

we get from a layout with headers on every row, to one

where only the top row has headers – or at least, so it

appears to graphical browsers. For screen readers, as we

noted, we need those headers on every row, so we should

employ some cunning CSS to partly negate their visual

presence, without removing them from the output.

The core styling for each label span is like this:

label span

{

display:block;

padding:5px;

line-height:1em;

background:#423221;

color:#fff;

font-weight:bold;

}

Showing Good Form

24 ways 2006 edition 79

http://24ways.org/examples/showing-good-form/demo.html
http://24ways.org/examples/showing-good-form/demo.css

But in the rows below the header they have these

additional rules:

fieldset.body label span

{

padding:0 5px;

line-height:0;

position:relative;

top:-10000em;

}

The rendered width of the element is preserved, ensuring

that the surrounding label is still the same width as the

one in the header row above, and hence a unified column

width is preserved all the way down. But the element

effectively has no height, and so it’s effectively invisible.

The styling is done this way, rather than just setting the

height to zero and using overflow:hidden, because to do

that would expose an unrelated quirk with another

popular screen reader! (It would hide the output from

Window Eyes, as shown in this test example at access

matters.)

THE FINISHED WIDGET

It’s an intricate beast allright! But after all that we do

indeed get the widget we want:

▪ Demo page

▪ Style sheet

80 24 ways 2006 edition

http://www.access-matters.com/2005/04/24/quiz-527-screen-reader-test-7/
http://www.access-matters.com/2005/04/24/quiz-527-screen-reader-test-7/
http://24ways.org/examples/showing-good-form/demo.html
http://24ways.org/examples/showing-good-form/demo.css

It’s not perfect, most notably because the legends have to

have a fixed width; this can be in em to allow for text

scaling, but it still doesn’t allow the content to break into

multiple lines. It also doesn’t look quite right in Safari; and

some CSS hacking was needed to make it look right in IE6

and IE7.

Still it worked well enough for the purpose, and satisfied

the client completely. And most of all it re-assured me in

my faith – that there’s never any need to abuse tables for

layout. (Unless of course you think this content is a table

anyway, but that’s another story!)

ABOUT THE AUTHOR

Showing Good Form

24 ways 2006 edition 81

James Edwards (aka brothercake) is a freelance web developer

based in the United Kingdom, specialising in advanced

JavaScript programming and accessible website development.

He is an outspoken advocate of standards-based development,

an active member of WaSP (The Web Standards Project), and

creator of the Ultimate Drop Down Menu system - the first

commercial DHTML menu to be WCAG compliant. James was

also co-author of The JavaScript Anthology, published by

SitePoint in 2006.

82 24 ways 2006 edition

http://www.brothercake.com/
http://www.udm4.com/
http://www.sitepoint.com/launch/fee47ea/3/49

Richard Rutter 24ways.org/200612

12. Compose to a Vertical
Rhythm

“Space in typography is like time in music.
It is infinitely divisible, but a few
proportional intervals can be much more
useful than a limitless choice of arbitrary
quantities.” So says the typographer Robert
Bringhurst, and just as regular use of time
provides rhythm in music, so regular use of
space provides rhythm in typography, and
without rhythm the listener, or the reader,
becomes disorientated and lost.

On the Web, vertical rhythm – the spacing and

arrangement of text as the reader descends the page – is

contributed to by three factors: font size, line height and

margin or padding. All of these factors must calculated

with care in order that the rhythm is maintained.

Compose to a Vertical Rhythm

24 ways 2006 edition 83

http://24ways.org/200612

The basic unit of vertical space is line height. Establishing

a suitable line height that can be applied to all text on the

page, be it heading, body copy or sidenote, is the key to a

solid dependable vertical rhythm, which will engage and

guide the reader down the page. To see this in action, I’ve

created an example with headings, footnotes and

sidenotes.

ESTABLISHING A SUITABLE LINE HEIGHT

The easiest place to begin determining a basic line height

unit is with the font size of the body copy. For the example

I’ve chosen 12px. To ensure readability the body text will

almost certainly need some leading, that is to say spacing

between the lines. A line-height of 1.5em would give 6px

spacing between the lines of body copy. This will create a

total line height of 18px, which becomes our basic unit.

Here’s the CSS to get us to this point:

body {

font-size: 75%;

}

html>body {

font-size: 12px;

}

p {

line-height 1.5em;

}

84 24 ways 2006 edition

http://24ways.org/examples/compose-to-a-vertical-rhythm/example.html
http://24ways.org/examples/compose-to-a-vertical-rhythm/example.html

There are many ways to size text in CSS and the above

approach provides and accessible method of achieving

the pixel-precision solid typography requires. By way of

explanation, the first font-size reduces the body text

from the 16px default (common to most browsers and OS

set-ups) down to the 12px we require. This rule is

primarily there for Internet Explorer 6 and below on

Windows: the percentage value means that the text will

scale predictably should a user bump the text size up or

down. The second font-size sets the text size specifically

and is ignored by IE6, but used by Firefox, Safari, IE7,

Opera and other modern browsers which allow users to

resize text sized in pixels.

SPACING BETWEEN PARAGRAPHS

With our rhythmic unit set at 18px we need to ensure that

it is maintained throughout the body copy. A common

place to lose the rhythm is the gaps set between margins.

The default treatment by web browsers of paragraphs is

to insert a top- and bottom-margin of 1em. In our case

this would give a spacing between the paragraphs of 12px

and hence throw the text out of rhythm. If the rhythm of

the page is to be maintained, the spacing of paragraphs

should be related to the basic line height unit. This is

achieved simply by setting top- and bottom-margins equal

to the line height.

Compose to a Vertical Rhythm

24 ways 2006 edition 85

In order that typographic integrity is maintained when

text is resized by the user we must use ems for all our

vertical measurements, including line-height, padding

and margins.

p {

font-size:1em;

margin-top: 1.5em;

margin-bottom: 1.5em;

}

Browsers set margins on all block-level elements (such as

headings, lists and blockquotes) so a way of ensuring that

typographic attention is paid to all such elements is to

reset the margins at the beginning of your style sheet. You

could use a rule such as:

body,div,dl,dt,dd,ul,ol,li,h1,h2,h3,h4,h5,h6,pre,form,fieldset,p,blockquote,th,td

{

margin:0;

padding:0;

}

Alternatively you could look into using the Yahoo! UI

Reset style sheet which removes most default styling, so

providing a solid foundation upon which you can explicitly

declare your design intentions.

86 24 ways 2006 edition

http://developer.yahoo.com/yui/reset/
http://developer.yahoo.com/yui/reset/

VARIATIONS IN TEXT SIZE

When there is a change in text size, perhaps with a

heading or sidenotes, the differing text should also take

up a multiple of the basic leading. This means that, in our

example, every diversion from the basic text size should

take up multiples of 18px. This can be accomplished by

adjusting the line-height and margin accordingly, as

described following.

HEADINGS

Subheadings in the example page are set to 14px. In order

that the height of each line is 18px, the line-height

should be set to 18 ÷ 14 = 1.286. Similarly the margins

above and below the heading must be adjusted to fit. The

temptation is to set heading margins to a simple 1em, but

in order to maintain the rhythm, the top and bottom

margins should be set at 1.286em so that the spacing is

equal to the full 18px unit.

h2 {

font-size:1.1667em;

line-height: 1.286em;

margin-top: 1.286em;

margin-bottom: 1.286em;

}

Compose to a Vertical Rhythm

24 ways 2006 edition 87

http://24ways.org/examples/compose-to-a-vertical-rhythm/example.html

One can also set asymmetrical margins for headings,

provided the margins combine to be multiples of the basic

line height. In our example, a top margin of 1½ lines is

combined with a bottom margin of half a line as follows:

h2 {

font-size:1.1667em;

line-height: 1.286em;

margin-top: 1.929em;

margin-bottom: 0.643em;

}

Also in our example, the main heading is given a text size

of 18px, therefore the line-height has been set to 1em,

as has the margin:

h1 {

font-size:1.5em;

line-height: 1em;

margin-top: 0;

margin-bottom: 1em;

}

SIDENOTES

Sidenotes (and other supplementary material) are often

set at a smaller size to the basic text. To keep the rhythm,

this smaller text should still line up with body copy, so a

calculation similar to that for headings is required. In our

example, the sidenotes are set at 10px and so their line-

height must be increased to 18 ÷ 10 = 1.8.

88 24 ways 2006 edition

.sidenote {

font-size:0.8333em;

line-height:1.8em;

}

BORDERS

One additional point where vertical rhythm is often lost is

with the introduction of horizontal borders. These

effectively act as shims pushing the subsequent text

downwards, so a two pixel horizontal border will throw

out the vertical rhythm by two pixels. A way around this is

to specify horizontal lines using background images or, as

in our example, specify the width of the border in ems and

adjust the padding to take up the slack.

The design of the footnote in our example requires a 1px

horizontal border. The footnote contains 12px text, so 1px

in ems is 1 ÷ 12 = 0.0833. I have added a margin of 1½

lines above the border (1.5 × 18 ÷ 12 = 2.5ems), so to

maintain the rhythm the border + padding must equal a ½

(9px). We know the border is set to 1px, so the padding

must be set to 8px. To specify this in ems we use the

familiar calculation: 8 ÷ 12 = 0.667.

HIT ME WITH YOUR RHYTHM STICK

Composing to a vertical rhythm helps engage and guide

the reader down the page, but it takes typographic

discipline to do so. It may seem like a lot of fiddly maths is

Compose to a Vertical Rhythm

24 ways 2006 edition 89

involved (a few divisions and multiplications never hurt

anyone) but good type setting is all about numbers, and it

is this attention to detail which is the key to success.

ABOUT THE AUTHOR

Richard Rutter is a user experience consultant and director of

Clearleft. In 2009 he cofounded the webfont service, Fontdeck.

He runs an ongoing project called The Elements of Typographic

Style Applied to the Web, where he extols the virtues of good

web typography. Richard occasionally blogs at Clagnut, where

he writes about design, accessibility and web standards issues,

as well as his passion for music and mountain biking.

90 24 ways 2006 edition

http://clearleft.com/
http://fontdeck.com/
http://webtypography.net/
http://webtypography.net/
http://clagnut.com/

Ian Lloyd 24ways.org/200613

13. Revealing
Relationships Can Be
Good Form

A few days ago, a colleague of mine –
someone I have known for several years,
who has been doing web design for several
years and harks back from the early days of
ZDNet – was running through a prototype I
had put together for some user testing. As
with a lot of prototypes, there was an
element of ‘smoke and mirrors’ to make
things look like they were working.

One part of the form included a yes/no radio button, and

selecting the Yes option would, in the real and final

version of the form, reveal some extra content. Rather

than put too much JavaScript in the prototype, I took a

preverbial shortcut and created a link which I wrapped

Revealing Relationships Can Be Good Form

24 ways 2006 edition 91

http://24ways.org/200613

around the text next to the radio button – clicking on that

link would cause the form to mimic a change event on the

radio button. But it wasn’t working for him.

Why was that? Because whereas I created the form using

a <label> tag for each <input> and naturally went to click

on the text rather than the form control itself, he was

going straight for the control (and missing the sneaky

little <a href> I’d placed around the text). Bah! There

goes my time-saver.

