

Credits

24 ways is the advent calendar for web
geeks. For twenty-four days each December
we publish a daily dose of web design and
development goodness to bring you all a
little Christmas cheer.

▪ 24 ways is brought to you by Perch CMS

▪ Produced by Drew McLellan, Brian Suda, Anna

Debenham and Owen Gregory.

▪ Designed by Paul Robert Lloyd.

▪ eBook published by edgeofmyseat.com and produced

by Rachel Andrew.

▪ Possible only with the help and dedication of our

authors.

2 24 ways 2007 edition

http://grabaperch.com/?ref=24w01
http://allinthehead.com/
http://suda.co.uk/
http://maban.co.uk/
http://maban.co.uk/
http://fullcreammilk.co.uk/
http://paulrobertlloyd.com/
http://edgeofmyseat.com
http://rachelandrew.co.uk/
http://24ways.org/authors/
http://24ways.org/authors/

2007

Apple launched the iPhone in June; Amazon
released the Kindle in November — a big
year. At three, 24 ways was as diverse as
ever, taking a detailed look at font stacks,
website performance, working with clients
and markup.

Transparent PNGs in Internet Explorer 6................................ 5

Get To Grips with Slippy Maps ...15

The Neverending (Background Image) Story.......................23

Capturing Caps Lock ..35

My Other Christmas Present Is a Definition List................43

Minification: A Christmas Diet ..49

Typesetting Tables...54

JavaScript Internationalisation ...66

Back To The Future of Print...75

10 Ways To Get Design Approval ...90

Tracking Christmas Cheer with Google Charts...................98

2007

24 ways 2007 edition 3

Unobtrusively Mapping Microformats with jQuery118

CSS for Accessibility..134

Underpants Over My Trousers ...144

Conditional Love...156

Get In Shape ...168

Increase Your Font Stacks With Font Matrix176

Keeping JavaScript Dependencies At Bay183

Christmas Is In The AIR..193

Diagnostic Styling ..209

Mobile 2.0..220

How Media Studies Can Massage Your Message............229

A Gift Idea For Your Users: Respect, Yo239

Performance On A Shoe String...249

4 24 ways 2007 edition

Drew McLellan 24ways.org/200701

1. Transparent PNGs in
Internet Explorer 6

Newer breeds of browser such as Firefox and
Safari have offered support for PNG images
with full alpha channel transparency for a
few years. With the use of hacks, support
has been available in Internet Explorer 5.5
and 6, but the hacks are non-ideal and have
been tricky to use. With IE7 winning masses
of users from earlier versions over the last
year, full PNG alpha-channel transparency
is becoming more of a reality for day-to-day
use.

However, there are still numbers of IE6 users out there

who we can’t leave out in the cold this Christmas, so in

this article I’m going to look what we can do to support

IE6 users whilst taking full advantage of transparency for

the majority of a site’s visitors.

Transparent PNGs in Internet Explorer 