So, what did I learn? That a web professional who has

used the Internet for years had neither heard of the

<label> tag, nor had he ever tried clicking on the text. It

just goes to show that despite its obvious uses, the label

element is not as well known as it rightfully deserves to

be. So, what’s a web-standards-loving guy to do? Make a

bit more bleedin’ obvious, that’s what!

THE MOUSE POINTER TRICK

OK, this is the kind of thing that causes some people

outrage. A dead simple way of indicating that the label

does something is to use a snippet of CSS to change the

default mouse cursor to a hand. It’s derided because the

hand icon is usually used for links, and some would argue

that using this technique is misleading:

92 24 ways 2006 edition

label {

cursor: pointer;

}

This is not a new idea, though, and you didn’t come here

for this. The point is that with something very simple,

you’ve made the label element discoverable. But there are

other ways that you can do this that are web standards

friendly and won’t upset the purists quite so much as the

hand/pointer trick. Time to wheel in the JavaScript trolley

jack …

OUR OLD FRIEND ADDEVENT

First things, first, you’ll need to use the addEvent function

(or your favourite variation thereof) that Scott Andrew

devised and make that available to the document

containing the form:

function addEvent(elm, evType, fn, useCapture)

{

if(elm.addEventListener)

{

elm.addEventListener(evType, fn, useCapture);

return true;

}

else if (elm.attachEvent)

{

var r = elm.attachEvent('on' + evType, fn);

return r;

}

else

Revealing Relationships Can Be Good Form

24 ways 2006 edition 93

{

elm['on' + evType] = fn;

}

}

FINDING ALL YOUR LABELS

Once you’ve linked to the addEvent function (or

embedded it on the page), you can start to get your

JavaScripting fingers a-flexing. Now, what I’m suggesting

you do here is:

▪ Identify all the label elements on the page by working

your way through the DOM

▪ Find out the value of the for attribute for each label

that you uncover

▪ Attach a behaviour or two to each of those label

elements – and to the input that the label relates to

(identified with the for attribute)

Here’s the technobabble version of the steps above:

function findLabels()

{

var el = document.getElementsByTagName("label");

for (i=0;i<el.length;i++)

{

var thisId = el[i].getAttribute("for");

if ((thisId)==null)

{

thisId = el[i].htmlFor;

}

94 24 ways 2006 edition

if(thisId!="")

{

//apply these behaviours to the label

el[i].onmouseover = highlightRelationship;

el[i].onmouseout = hideRelationship;

}

}

}

function highlightRelationship()

{

var thisId = this.getAttribute("for");

if ((thisId)==null)

{

thisId = this.htmlFor;

}

this.className="showRel";

document.getElementById(thisId).className="showRel";

//if (document.getElementById(thisId).type=="text")

document.getElementById(thisId).select();

}

function hideRelationship()

{

var thisId = this.getAttribute("for");

if ((thisId)==null)

{

thisId = this.htmlFor;

}

this.className="";

document.getElementById(thisId).className="";

}

addEvent(window, 'load', findLabels, false);

Revealing Relationships Can Be Good Form

24 ways 2006 edition 95

Using the above script, you can apply a CSS class (I’ve

called it showRel) to the elements when you hover over

them. How you want it to look is up to you, of course.

Here are a few examples of the idea. Note: the design is

not exactly what you’d call ‘fancy’, and in the examples

there is one input that looks broken but it is deliberately

moved away from the label it relates to, just to

demonstrate that you can show the relationship even

from afar.

▪ Background colour changes on hover

▪ Background colour change + mouse pointer trick

▪ Background colour change + mouse pointer trick + text

selection

Hopefully you’ll agree that using an unobtrusive piece of

JavaScript you can make otherwise ‘shy’ elements like the

label reveal their true colours. Although you might want

to tone down the colours from the ones I’ve used in this

demo!

96 24 ways 2006 edition

http://24ways.org/examples/revealing-relationships-can-be-good-form/show-label-relationship.htm
http://24ways.org/examples/revealing-relationships-can-be-good-form/show-label-relationship-pointer.htm
http://24ways.org/examples/revealing-relationships-can-be-good-form/show-label-relationship-pointer-sel.htm
http://24ways.org/examples/revealing-relationships-can-be-good-form/show-label-relationship-pointer-sel.htm

ABOUT THE AUTHOR

Ian Lloyd founded Accessify.com, a web accessibility site, back

in 2002 and has been a member of the Web Standards Project

since 2003, where he is part of the Accessibility Task Force. He

has written or co-authored a number of books on the topic of

standards-based web design/development, most recently co-

authoring on Pro CSS for Apress. He lives in Swindon, UK, a

place best known for its ‘Magic Roundabout‘ and Doctor Who’s

Billie Piper. (It’s not all bad, though.)

Revealing Relationships Can Be Good Form

24 ways 2006 edition 97

http://www.accessify.com
http://www.webstandards.org/about/members/lloydi/
http://www.amazon.com/exec/obidos/ASIN/159059732X/httpbeginncom-20/104-0301049-0956745
http://en.wikipedia.org/wiki/Magic_Roundabout_%28Swindon%29

John Allsopp 24ways.org/200614

14. Styling hCards with
CSS

There are plenty of places online where you
can learn about using the hCard
microformat to mark up contact details at
your site (there are some resources at the
end of the article). But there’s not yet been a
lot of focus on using microformats with CSS.
So in this installment of 24 ways, we’re
going to look at just that – how
microformats help make CSS based styling
simpler and more logical.

Being rich, quite complex structures, hCards provide

designers with a sophisticated scaffolding for styling

them. A recent example of styling hCards I saw, playing on

the business card metaphor, was by Andy Hume, at

http://thedredge.org/2005/06/using-hcards-in-your-

blog/. While his approach uses fixed width cards, let’s take

a look at how we might style a variable width business

card style for our hCards.

98 24 ways 2006 edition

http://24ways.org/200614
http://thedredge.org/2005/06/using-hcards-in-your-blog/
http://thedredge.org/2005/06/using-hcards-in-your-blog/

Let’s take a common hCard, which includes address,

telephone and email details

<div class="vcard">

<p class="fn org">Web Directions North

<a href="http://suda.co.uk/projects/X2V/

get-vcard.php?uri=http://north.webdirections.org/

contact/">

<img src="images/vcard-add.png" alt="download

vcard icon">

</p>

1485 Laperrière Avenue

Ottawa ON K1Z 7S8

Canada

Phone/Fax: Work: 61 2 9365 5007

Email: info@webdirections.org

We’ll be using a variation on the now well established

“sliding doors” technique (if you create a CSS technique,

remember it’s very important to give it a memorable

name or acronym, and bonus points if you get your name

in there!) by Douglas Bowman, enhanced by Scott Schiller

(see http://www.schillmania.com/projects/dialog/,) which

will give us a design which looks like this

Styling hCards with CSS

24 ways 2006 edition 99

mailto:info@webdirections.org
http://www.schillmania.com/projects/dialog/

The technique, in a nutshell, uses background images on

four elements, two at the top, and two at the bottom, to

add each rounded corner.

We are going to make this design “fluid” in the sense that

it grows and shrinks in proportion with the size of the font

that the text of the element is displayed with. This is

sometimes referred to as an “em driven design” (we’ll see

why in a moment).

To see how this works in practice, here’s the same design

with the text “zoomed” up in size

100 24 ways 2006 edition

and the same design again, when we zoom the text size

down

By the way, the hCard image comes from Chris Messina,

and you can download it and other microformat icons

from the microformats wiki.

Now, with CSS3, this whole task would be considerably

easier, because we can add multiple background images to

an element, and border images for each edge of an

element. Safari, version 1.3 up, actually supports multiple

Styling hCards with CSS

24 ways 2006 edition 101

http://microformats.org/wiki/icons

background images, but sadly, it’s not supported in Firefox

1.5, or even Firefox 2.0 (let’s not mention IE7 eh?). So it’s

probably too little supported to use now. So instead we’ll

use a technique that only involves CSS2, and works in

pretty much any browser.

Very often, developers add div or span elements as

containers for these background images, and in fact, if you

visit Scott Shiller’s site, that’s what he has done there. But

if at all possible we shouldn’t be adding any HTML simply

for presentational purposes, even if the presentation is

done via CSS. What we can do is to use the HTML we have

already, as much as is possible, to add the style we want.

This can take some creative thinking, but once you get the

hang of this approach it becomes a more natural way of

using HTML compared with simply adding divs and spans

at will as hooks for style. Of course, this technique isn’t

always simple, and in fact sometimes simply not possible,

requiring us to add just a little HTML to provide the

“hooks” for CSS.

Let’s go to work

The first step is to add a background image to the whole

vCard element.

102 24 ways 2006 edition

We make this wide enough (for example 1000 or more

pixels) and tall enough that no matter how large the

content of the vCard grows, it will never overflow this

area. We can’t simply repeat the image, because the top

left corner will show when the image repeats.

We add this as the background image of the vCard

element using CSS.

While we are at it, let’s give the text a sans-serif font,

some color so that it will be visible, and stop the image

repeating.

.vcard {

background-image: url(images/vcardfill.png);

background-repeat: no-repeat;

color: #666;

Styling hCards with CSS

24 ways 2006 edition 103

font-family: "Lucida Grande", Verdana, Helvetica,

Arial, sans-serif;

}

Which in a browser, will look something like this.

Next step we need to add the top right hand corner of the

hCard. In keeping with our aim of not adding HTML simply

for styling purposes, we want to use the existing structure

of the page where possible. Here, we’ll use the paragraph

of class fn and org, which is the first child element of the

vcard element.

<p class="fn org">Web Directions Conference Pty Ltd <img

src="images/vcard-add.png" alt="download vcard icon"></p>

Here’s our CSS for this element

.fn {

background-image: url(images/topright.png);

background-repeat: no-repeat;

background-position: top right;

104 24 ways 2006 edition

padding-top: 2em;

font-weight: bold;

font-size: 1.1em;

}

Again, we don’t want it to repeat, but this time, we’ve

specified a background position for the image. This will

make the background image start from the top, but its

right edge will be located at the right edge of the element.

I also made the font size a little bigger, and the weight

bold, to differentiate it from the rest of the text in the

hCard.

Here’s the image we are adding as the background to this

element.

So, putting these two CSS statements together we get

Styling hCards with CSS

24 ways 2006 edition 105

We specified a padding-top of 2em to give some space

between the content of the fn element and the edge of

the fn element. Otherwise the top of the hCard image

would be hard against the border. To see this in action,

just remove the padding-top: 2em; declaration and

preview in a browser.

So, with just two statements, we are well under way.

We’ve not even had to add any HTML so far. Let’s turn to

the bottom of the element, and add the bottom border

(well, the background image which will serve as that

border).

Now, which element are we going to use to add this

background image to?

OK, here I have to admit to a little, teensie bit of cheating.

If you look at the HTML of the hCard, I’ve grouped the

email and telephone properties into a div, with a class of

telecommunications. This grouping is not strictly requred

for our hCard.

<div class="telecommunications">

<p class="tel">Phone/Fax: <span

class="type">Work:

61 2 9365 5007</p>

<p class="email">Email: <a class="value"

href="mailto:info@webdirections.org">info@webdirections.org</p>

</div>

106 24 ways 2006 edition

Now, I chose that class name because that is what the

vCard specification calls this group of properties. And

typically, I do tend to group together related elements

using divs when I mark up content. I find it makes the

page structure more logical and readable. But strictly

speaking, this isn’t necessary, so you may consider it

cheating. But my lesson in this would be, if you are going

to add markup, try to make it as meaningful as possible.

As you have probably guessed by now, we are going to

add one part of the bottom border image to this element.

We’re going to add this image as the background-image.

Again, it will be a very wide image, like the top left one, so

that no matter how wide the element might get, the

background image will still be wide enough. Now, we’ll

need to make this image sit in the bottom left of the

element we attach it to, so we use a backgound position of

left bottom (we put the horizontal position before the

vertical). Here’s our CSS statement for this

.telecommunications {

background-image: url(images/bottom-left.png);

background-repeat: no-repeat;

background-position: left bottom;

margin-bottom: 2em;

}

And that will look like this

Styling hCards with CSS

24 ways 2006 edition 107

Not quite there, but well on the way. Time for the final

piece in the puzzle.

OK, I admit, I might have cheated just a little bit more in

this step. But like the previous step, all valid, and

(hopefully) quite justifiable markup. If we look at the

HTML again, you’ll find that our email address is marked

up like this

<p class="email">Email: <a class="value"

href="mailto:info@webdirections.org">info@webdirections.org</p>

Typically, in hCard, the value part of this property isn’t

required, and we could get away with

<a class="email"

href="mailto:info@webdirections.org">info@webdirections.org

The form I’ve used, with the span of class value is

however, perfectly valid hCard markup (hard allows for

multiple email addresses of different types, which is

108 24 ways 2006 edition

where this typically comes in handy). Why have I gone to

all this trouble? Well, when it came to styling the hCard, I

realized I needed a block element to attach the

background image for the bottom right hand corner to.

Typically the last block element in the containing element

is the ideal choice (and sometimes it’s possible to take an

inline element, for example the link here, and use CSS to

make it a block element, and attach it to that, but that

really doesn’t work with this design).

So, if we are going to use the paragraph which contains

the email link, we need a way to select it exclusively, which

means that with CSS2 at least, we need a class or id as a

hook for our CSS selector (in CSS3 we could use the last-

child selector, which selects the last child element of a

specified element, but again, as last child is not widely

supported, we won’t rely on it here.)

So, the least worst thing we could do is take an existing

element, and add some reasonably meaningful markup to

it. That’s why we gave the paragraph a class of email, and

the email address a class of value. Which reminds me a

little of a moment in Hamlet

The lady doth protest too much, methinks

OK, let’s get back to the CSS.

Styling hCards with CSS

24 ways 2006 edition 109

We add the bottom right corner image, positioning it in

the bottom right of the element, and making sure it

doesn’t repeat. We also add some padding to the bottom,

to balance out the padding we added to the top of the

hCard.

p.email {

background-image: url(images/bottom-right.png);

background-position: right bottom;

background-repeat: no-repeat;

padding-bottom: 2em;

}

Which all goes to make our hCard look like this

It just remains for us to clean up a little.

Let’s start from the top. We’ll float the download image to

the right like this

110 24 ways 2006 edition

.vcard img {

float: right;

padding-right: 1em;

margin-top: -1em

}

See how we didn’t have to add a class to style the image,

we used the fact that the image is a descendent of the

vcard element, and a descendent selector. In my

experience, the very widely supported, powerful

descendent selector is one of the most underused aspects

of CSS. So if you don’t use it frequently, look into it in

more detail.

We added some space to the right of the image, and

pulled it up a bit closer to the top of the hCard, like this

Styling hCards with CSS

24 ways 2006 edition 111

We also want to add some whitespace between the edge

of the hCard and the text. We would typically add padding

to the left of the containing element, (in this case the

vcard element) but this would break our bottom left hand

corner, like this

That’s because the div element we added this bottom left

background image to would be moved in by the padding

on its containing element.

So instead, we add left margin to all the paragraphs in the

hCard

.vcard p {

margin-left: 1em;

}

(there is the descendent selector again – it is the swiss

army knife of CSS)

Now, we’ve not yet made the width of the hCard a

function of the size of the text inside it (or “em driven” as

we described it earlier). We do this by giving the hCard a

width that is specified in em units. Here we’ll set a width

of say 28em, which makes the hCard always roughly as

wide as 28 characters (strictly speaking 28 times the

width of the letter capital M).

112 24 ways 2006 edition

So the statement for our containing vcard element

becomes

.vcard {

background-image: url(images/vcardfill.png);

background-repeat: no-repeat;

color: #666;

font-family: "Lucida Grande", Verdana, Helvetica,

Arial, sans-serif;

width: 28em;

}

and now our element will look like this

We’ve used almost entirely the existing HTML from our

original hCard (adding just a little, and trying as much as

possible to keep that additional markup meaningful), and

just 6 CSS statements.

Styling hCards with CSS

24 ways 2006 edition 113

Holiday Bonus – a downloadable vCard

Did you notice this part of the HTML

<a href="http://suda.co.uk/projects/X2V/

get-vcard.php?uri=http://north.webdirections.org/

contact/">

<img src="images/vcard-add.png" alt="download

vcard icon">

What’s with the odd looking url

<a href="http://suda.co.uk/projects/X2V/

get-vcard.php?uri=http://north.webdirections.org/

contact/"

If you click the link, X2V, a nifty web service from Brian

Suda, grabs the page at the URL, and if it finds a hCard,

converts it to a vCard, and depending on how your system

is setup, automatically downloads it and adds it to your

address book (Mac OS X) or prompts you whether you’d

like to save the vCard and add it to whatever application is

the default vCard handler on your system.

What X2V does is take the actual HTML of your hCard,

and with the magic of XSLT, converts it to a vCard. So, by

simply marking up contact details using hCard, and adding

a link like this, you automatically get downloadable vCard

– and if you change your contact details, and update the

hCard, there’s no vCard file to update as well.

114 24 ways 2006 edition

Technorati also have a similar service at

http://technorati.com/contact so you might want to use

that if you expect any kind of load, as they can probably

afford the bandwidth more than Brian!

If you want to play with the HTML and CSS for this design,

the code and images can be downloaded.

Hope you enjoyed this, and found it useful. If so, you might

like to check out my microformats focussed blog, or get

along to Web Directions North, where I’ll be speaking

along with Dan Cederholmn and Tantek Çelik in a 2 hour

session focussed solely on microformats. And keep an eye

out for my microformats book, from which this article has

been adapted, coming in the spring of 2007.

A happy festive season, and all the best for 2007

John

Some hCard links

▪ The hCard entry at microformats.org

▪ The hCard Creator

▪ The hCard cheatsheet

▪ The hCard FAQ

▪ Ideas for authoring hCards

▪ Microfomatique – a blog about microformats

▪ Web Directions North – featuring a full 2 hour

focussed microformats session

Styling hCards with CSS

24 ways 2006 edition 115

http://technorati.com/contact
http://microformatique.com/book/chapter7/hcard.zip
http://microformatique.com
http://microformats.org/wiki/hcard
http://microformats.org/code/hcard/creator
http://microformats.org/wiki/hcard-cheatsheet
http://microformats.org/wiki/hcard-faq
http://microformats.org/wiki/hcard-authoring
http://microformatique.com
http://north.webdirections.org

ABOUT THE AUTHOR

John Allsopp is a founder of Westciv, an Australian web

software development and training company, which provides

some of the best CSS resources and tutorials on the web.

Westciv’s software and training are used in dozens of countries

around the World. The head developer of the leading cross

platform CSS editor, Style Master, John has written on web

development issues for numerous web and print publications

and was one of the earliest members of the Web Standards

Project.

116 24 ways 2006 edition

http://www.westciv.com/
http://webstandards.org/
http://webstandards.org/

Andrew Clarke 24ways.org/200615

15. A Message To You,
Rudy - CSS Production
Notes

When more than one designer or developer
work together on coding an XHTML/CSS
template, there are several ways to make
collaboration effective. Some prefer to
comment their code, leaving a trail of
bread-crumbs for their co-workers to
follow. Others use accompanying files that
contain their working notes or communicate
via Basecamp.

For this year’s 24ways I wanted to share a technique that I

has been effective at Stuff and Nonsense; one that

unfortunately did not make it into the final draft of

Transcending CSS. This technique, CSS production notes,

places your page production notes in one convenient

place within an XHTML document and uses nothing more

than meaningful markup and CSS.

A Message To You, Rudy - CSS Production Notes

24 ways 2006 edition 117

http://24ways.org/200615
http://www.malarkey.co.uk
http://www.transcendingcss.com

Let’s start with the basics; a conversation between a

group of people. In the absence of notes or conversation

elements in XHTML you need to make an XHTML

compound that will effectively add meaning to the

conversation between designers and developers. As each

person speaks, you have two elements right there to

describe what has been said and who has spoken:

<blockquote> and its cite attribute.

<blockquote cite="andy">

<p>This project will use XHTML1.0 Strict, CSS2.1 and

all that malarkey.</p>

</blockquote>

With more than one person speaking, you need to

establish a temporal order for the conversation. Once

again, the element to do just that is already there in

XHTML; the humble ordered list.

<ol id="notes">

<blockquote cite="andy">

<p>This project will use XHTML1.0 Strict, CSS2.1

and all that malarkey.</p>

</blockquote>

<blockquote cite="dan">

<p>Those bits are simple and bulletproof.</p>

</blockquote>

118 24 ways 2006 edition

Adding a new note is as simple as adding a new item to

list, and if you prefer to add more information to each

note, such as the date or time that the note was written,

go right ahead. Place your note list at the bottom of the

source order of your document, right before the closing

<body> tag. One advantage of this approach over using

conventional comments in your code is that all the notes

are unobtrusive and are grouped together in one place,

rather than being spread throughout your document.

BASIC CSS STYLING

For the first stage you are going to add some basic styling

to the notes area, starting with the ordered list. For this

design I am basing the look and feel on an instant

messenger window.

ol#notes {

width : 300px;

height : 320px;

A Message To You, Rudy - CSS Production Notes

24 ways 2006 edition 119

padding : .5em 0;

background : url(im.png) repeat;

border : 1px solid #333;

border-bottom-width : 2px;

-moz-border-radius : 6px; /* Will not validate */

color : #000;

overflow : auto;

}

ol#notes li {

margin : .5em;

padding : 10px 0 5px;

background-color : #fff;

border : 1px solid #666;

-moz-border-radius : 6px; /* Will not validate */

}

ol#notes blockquote {

margin : 0;

padding : 0;

}

ol#notes p {

margin : 0 20px .75em;

padding : 0;

}

ol#notes p.date {

font-size : 92%;

color : #666;

text-transform : uppercase;

}

Take a gander at the first example.

120 24 ways 2006 edition

http://24ways.org/examples/css-production-notes/example1.html

You could stop right there, but without seeing who has

left the note, there is little context. So next, extract the

name of the commenter from the <blockquote>’s cite

attribute and display it before each note by using

generated content.

ol#notes blockquote:before {

content : " "attr(cite)" said: ";

margin-left : 20px;

font-weight : bold;

}

FUN WITH MORE DETAILED STYLING

Now, with all of the information and basic styling in place,

it’s time to have some fun with some more detailed styling

to spruce up your notes. Let’s start by adding an icon for

each person, once again based on their cite. First, all of

the first paragraphs of a <blockquote>’s that includes a

cite attribute are given common styles.

ol#notes blockquote[cite] p:first-child {

min-height : 34px;

padding-left : 40px;

}

Followed by an individual background-image.

ol#notes blockquote[cite="Andy"] p:first-child {

background : url(malarkey.png) no-repeat 5px 5px;

}

A Message To You, Rudy - CSS Production Notes

24 ways 2006 edition 121

If you prefer a little more interactivity, add a :hover state

to each <blockquote> and perhaps highlight the most

recent comment.

ol#notes blockquote:hover {

background-color : #faf8eb;

border-top : 1px solid #fff;

border-bottom : 1px solid #333;

}

ol#notes li:last-child blockquote {

background-color : #f1efe2;

}

You could also adjust the style for each comment based

on the department that the person works in, for example:

<blockquote cite="andy" class="designer">

<p>This project will use XHTML1.0 Strict, CSS2.1 and

all that malarkey.</p>

</blockquote>

122 24 ways 2006 edition

<blockquote cite="dan">

<p>Those bits are simple and bulletproof.</p>

</blockquote>

ol#notes blockquote.designer { border-color : #600; }

Take a look at the results of the second stage.

SHOW AND HIDE THE NOTES USING CSS
POSITIONING

With your notes now dressed in their finest, it is time to

tuck them away above the top of your working

XHTML/CSS prototype so that you can reveal them when

you need them, no JavaScript required. Start by moving

the ordered list of notes off the top of the viewport

leaving only a few pixels in view. It is also a good idea to

make them semi-transparent by using the opacity

property for browsers that have implemented it.

ol#notes {

position : absolute;

opacity : .25;

z-index : 2000;

top : -305px;

left : 20px;

}

Your last step is to add :hover and :focus dynamic

pseudo-classes to reposition the list at the top of the

viewport and restore full opacity to display them in their

full glory when needed.

A Message To You, Rudy - CSS Production Notes

24 ways 2006 edition 123

http://24ways.org/examples/css-production-notes/example2.html

ol#notes:hover, ol#notes:focus {

top : 0;

opacity : 1;

}

Now it’s time to sit back, pour yourself a long drink and

bask in the glory of the final result. Your notes are all

stored in one handy place at the bottom of your document

rather than being spread around your code. When your

templates are complete, simply dive straight to the

bottom and pull out the notes.

A MESSAGE TO YOU, RUDY

Thank-you to everybody for making this a really great

year for web standards. Have a wonderful holiday season.

Buy Andy Clarke’s book Transcending CSS from

Amazon.com

124 24 ways 2006 edition

http://24ways.org/examples/css-production-notes/example3.html
http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2Fexec%2Fobidos%2FASIN%2F0321410971%2F&tag=24ways-20&linkCode=ur2&camp=1789&creative=9325

ABOUT THE AUTHOR

Andrew Clarke runs Stuff and Nonsense, a tiny web design

company where they make fashionably flexible websites.

Andrew’s the author of Transcending CSS and Hardboiled Web

Design and hosts the popular weekly podcast Unfinished

Business where he discusses the business side of web, design

and creative industries with his guests. He tweets as

@malarkey.

A Message To You, Rudy - CSS Production Notes

24 ways 2006 edition 125

http://stuffandnonsense.co.uk/
http://unfinished.bz/
http://unfinished.bz/
http://twitter.com/malarkey

Natalie Downe 24ways.org/200616

16. Fast and Simple
Usability Testing

Everyone knows by now that they should
test the usability of their applications, but
still hardly anybody actually does it. In this
article I’ll share some tips I’ve picked up for
doing usability tests quickly and effectively.

Relatively recent tools like Django and Ruby on Rails

allow us to develop projects faster and to make significant

changes later in the project timeline. Usability testing

methods should now be adapted to fit this modern

approach to development.

WHEN TO TEST

In an ideal world usability tests would be carried out

frequently from an early stage of the project. Time and

budget constraints lead this to be impractical; usability is

often the first thing to get dropped from the project plan.

126 24 ways 2006 edition

http://24ways.org/200616

If you can only test at one stage in the project, whatever

the size, the most valuable time is before your first public

beta — leaving long enough to fix issues and not so late

that you can’t rethink your scope.

There are three main categories of usability test:

▪ Testing design mockups

▪ Testing a new working application

▪ Testing established applications

Each category requires a slightly different approach. For

small modern web projects you are most likely to be

testing a new working application. You will of course have

already done functional tests so you won’t be worried

about the user breaking things. The main differences

between the categories apply in how you word The Script.

Testing an established application is the most fun in my

opinion. Humans are remarkably adaptable and rapidly

develop coping strategies to work around usability issues

in software they are forced to use. Uncovering these

strategies may lead you to understand previously

unspoken needs of your users. Often small changes to the

application will have a dramatic affect on their everyday

lives.

Fast and Simple Usability Testing

24 ways 2006 edition 127

WHO TO TEST

When you have built a project to scratch your own itch,

your intended audience will be people just like you. Test

subjects in this case should be easy to find – friends, co-

workers etc.

This is not always the case; your users may not be like you

at all. When they are not, it’s all the more important to run

usability tests. Testing on friends, family and co-workers is

better than not doing usability tests at all, but it can’t be

compared to testing on actual samples of your intended

audience. People who would use the system will provide

more genuine feedback and deeper insight.

Never let your test subjects put themselves in the shoes

of your ‘actual’ users. For example, you should discourage

comments like “Well, I would do this BUT if I was a bus

driver I’d do that”. Users are not qualified to put

themselves in the position of others. Inaccurate data is

often worse than no data.

Aim for five or six test subjects: any more and you

probably won’t learn anything new; any less and you’re

likely to be overwhelmed by issues stemming from

people’s individual personalities.

128 24 ways 2006 edition

THE SCRIPT

The Script is a single side of A4 (or letter) paper, consisting

of questions for your testers and reminders for yourself.

Have a balance of task-based questions and expectation

analysis. This helps maintain consistency across tests.

Expectation analysis is more important for testing designs

and new applications: “Where would you find X?”, “What

would you expect to happen if you clicked on Y?”. In an

established system users will probably know where these

things are though it can still be illuminating to ask these

questions though phrased slightly differently.

Task-based questions involve providing a task for the user

to complete. If you are testing an established system it is a

good idea to ask users to bring in tasks that they would

normally perform. This is because the user will be more

invested in the outcome of the task and will behave in a

more realistic fashion. When designing tasks for new

systems and designs ensure you only provide loose task

details for the same reason. Don’t tell testers to enter

“Chantelle”; have them use their own name instead. Avoid

introducing bias with the way questions are phrased.

It’s a good idea to ask for users’ first impressions at the

beginning of the test, especially when testing design

mockups. “What are the main elements on the page?” or

“What strikes you first?”.

Fast and Simple Usability Testing

24 ways 2006 edition 129

You script should run for a maximum of 45 minutes. 30-35

minutes is better; after this you are likely to lose their

attention. Tests on established systems can take longer as

there is more to learn from them. When scheduling the

test you will need to leave yourself 5 minutes between

each one to collate your notes and prepare for the next.

Be sure to run through the script beforehand.

Your script should be flexible. It is possible that during the

test a trend will come to light that opens up whole new

avenues of possible questioning. For example, during one

initial test of an established system I noticed that the test

subject had been printing off items from the application

and placing them in a folder in date order (the system

ordered alphabetically). I changed the script to ask future

participants in that run, if they ever used external tools to

help them with tasks within the system. This revealed a

number of interesting issues that otherwise would not

have been found.

RUNNING THE TESTS

Treat your test subjects like hedgehogs. Depending on

your target audience they probably feel a little nervous

and perhaps even scared of you. So make them a little nest

out of straw, stroke their prickles and give them some cat

food. Alternatively, reassure them that you are testing the

system and that they can’t give a wrong answer. Reward

them with a doughnut or jam tart at the end. Try to ensure

130 24 ways 2006 edition

the test environment is relaxed and quiet, but also as

close as possible to the situation where they would

actually use the system.

Have your subjects talk out loud is very important as you

can’t read their minds, but it is a very unnatural process.

To loosen up your subjects and get them talking in the way

you want them to, try the Stapler Trick. Give them a

stapler or similar item and ask them to open it, take the

staples out, replace them, shut the stapler and staple

some paper – talking all the time about what they see,

what they expect to happen, what actually happens and

how that matches up. Make them laugh at you.

Say how long the test will take up front, and tell your

subject why you are doing it. After the test has been

completed, conclude by thanking them for their time and

assuring them that they were very useful. Then give them

the sugary treat.

WHAT TO LOOK FOR

Primarily, you should look out for incidents where the

user stops concentrating on her tasks and starts thinking

about the tool and how she is going to use it. For example,

when you are hammering in a nail you don’t think about

how to use a hammer; good software should be the same.

Words like ‘it’ and ‘the system’ and are good indications

that the test subject has stopped thinking about the task

Fast and Simple Usability Testing

24 ways 2006 edition 131

in hand. Note questioning words, especially where testers

question their own judgement, “why can’t I find …”, “I

expected to see …” etc. as this indicates that the work flow

for the task may have broken down.

Also keep an eye on occasions where the user completely

fails to do a task. They may need some prompting to

unstick them, but you should be careful not to bias the

test. These should be the highest priority issues for you to

fix. If users recover from getting stuck, make a note of

how they recovered. Prolonged periods of silence from

the test subject may also require prompting as they

should be talking all the time. Ask them what they are

thinking or looking for but avoid words like ‘try’ (e.g. ‘what

are you trying to do?’) as this implies that they are

currently failing.

Be wary of users’ opinions on aesthetics and be prepared

to bring them back to the script if they get side-tracked.

WRITING IT UP

Even if you are the only developer it’s important to

summarise the key issues that emerged during testing:

your notes won’t make much sense to you a week or so

after the test.

If you are writing for other people, include a summary no

longer than two pages; this can consist of a list or table of

the issues including recommendations and their priorities.

132 24 ways 2006 edition

Remember to anonymise the users in the report. In team

situations, you may be surprised at how many people are

interested in the results of the usability test even if it

doesn’t relate directly to something that they can fix.

TO CONCLUDE…

Some usability testing is better than none at all, even for

small projects or those with strict deadlines. Make the

most of the time and resources available. Choose your

users carefully, make them comfortable, summarise your

report and don’t forget to leave a doughnut for yourself!

ABOUT THE AUTHOR

Fast and Simple Usability Testing

24 ways 2006 edition 133

Natalie Downe is an excitable client-side web developer at

Clearleft in Brighton, a perfectionist by nature and comes with

the expertise and breadth of knowledge of a web agency

background. Although front-end development and usability

engineering are her first loves, Natalie still has fun dabbling

with Python and poking the odd API. Natalie is also an

experienced usability consultant and project manager.

134 24 ways 2006 edition

http://natbat.net/
http://www.clearleft.com

Shaun Inman 24ways.org/200617

17. Knockout Type - Thin
Is Always In

OS X has gorgeous native anti-aliasing
(although I will admit to missing 10px
aliased Geneva — *sigh*). This is especially
true for dark text on a light background.
However, things can go awry when you start
using light text on a dark background.
Strokes thicken. Counters constrict.
Letterforms fill out like seasonal snackers.

Knockout Type - Thin Is Always In

24 ways 2006 edition 135

http://24ways.org/200617

So how do we combat the fat? In Safari and other Webkit-

based browsers we can use the CSS ‘text-shadow’

property. While trying to add a touch more contrast to the

navigation on haveamint.com I noticed an interesting

side-effect on the weight of the type.

The second line in the example image above has the

following style applied to it:

136 24 ways 2006 edition

This creates an invisible drop-shadow. (Why is it invisible?

The shadow is positioned directly behind the type (the

first two zeros) and has no spread (the third zero). So the

color, black, is completely eclipsed by the type it is

supposed to be shadowing.)

Why applying an invisible drop-shadow effectively

lightens the weight of the type is unclear. What is clear is

that our light-on-dark text is now of a comparable weight

to its dark-on-light counterpart.

Knockout Type - Thin Is Always In

24 ways 2006 edition 137

You can see this trick in effect all over ShaunInman.com

and in the navigation on haveamint.com and

Subtraction.com. The HTML and CSS source code used to

create the example images used in this article can be

found here.

138 24 ways 2006 edition

http://shauninman.com/
http://haveamint.com/
http://subtraction.com
http://24ways.org/examples/knockout-type/example.html
http://24ways.org/examples/knockout-type/example.html

ABOUT THE AUTHOR

Shaun Inman designed and developed Mint, the curiously

successful web site analytic tool. He passes the time (literally)

tinkering on ShaunInman.com while nervously eyeing the dust

gathering on Designologue.

Knockout Type - Thin Is Always In

24 ways 2006 edition 139

http://www.haveamint.com/
http://www.shauninman.com/post/about/the_heap/
http://www.shauninman.com/
http://www.designologue.com/

Jeremy Keith 24ways.org/200618

18. Boost Your Hyperlink
Power

There are HTML elements and attributes
that we use every day. Headings,
paragraphs, lists and images are the
mainstay of every Web developer’s toolbox.
Perhaps the most common tool of all is the
anchor. The humble a element is what joins
documents together to create the gloriously
chaotic collection we call the World Wide
Web.

ANATOMY OF AN ANCHOR

The power of the anchor element lies in the href

attribute, short for hypertext reference. This creates a

one-way link to another resource, usually another page on

the Web:

The href attribute sits in the opening a tag and some

descriptive text sits between the opening and closing

tags:

140 24 ways 2006 edition

http://24ways.org/200618

Drew McLellan

“Whoop-dee-freakin’-doo,” I hear you say, “this is pretty

basic stuff” – and you’re quite right. But there’s more to

the anchor element than just the href attribute.

THE THEORY OF RELRELATIVITY

You might be familiar with the rel attribute from the link

element. I bet you’ve got something like this in the head of

your documents:

<link rel="stylesheet" type="text/css" media="screen"

href="styles.css" />

The rel attribute describes the relationship between the

linked document and the current document. In this case,

the value of rel is “stylesheet”. This means that the linked

document is the stylesheet for the current document:

that’s its relationship.

Here’s another common use of rel:

<link rel="alternate" type="application/rss+xml"

title="my RSS feed" href="index.xml" />

This describes the relationship of the linked file – an RSS

feed – as “alternate”: an alternate view of the current

document.

Boost Your Hyperlink Power

24 ways 2006 edition 141

Both of those examples use the link element but you are

free to use the rel attribute in regular hyperlinks.

Suppose you’re linking to your RSS feed in the body of

your page:

Subscribe to my RSS feed.

You can add extra information to this anchor using the rel

attribute:

Subscribe to <a href="index.xml" rel="alternate"

type="application/rss+xml">my RSS feed.

There’s no prescribed list of values for the rel attribute so

you can use whatever you decide is semantically

meaningful. Let’s say you’ve got a complex e-commerce

application that includes a link to a help file. You can

explicitly declare the relationship of the linked file as

being “help”:

need help?

ELEMENTAL MICROFORMATS

Although it’s completely up to you what values you use

for the rel attribute, some consensus is emerging in the

form of microformats. Some of the simplest microformats

make good use of rel. For example, if you are linking to a

license that covers the current document, use the rel-

license microformat:

142 24 ways 2006 edition

http://microformats.org/
http://microformats.org/wiki/rel-license
http://microformats.org/wiki/rel-license

Licensed under a <a href="http://creativecommons.org/

licenses/by/2.0/" rel="license">Creative Commons

attribution license

That describes the relationship of the linked document as

“license.”

The rel-tag microformat goes a little further. It uses rel to

describe the final part of the URL of the linked file as a

“tag” for the current document:

Learn more about <a href="http://en.wikipedia.org/wiki/

Microformats" rel="tag">semantic markup

This states that the current document is being tagged

with the value “Microformats.”

XFN, which stands for XHTML Friends Network, is a way

of describing relationships between people:

Drew

McLellan

This microformat makes use of a very powerful property

of the rel attribute. Like the class attribute, rel can take

multiple values, separated by spaces:

<a href="http://allinthehead.com/" rel="friend met

colleague">Drew McLellan

Here I’m describing Drew as being a friend, someone I’ve

met, and a colleague (because we’re both Web monkies).

Boost Your Hyperlink Power

24 ways 2006 edition 143

http://microformats.org/wiki/rel-tag
http://gmpg.org/xfn

YOU SAY YOU WANT A REVREVOLUTION

While rel describes the relationship of the linked

resource to the current document, the rev attribute

describes the reverse relationship: it describes the

relationship of the current document to the linked

resource. Here’s an example of a link that might appear on

help.html:

continue

shopping

The rev attribute declares that the current document is

“help” for the linked file.

The vote-links microformat makes use of the rev attribute

to allow you to qualify your links. By using the value “vote-

for” you can describe your document as being an

endorsement of the linked resource:

I agree with <a href="http://richarddawkins.net/home"

rev="vote-for">Richard Dawkins.

There’s a corresponding vote-against value. This means

that you can link to a document but explicitly state that

you don’t agree with it.

I agree with <a href="http://richarddawkins.net/home"

rev="vote-for">Richard Dawkins

about those <a href="http://www.icr.org/"

rev="vote-against">creationists.

144 24 ways 2006 edition

http://microformats.org/wiki/vote-links

Of course there’s nothing to stop you using both rel and

rev on the same hyperlink:

<a href="http://richarddawkins.net/home" rev="vote-for"

rel="muse">Richard Dawkins

THE WISDOM OF CROWDS

The simplicity of rel and rev belies their power. They

allow you to easily add extra semantic richness to your

hyperlinks. This creates a bounty that can be harvested by

search engines, aggregators and browsers. Make it your

New Year’s resolution to make friends with these

attributes and extend the power of hypertext.

ABOUT THE AUTHOR

Boost Your Hyperlink Power

24 ways 2006 edition 145

Jeremy Keith is an Irish web developer living in Brighton,

England where he works with the web consultancy firm

Clearleft. He wrote the books, DOM Scripting, Bulletproof Ajax,

and most recently HTML5 For Web Designers.

His latest project is Huffduffer, a service for creating podcasts

of found sounds. When he’s not making websites, Jeremy plays

bouzouki in the band Salter Cane. His loony bun is fine benny

lava.

146 24 ways 2006 edition

http://adactio.com/
http://clearleft.com/
http://domscripting.com/
http://bulletproofajax.com/
http://html5forwebdesigners.com/
http://huffduffer.com/
http://saltercane.com/

Cameron Moll 24ways.org/200619

19. The Mobile Web,
Simplified

A note

from

the editors: although eye-opening in 2006, this article is

no longer relevant to today’s mobile web.

Considering a foray into mobile web
development? Following are four things you
need to know before making the leap.

1. 4 billion mobile subscribers expected by 2010

Fancy that. Coupled with the UN prediction of 6.8 billion

humans by 2010, 4 billion mobile subscribers (source) is

an astounding 59% of the planet. Just how many of those

subscribers will have data plans and web-enabled phones

is still in question, but inevitably this all means one thing

for you and me: A ton of potential eyes to view our web

content on a mobile device.

The Mobile Web, Simplified

24 ways 2006 edition 147

http://24ways.org/200619
http://www.pcworld.com/article/id,127820/article.html

2. Context is king

Your content is of little value to users if it ignores the

context in which it is viewed. Consider how you access

data on your mobile device. You might be holding a bottle

of water or gripping a handle on the subway/tube. You’re

probably seeking specific data such as directions or show

times, rather than the plethora of data at your disposal via

a desktop PC.

The mobile web, a phrase often used to indicate

“accessing the web on a mobile device”, is very much a

context-, content-, and component-specific environment.

Expressed in terms of your potential target audience,

access to web content on a mobile device is largely

influenced by surrounding circumstances and conditions,

information relevant to being mobile, and the feature set

of the device being used. Ask yourself, What is relevant to

my users and the tasks, problems, and needs they may

encounter while being mobile? Answer that question and

you’ll be off to a great start.

3. WAP 2.0 is an XHTML environment

In a nutshell, here are a few fundamental tenets of mobile

internet technology:

1. Wireless Application Protocol (WAP) is the protocol

for enabling mobile access to internet content.

148 24 ways 2006 edition

http://en.wikipedia.org/wiki/Wap

2. Wireless Markup Language (WML) was the language

of choice for WAP 1.0.

3. Nearly all devices sold today are WAP 2.0 devices.

4. With the introduction of WAP 2.0, XHTML Mobile

Profile (XHTML-MP) became the preferred markup

language.

5. XHTML-MP will be familiar to anyone experienced

with XHTML Transitional or Strict.

Summary? The mobile web is rapidly becoming an XHTML

environment, and thus you and I can apply our existing

“desktop web” skills to understand how to develop

content for it. With WML on the decline, the learning

curve is much smaller today than it was several years ago.

I’m generalizing things gratuitously, but the point remains:

Get off yo’ lazy butt and begin to take mobile seriously.

I’ll even pass you a few tips for getting started. First, the

DOCTYPE for XHTML-MP is as follows:

<!DOCTYPE html PUBLIC "-//WAPFORUM//DTD XHTML Mobile

1.0//EN"

"http://www.openmobilealliance.org/tech/DTD/

xhtml-mobile10.dtd">

As for MIME type, Open Mobile Alliance (OMA) specifies

using the MIME type application/vnd.wap.xhtml+xml,

but ultimately you need to ensure the server delivering

The Mobile Web, Simplified

24 ways 2006 edition 149

http://en.wikipedia.org/wiki/Wireless_Markup_Language
http://en.wikipedia.org/wiki/WAP_2.0#WAP_2.0
http://en.wikipedia.org/wiki/XHTML_MP
http://en.wikipedia.org/wiki/XHTML_MP
http://www.openmobilealliance.org/

your mobile content is configured properly for the MIME

type you choose to use, as there are other options (see

Setting up WAP Servers).

Once you’ve made it to the body, the XHTML-MP markup

is not unlike what you’re already used to. A few resources

worth skimming:

▪ Developers Home XHTML-MP Tutorial – An

impressively replete resource for all things XHTML-MP

▪ XHTML-MP Tags List – A complete list of XHTML-MP

elements and accompanying attributes

And last but certainly not least, CSS. There exists WAP

CSS, which is essentially a subset of CSS2 with WAP-

specific extensions. For all intents and purposes, much of

the CSS you’re already comfortable using will be

transferrable to mobile. As for including CSS in your

pages, your options are the same as for desktop sites:

external, embedded, and inline. Some experts will argue

embedded or inline over external in favor of reducing the

number of HTTP connections per page request, yet many

popular mobilized sites and apps employ external linking

without issue.

Stocking stuffers: Flickr Mobile, Fandango Mobile, and

Popurls Mobile. A few sites with whom you can do the

View Source song and dance for further study.

150 24 ways 2006 edition

http://www.developershome.com/wap/wapServerSetup/tutorial.asp?page=settingUpMIME
http://www.developershome.com/wap/xhtmlmp/
http://htmllint.itc.keio.ac.jp/htmllint/tagslist.cgi?HTMLVersion=XHTML-MP
http://www.developershome.com/wap/wcss/wcss_tutorial.asp?page=introduction
http://www.developershome.com/wap/wcss/wcss_tutorial.asp?page=introduction
http://m.flickr.com/
http://mobile.fandango.com/
http://popurls.mobi/

4. “Cell phone” is so DynaTAC

If you’re a U.S. resident, listen up: You must rid your

vocabulary of the term “cell phone”. We’re one of the few

economies on the planet to refer to a mobile phone

accordingly. If you care to find yourself in any of the

worthwhile mobile development circles, begin using

terms more widely accepted: “mobile” or “mobile phone”

or “handset” or “handy”. If you’re not sure which, go for

“mobile”. Such as, “Yo dog, check out my new mobile.”

More importantly, however, is overcoming the mentality

that access to the mobile web can be done only with a

phone. Instead, “device” encourages us to think phone,

handheld computer, watch, Nintendo DS, car, you name it.

Simple enough?

The Mobile Web, Simplified

24 ways 2006 edition 151

http://www.youtube.com/watch?v=RbSq-tCHXmI

ABOUT THE AUTHOR

Cameron Moll is the founder of Authentic Jobs, maker of

Structures in Type, and author of Mobile Web Design (2007). He

resides in Sarasota, Florida with his wife and five sons. Find him

on Twitter at @cameronmoll.

Cameron is looking to share the principles of Cohesive UX in

2015. Please get in touch if you’d like to have him speak at your

conference.

152 24 ways 2006 edition

http://authenticjobs.com
http://typestructures.com
http://twitter.com/cameronmoll
http://cameronmoll.tumblr.com/contact

Nate Koechley 24ways.org/200620

20. Intricate Fluid
Layouts in Three Easy
Steps

The Year of the Script may have drawn
attention away from CSS but building fluid,
multi-column, cross-browser CSS layouts
can still be as unpleasant as a lump of coal.
Read on for a worry-free approach in three
quick steps.

The layout system I developed, YUI Grids CSS, has three

components. They can be used together as we’ll see, or

independently.

THE THREE EASY STEPS

1. Choose fluid or fixed layout, and choose the width (in

percents or pixels) of the page.

2. Choose the size, orientation, and source-order of the

main and secondary blocks of content.

Intricate Fluid Layouts in Three Easy Steps

24 ways 2006 edition 153

http://24ways.org/200620
http://developer.yahoo.com/yui/grids/

3. Choose the number of columns and how they

distribute (for example 50%-50% or 25%-75%), using

stackable and nestable grid structures.

THE SETUP

There are two prerequisites: We need to normalize the

size of an em and opt into the browser rendering engine’s

Strict Mode.

Ems are a superior unit of measure for our case because

they represent the current font size and grow as the user

increases their font size setting. This flexibility—the

container growing with the user’s wishes—means larger

text doesn’t get crammed into an unresponsive container.

We’ll use YUI Fonts CSS to set the base size because it

provides consistent-yet-adaptive font-sizes while

preserving user control.

The second prerequisite is to opt into Strict Mode (more

info on rendering modes) by declaring a Doctype

complete with URI. You can choose XHTML or HTML, and

Transitional or Strict. I prefer HTML 4.01 Strict, which

looks like this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

154 24 ways 2006 edition

http://developer.yahoo.com/yui/fonts/
http://www.ericmeyeroncss.com/bonus/render-mode.html
http://www.ericmeyeroncss.com/bonus/render-mode.html

INCLUDING THE CSS

A single small CSS file powers a nearly-infinite number of

layouts thanks to a recursive system and the interplay

between the three distinct components. You could prune

to a particular layout’s specific needs, but why bother

when the complete file weighs scarcely 1.8kb

uncompressed? Compressed, YUI Fonts and YUI Grids

combine for a miniscule 0.9kb over the wire.

You could save an HTTP request by concatenating the

two CSS files, or by adding their contents to your own

CSS, but I’ll keep them separate for now:

<link href="fonts.css" rel="stylesheet" type="text/css">

<link href="grids.css" rel="stylesheet" type="text/css">

Example: The Setup

Now we’re ready to build some layouts.

STEP 1: CHOOSE FLUID OR FIXED LAYOUT

Choose between preset widths of 750px, 950px, and

100% by giving a document-wrapping div an ID of doc,

doc2, or doc3. These options cover most use cases, but it’s

easy to define a custom fixed width.

The fluid 100% grid (doc3) is what I’ve been using almost

exclusively since it was introduced in the last YUI

released.

Intricate Fluid Layouts in Three Easy Steps

24 ways 2006 edition 155

http://developer.yahoo.com/yui/fonts/
http://developer.yahoo.com/yui/grids/
http://yuiblog.com/blog/2006/11/28/performance-research-part-1/
http://24ways.org/examples/intricate-fluid-layouts/starting-point.html
http://developer.yahoo.com/yui/grids/#custom_page_width

<body>

<div id="doc3"></div>

</body>

All pages are centered within the viewport, and grow with

font size. The 100% width page (doc3) preserves 10px of

breathing room via left and right margins. If you prefer

your content flush to the viewport, just add doc3

{margin:auto} to your CSS.

Regardless of what you choose in the other two steps, you

can always toggle between these widths and behaviors by

simply swapping the ID value. It’s really that simple.

Example: 100% fluid layout

STEP 2: CHOOSE A TEMPLATE PRESET

This is perhaps the most frequently omitted step (they’re

all optional), but I use it nearly every time. In a source-

order-independent way (good for accessibility and SEO),

“Template Presets” provide commonly used template

widths compatible with ad-unit dimension standards

defined by the Interactive Advertising Bureau, an industry

association.

156 24 ways 2006 edition

http://24ways.org/examples/intricate-fluid-layouts/step1.html
http://en.wikipedia.org/wiki/Accessibility
http://en.wikipedia.org/wiki/Seo
http://www.iab.net/standards/adunits.asp

Choose between the six Template Presets (.yui-t1

through .yui-t6) by setting the class value on the

document-wrapping div established in Step 1. Most

frequently I use yui-t3, which puts the narrow secondary

block on the left and makes it 300px wide.

<body>

<div id="doc3" class="yui-t3"></div>

</body>

The Template Presets control two “blocks” of content,

which are defined by two divs, each with yui-b (“b” for

“block”) class values. Template Presets describe the width

and orientation of the secondary block; the main block will

take up the rest of the space.

<body>

<div id="doc3" class="yui-t3">

<div class="yui-b"></div>

<div class="yui-b"></div>

</div>

</body>

Use a wrapping div with an ID of yui-main to structurally

indicate which block is the main block. This wrapper—not

the source order—identifies the main block.

<body>

<div id="doc3" class="yui-t3">

<div id="yui-main">

<div class="yui-b"></div>

</div>

Intricate Fluid Layouts in Three Easy Steps

24 ways 2006 edition 157

http://developer.yahoo.com/yui/grids/#available_templates
http://developer.yahoo.com/yui/grids/#available_templates

<div class="yui-b"></div>

</div>

</body>

Example: Main and secondary blocks sized and oriented

with .yui-t3 Template Preset

Again, regardless of what values you choose in the other

steps, you can always toggle between these Template

Presets by toggling the class value of your document-

wrapping div. It’s really that simple.

STEP 3: NEST AND STACK GRID STRUCTURES.

The bulk of the power of the system is in this third step.

The key is that columns are built by parents telling

children how to behave. By default, two children each

consume half of their parent’s area. Put two units inside a

grid structure, and they will sit side-by-side, and they will

each take up half the space. Nest this structure and two

columns become four. Stack them for rows of columns.

An Even Number of Columns

The default behavior creates two evenly-distributed

columns. It’s easy. Define one parent grid with .yui-g (“g”

for grid) and two child units with .yui-u (“u” for unit). The

code looks like this:

158 24 ways 2006 edition

http://24ways.org/examples/intricate-fluid-layouts/step2.html
http://24ways.org/examples/intricate-fluid-layouts/step2.html

<div class="yui-g">

<div class="yui-u first"></div>

<div class="yui-u"></div>

</div>

Be sure to indicate the “first“ unit because the :first-

child pseudo-class selector isn’t supported across all A-

grade browsers. It’s unfortunate we need to add this, but

luckily it’s not out of place in the markup layer since it is

structural information.

Example: Two evenly-distributed columns in the main

content block

An Odd Number of Columns

The default system does not work for an odd number of

columns without using the included “Special Grids”

classes. To create three evenly distributed columns, use

the “yui-gb“ Special Grid:

<div class="yui-gb">

<div class="yui-u first"></div>

<div class="yui-u"></div>

<div class="yui-u"></div>

</div>

Example: Three evenly distributed columns in the main

content block

Intricate Fluid Layouts in Three Easy Steps

24 ways 2006 edition 159

http://www.w3.org/TR/REC-CSS2/selector.html#first-child
http://www.w3.org/TR/REC-CSS2/selector.html#first-child
http://developer.yahoo.com/yui/articles/gbs/gbs_browser-chart.html
http://developer.yahoo.com/yui/articles/gbs/gbs_browser-chart.html
http://24ways.org/examples/intricate-fluid-layouts/step3a.html
http://24ways.org/examples/intricate-fluid-layouts/step3a.html
http://developer.yahoo.com/yui/grids/#available_special_grids
http://developer.yahoo.com/yui/grids/#available_special_grids
http://24ways.org/examples/intricate-fluid-layouts/step3b.html
http://24ways.org/examples/intricate-fluid-layouts/step3b.html

Uneven Column Distribution

Special Grids are also used for unevenly distributed

column widths. For example, .yui-ge tells the first unit

(column) to take up 75% of the parent’s space and the

other unit to take just 25%.

<div class="yui-ge">

<div class="yui-u first"></div>

<div class="yui-u"></div>

</div>

Example: Two columns in the main content block split

75%-25%

PUTTING IT ALL TOGETHER

Start with a full-width fluid page (div#doc3). Make the

secondary block 180px wide on the right (div.yui-t4).

Create three rows of columns: Three evenly distributed

columns in the first row (div.yui-gb), two uneven

columns (66%-33%) in the second row (div.yui-gc), and

two evenly distributed columns in the thrid row.

<body>

<!-- choose fluid page and Template Preset -->

<div id="doc3" class="yui-t4">

<!-- main content block -->

<div id="yui-main">

<div class="yui-b">

<!-- stacked grid structure, Special Grid "b" -->

<div class="yui-gb">

160 24 ways 2006 edition

http://24ways.org/examples/intricate-fluid-layouts/step3c.html
http://24ways.org/examples/intricate-fluid-layouts/step3c.html

<div class="yui-u first"></div>

<div class="yui-u"></div>

<div class="yui-u"></div>

</div>

<!-- stacked grid structure, Special Grid "c" -->

<div class="yui-gc">

<div class="yui-u first"></div>

<div class="yui-u"></div>

</div>

<!-- stacked grid structure -->

<div class="yui-g">

<div class="yui-u first"></div>

<div class="yui-u"></div>

</div>

</div>

</div>

<!-- secondary content block -->

<div class="yui-b"></div>

</div>

</body>

Example: A complex layout.

Wasn’t that easy? Now that you know the three “levers” of

YUI Grids CSS, you’ll be creating headache-free fluid

layouts faster than you can say “Peace on Earth”.

Intricate Fluid Layouts in Three Easy Steps

24 ways 2006 edition 161

http://24ways.org/examples/intricate-fluid-layouts/complex-layout-example.html

ABOUT THE AUTHOR

Nate Koechley is a Yahoo! frontend engineer and designer

based in San Francisco‘s Mission district. When he’s not helping

design and build the open-source Yahoo! User Interface (YUI)

Library he edits the YUIBlog, promotes accessibility, defines

Yahoo! browser support policies, writes occasionally at his

personal blog, and presents at conferences around the globe.

Photo: Dave Bullock

162 24 ways 2006 edition

http://developer.yahoo.com/yui/
http://developer.yahoo.com/yui/
http://yuiblog.com/blog/
http://developer.yahoo.com/yui/articles/gbs/gbs.html
http://nate.koechley.com/blog/
http://nate.koechley.com/blog/
http://eecue.com/

Derek Featherstone 24ways.org/200621

21. A Scripting Carol

We all know the stories of the Ghost of
Scripting Past – a time when the web was
young and littered with nefarious scripting,
designed to bestow ultimate control upon
the developer, to pollute markup with event
handler after event handler, and to entrench
advertising in the minds of all that gazed
upon her.

And so it came to be that JavaScript became a dirty word,

thrown out of solutions by many a Scrooge without

regard to the enhancements that JavaScript could bring

to any web page. JavaScript, as it was, was dead as a door-

nail.

With the arrival of our core philosophy that all

standardistas hold to be true: “separate your concerns –

content, presentation and behaviour,” we are in a new era

of responsible development the Web Standards Way™. Or

A Scripting Carol

24 ways 2006 edition 163

http://24ways.org/200621

are we? Have we learned from the Ghosts of Scripting

Past? Or are we now faced with new problems that come

with new ways of implementing our solutions?

THE GHOST OF SCRIPTING PAST

If the Ghost of Scripting Past were with us it would

probably say:

You must remember your roots and where you
came from, and realize the misguided nature of
your early attempts for control. That person
you see down there, is real and they are the
reason you exist in the first place… without
them, you are nothing.

In many ways we’ve moved beyond the era of control and

we do take into account the user, or at least much more so

than we used to. Sadly – there is one advantage that old

school inline event handlers had where we assigned and

reassigned CSS style property values on the fly – we knew

that if JavaScript wasn’t supported, the styles wouldn’t be

added because we ended up doing them at the same time.

If anything, we need to have learned from the past that

just because it works for us doesn’t mean it is going to

work for anyone else – we need to test more scenarios

than ever to observe the multitude of browsing

164 24 ways 2006 edition

arrangements we’ll observe: CSS on with JavaScript off,

CSS off/overridden with JavaScript on, both on, both off/

not supported. It is a situation that is ripe for conflict.

This may shock some of you, but there was a time when

testing was actually easier: back in the day when

Netscape 4 was king. Yes, that’s right. I actually kind of

enjoyed Netscape 4 (hear me out, please). With NS4’s CSS

implementation known as JavaScript Style Sheets, you

knew that if JavaScript was off the styles were off too.

THE GHOST OF SCRIPTING PRESENT

With current best practice – we keep our CSS and

JavaScript separate from each other. So what happens

when some of our fancy, unobtrusive DOM Scripting

doesn’t play nicely with our wonderfully defined style

rules?

Lets look at one example of a collapsing and expanding

menu to illustrate where we are now:

Simple Collapsing/Expanding Menu Example

We’re using some simple JavaScript (I’m using jquery in

this case) to toggle between a CSS state for expanded and

not expanded:

JavaScript

A Scripting Carol

24 ways 2006 edition 165

http://en.wikipedia.org/wiki/JavaScript_Style_Sheets
http://24ways.org/examples/a-scripting-carol/simplenav.html

$(document).ready(function(){

TWOFOURWAYS.enableTree();

});

var TWOFOURWAYS = new Object();

TWOFOURWAYS.enableTree = function ()

{

$("ul li a").toggle(function(){

$(this.parentNode).addClass("expanded");

}, function() {

$(this.parentNode).removeClass("expanded");

});

return false;

}

CSS

ul li ul {

display: none;

}

ul li.expanded ul {

display: block;

}

At this point we’ve separated our presentation from our

content and behaviour, and all is well, right?

Not quite.

Here’s where I typically see failures in the assessment

work that I do on web sites and applications (Yes, call me

Scrooge – I don’t care!). We know our page needs to work

166 24 ways 2006 edition

with or without scripting, and we know it needs to work

with or without CSS. All too often the testing scenarios

don’t take into account combinations.

TESTING IT OUT

So what happens when we test this? Make sure you test

with:

▪ CSS off

▪ JavaScript off

Use the simple example again.

With CSS off, we revert to a simple nested list of links and

all functionality is maintained. With JavaScript off,

however, we run into a problem – we have now removed

the ability to expand the menu using the JavaScript

triggered CSS change.

Hopefully you see the problem – we have a JavaScript and

CSS dependency that is critical to the functionality of the

page. Unobtrusive scripting and binary on/off tests aren’t

enough. We need more.

This Ghost of Scripting Present sighting is seen all too

often.

Lets examine the JavaScript off scenario a bit further – if

we require JavaScript to expand/show the branch of the

tree we should use JavaScript to hide them in the first

A Scripting Carol

24 ways 2006 edition 167

http://24ways.org/examples/a-scripting-carol/simplenav.html

place. That way we guarantee functionality in all

scenarios, and have achieved our baseline level of

interoperability.

To revise this then, we’ll start with the sub items

expanded, use JavaScript to collapse them, and then use

the same JavaScript to expand them.

HTML

Main Item

<ul class="collapseme">

Sub item 1

Sub item 2

Sub item 3

CSS

/* initial style is expanded */

ul li ul.collapseme {

display: block;

}

JavaScript

// remove the class collapseme after the page loads

$("ul ul.collapseme").removeClass("collapseme");

And there you have it – a revised example with better

interoperability.

168 24 ways 2006 edition

http://24ways.org/examples/a-scripting-carol/simplenav2.html
http://24ways.org/examples/a-scripting-carol/simplenav2.html

This isn’t rocket surgery by any means. It is a simple

solution to a ghostly problem that is too easily overlooked

(and often is).

THE GHOST OF SCRIPTING FUTURE

Well, I’m not so sure about this one, but I’m guessing that

in a few years’ time, we’ll all have seen a few more

apparitions and have a few more tales to tell. And

hopefully we’ll be able to share them on 24 ways.

Thanks to Drew for the invitation to contribute and

thanks to everyone else out there for making this a great

(and haunting) year on the web!

A Scripting Carol

24 ways 2006 edition 169

ABOUT THE AUTHOR

Derek Featherstone is a web developer and experienced

accessibility consultant based in Ottawa, Canada where he runs

Further Ahead. He serves as the Lead for the WaSP

Accessibility Task Force. He is insane and thinks that somehow

he’ll manage to find time to train for an IronMan triathlon

amidst work and family life with wife and three children. Insane.

170 24 ways 2006 edition

http://boxofchocolates.ca/
http://furtherahead.com
http://webstandards.org/action/atf/
http://webstandards.org/action/atf/

Dave Shea 24ways.org/200622

22. Photographic Palettes

How many times have you seen a colour
combination that just worked, a match so
perfect that it just seems obvious?

Now, how many times do you come up with those in your

own work? A perfect palette looks easy when it’s done

right, but it’s often maddeningly difficult and time-

consuming to accomplish.

Choosing effective colour schemes will always be more

art than science, but there are things you can do that will

make coming up with that oh-so-smooth palette just a

little a bit easier. A simple trick that can lead to incredibly

gratifying results lies in finding a strong photograph and

sampling out particularly harmonious colours.

PHOTO SELECTION

Not all photos are created equal. You certainly want to

start with imagery that fits the eventual tone you’re

attempting to create. A well-lit photo of flowers might

Photographic Palettes

24 ways 2006 edition 171

http://24ways.org/200622

lead to a poor colour scheme for a funeral parlour’s web

site, for example. It’s worth thinking about what you’re

trying to say in advance, and finding a photo that lends

itself to your message.

As a general rule of thumb, photos that have a lot of

neutral or de-saturated tones with one or two strong

colours make for the best palette; bright and multi-

coloured photos are harder to derive pleasing results

from. Let’s start with a relatively neutral image.

SAMPLING

In the above example, I’ve surrounded the photo with

three different background colours directly sampled from

the photo itself. Moving from left to right, you can see

how each of the sampled colours is from an area of

increasingly smaller coverage within the photo, and yet

there’s still a strong harmony between the photo and the

background image. I don’t really need to pick the big

172 24 ways 2006 edition

obvious colours from the photo to create that match, I can

easily concentrate on more interesting colours that might

work better for what I intend.

Using a similar palette, let’s apply those colour choices to

a more interesting layout:

In this mini-layout, I’ve re-used the same tan colour from

the previous middle image as a background, and sampled

out a nicely matching colour for the top and bottom

overlays, as well as the two different text colours.

Because these colours all fall within a narrow range, the

overall balance is harmonious.

What if I want to try something a little more daring? I have

a photo of stacked chairs of all different colours, and I’d

like to use a few more of those. No problem, provided I

watch my colour contrast:

Photographic Palettes

24 ways 2006 edition 173

Though it uses varying shades of red, green, and yellow,

this palette actually works because the values are even,

and the colours muted. Placing red on top of green is

usually a hideous combination of death, but if the green is

drab enough and the red contrasts well enough, the result

can actually be quite pleasing. I’ve chosen red as my

loudest colour in this palette, and left green and yellow to

play the quiet supporting roles.

Obviously, there are no hard and fast rules here. You

might not want to sample absolutely every colour in your

scheme from a photo. There are times where you’ll need a

variation that’s just a little bit lighter, or a blue that’s not

in the photo. You might decide to start from a photo base

and tweak, or add in colours of your own. That’s okay too.

174 24 ways 2006 edition

TONAL VARIATIONS

I’ll leave you with a final trick I’ve been using lately, a way

to bring a bit more of a formula into the equation and save

some steps.

Starting with the same base palette I sampled from the

chairs, in the above image I’ve added a pair of overlaying

squares that produce tonal variations of each primary.

The lighter variation is simply a solid white square set to

40% opacity, the darker one is a black square at 20%. That

gives me a highlight and shadow for each colour, which

would prove handy if I had to adapt this colour scheme to

a larger layout.

I could add a few more squares of varying opacities, or

adjust the layer blending modes for different effects, but

as this looks like a great place to end, I’ll leave that up to

your experimental whims. Happy colouring!

Photographic Palettes

24 ways 2006 edition 175

ABOUT THE AUTHOR

Dave Shea is the Founder of Bright Creative, and co-organizer

of Web Directions North. He blogs sometimes at Mezzoblue

and Flickrs a bit more often than that. Oh, and there’s other

stuff too.

176 24 ways 2006 edition

http://brightcreative.com/
http://north.webdirections.org/
http://www.mezzoblue.com/
http://flickr.com/photos/mezzoblue/
http://brightcreative.com/about/

Jason Santa Maria 24ways.org/200623

23. Cheating Color

Have you ever been strapped to use specific
colors outlined in a branding guide? Felt
restricted because those colors ended up
being too light or dark for the way you want
to use them?

Here’s the solution: throw out your brand guide.

gasp!

OK, don’t throw it out. Just put it in a drawer for a few

minutes.

BRANDING GUIDES BE DAMNED

When dealing with color on screen, it’s easy to get caught

up in literal values from hex colors, you can cheat colors

ever so slightly to achieve the right optical value. This is

especially prevalent when trying to bring a company’s

identity colors to a screen design. Because the most

important idea behind a brand guide is to help a company

maintain the visual integrity of their business, consider

Cheating Color

24 ways 2006 edition 177

http://24ways.org/200623

hex numbers to be guidelines rather than law. Once you

are familiar enough with the colors your company uses,

you can start to flex them a bit, and take a few liberties.

This is a quick method for cheating to get the color you

really want. With a little sleight of design, we can swap a

color that might be part of your identity guidelines, with

one that works better optically, and no one will be the

wiser!

COLOR IS A WILY BEAST

This might be hard: You might have to break out of the

idea that a color can only be made using one method.

Color is fluid. It interacts and changes based on its

surroundings. Some colors can appear lighter or darker

based on what color they appear on or next to. The RGB

gamut is additive color, and as such, has a tendency to

push contrast in the direction that objects may already be

leaning—increasing the contrast of light colors on dark

colors and decreasing the contrast of light on light.

Obviously, because we are talking about monitors here,

these aren’t hard and fast rules.

CHEAT AND FEEL GOOD ABOUT IT

On a light background, when you have a large element of a

light color, a small element of the same color will appear

lighter.

178 24 ways 2006 edition

http://en.wikipedia.org/wiki/Additive_color

Enter our fake company: Double Dagger. They

manufacture footnotes. Take a look at Fig. 1 below. The

logo (Double Dagger), rule, and small text are all #6699CC.

Because the logo so large, we get a good sense of the light

blue color. Unfortunately, the rule and small text beneath

it feel much lighter because we can’t create enough

contrast with such small shapes in that color.

Now take a look at Fig. 2. Our logo is still #6699CC, but now

the rule and smaller text have been cheated to #4477BB,

effectively giving us the same optical color that we used in

the logo. You will find that we get a better sense of the

light blue, and the added benefit of more contrast for our

text. Doesn’t that feel good?

Conversely, when you have a large element of a dark

color, a small element of the same color will appear darker.

Let’s look at Fig. 3 below. Double Dagger has decided to

change its identity colors from blue to red. In Fig. 3, our

logo, rule, and small text are all #330000, a very dark red. If

you look at the rule and small text below the logo, you will

notice that they seem dark enough to be confused with

black. The dark red can’t be sustained by the smaller

Cheating Color

24 ways 2006 edition 179

shapes. Now let’s look at Fig. 4. The logo is still #33000, but

we’ve now cheated the rule and smaller text to #550000.

This gives us a better sense of a red, but preserves the

dark and moody direction the company has taken.

But we’ve only touched on color against a white

background. For colors against a darker background, you

may find lighter colors work fine, but darker colors need

to be cheated a bit to the lighter side in order to reach a

good optical equivalent. Take a look below at Fig. 5 and

Fig. 6. Both use the same exact corresponding colors as

Fig. 1 and Fig. 2 above, but now they are set against a dark

background. Where the blue used in Fig. 1 above was too

light for the smaller elements, we find it is just right for

them in Fig. 5, and the darker blue we used in Fig. 2 has

now proven too dark for a dark background, as evidenced

in Fig. 6.

180 24 ways 2006 edition

Your mileage may vary, and this may not be applicable in

all situations, but consider it to be just another tool on

your utility belt for dealing with color problems.

ABOUT THE AUTHOR

Jason Santa Maria is a graphic designer from sunny Brooklyn,

NY. He currently works as Creative Director for Happy Cog

Studios, a web design consultancy, and A List Apart, an online

magazine for people who make websites. He maintains a

personal site where discussion of design, film, and sock

monkeys can often be observed. His work has garnered him

awards and pleasantries ranging from firm handshakes to

forceful handshakes with a little hitting. Ever the design

obsessif, Jason is known to take drunken arguments to fisticuffs

over such frivolities as kerning and white space.

Cheating Color

24 ways 2006 edition 181

http://www.happycog.com
http://www.happycog.com
http://www.alistapart.com
http://www.jasonsantamaria.com

Dan Cederholm 24ways.org/200624

24. Gravity-Defying Page
Corners

While working on Stikkit, a “page curl”
came to be.
Not being as crafty as Veerle, you see.
I fired up Photoshop to see what could be.
“Another copy is running on the network“
… oopsie.

With license issues sorted out and a concept in mind

I set out to create something flexible and refined.

One background image and code that is sure to be lean.

A simple solution for lazy people like me.

The curl I’ll be showing isn’t a curl at all.

It’s simply a gradient that’s 18 pixels tall.

With a fade to the left that’s diagonally aligned

and a small fade on the right that keeps the illusion

defined.

182 24 ways 2006 edition

http://24ways.org/200624
http://stikkit.com
http://veerle.duoh.com/blog/comments/creating_a_page_curl_in_photoshop/
http://24ways.org/examples/gravity-defying-page-corners/example.html

Create a selection with the marquee tool (keeping in mind

a reasonable minimum width) and drag a gradient (black

to transparent) from top to bottom.

Now drag a gradient (the background color of the page to

transparent) from the bottom left corner to the top right

corner.

Finally, drag another gradient from the right edge towards

the center, about 20 pixels or so.

But the top is flat and can be positioned precisely

just under the bottom right edge very nicely.

And there it will sit, never ever to be busted

by varying sizes of text when adjusted.

<div id="page">

<div id="page-contents">

<h2>Gravity-Defying!</h2>

<p>Lorem ipsum dolor ...</p>

</div>

</div>

Gravity-Defying Page Corners

24 ways 2006 edition 183

Let’s dive into code and in the markup you’ll see

“is that an extra div?” … please don’t kill me?

The #page div sets the width and bottom padding

whose height is equal to the shadow we’re adding.

The #page-contents div will set padding in ems

to scale with the text size the user intends.

The background color will be added here too

but not overlapping the shadow where #page’s padding

makes room.

A simple technique that you may find amusing

is to substitute a PNG for the GIF I was using.

For that would be crafty and future-proof, too.

The page curl could sit on any background hue.

184 24 ways 2006 edition

I hope you’ve enjoyed this easy little trick.

It’s hardly earth-shattering, and arguably slick.

But it could come in handy, you just never know.

Happy Holidays! And pleasant dreams of web three point

oh.

ABOUT THE AUTHOR

Dan Cederholm is a web designer and author based in Salem,

Massachusetts. He’s the founder of SimpleBits, a tiny web

design studio. He’s writes and speaks (in non-poetic form) about

interface design during the day, and plays the ukulele and drinks

wine at night.

Photo: Scott Beale / Laughing Squid

Gravity-Defying Page Corners

24 ways 2006 edition 185

http://simplebits.com/
http://laughingsquid.com

	Credits
	2006
	Tasty Text Trimmer
	The Setup
	Our Core Functions
	The YUI Slider Widget
	See It Working!
	Keeping it Accessible
	In Conclusion
	About the author

	Faster Development with CSS Constants
	So what options do we have?
	Going server-side
	About the author

	Flickr Photos On Demand with getFlickr
	getFlickr for Non-Scripters
	getFlickr for JavaScript Hackers
	About the author

	Rounded Corner Boxes the CSS3 Way
	About the author

	Accessible Dynamic Links
	When JavaScript is not available
	Hiding the links
	Moving the links out of sight
	Which way?
	About the author

	Hide And Seek in The Head
	Special HTML elements
	Problem: the load event
	Alternative
	About the author

	Making XML Beautiful Again: Introducing Client-Side XSL
	What on earth is this XSL?
	So what do I need?
	Your first transformation
	A touch of style
	About the author

	Random Lines Made With Mesh
	Step 1 – Create Lines
	Step 2 – Convert Strokes to Fills
	Step 3 – Convert to Mesh
	Step 4 – Play Around with The Mesh Points
	The Final Result
	About the author

	Marking Up a Tag Cloud
	del.icio.us
	Flickr
	Technorati
	So what should it be?
	About the author

	Writing Responsible JavaScript
	Event Handling
	It’s all in the timing
	Carving out your own space
	Creating An Object
	Creating A Function to Create An Object
	All Change, Please
	About the author

	Showing Good Form
	Mmm … markup
	Oh yeah, there was some CSS too
	The finished widget
	About the author

	Compose to a Vertical Rhythm
	Establishing a suitable line height
	Spacing between paragraphs
	Variations in text size
	Headings
	Sidenotes
	Borders
	Hit me with your rhythm stick
	About the author

	Revealing Relationships Can Be Good Form
	The Mouse Pointer Trick
	Our Old Friend AddEvent
	Finding All Your Labels
	About the author

	Styling hCards with CSS
	Let’s go to work
	Holiday Bonus – a downloadable vCard
	Some hCard links
	About the author

	A Message To You, Rudy - CSS Production Notes
	Basic CSS styling
	Fun with more detailed styling
	Show and hide the notes using CSS positioning
	A Message To You, Rudy
	About the author

	Fast and Simple Usability Testing
	When to test
	Who to test
	The Script
	Running the tests
	What to look for
	Writing it up
	To conclude…
	About the author

	Knockout Type - Thin Is Always In
	About the author

	Boost Your Hyperlink Power
	Anatomy of an Anchor
	The Theory of relativity
	Elemental Microformats
	You Say You Want a revolution
	The Wisdom of Crowds
	About the author

	The Mobile Web, Simplified
	1. 4 billion mobile subscribers expected by 2010
	2. Context is king
	3. WAP 2.0 is an XHTML environment
	4. “Cell phone” is so DynaTAC
	About the author

	Intricate Fluid Layouts in Three Easy Steps
	The Three Easy Steps
	The Setup
	Including the CSS
	Step 1: Choose Fluid or Fixed Layout
	Step 2: Choose a Template Preset
	Step 3: Nest and Stack Grid Structures.
	An Even Number of Columns
	An Odd Number of Columns
	Uneven Column Distribution

	Putting It All Together
	About the author

	A Scripting Carol
	The Ghost of Scripting Past
	The Ghost of Scripting Present
	Testing it out
	The Ghost of Scripting Future
	About the author

	Photographic Palettes
	Photo Selection
	Sampling
	Tonal Variations
	About the author

	Cheating Color
	Branding Guides be Damned
	Color is a Wily Beast
	Cheat and Feel Good About It
	About the author

	Gravity-Defying Page Corners
	About the author

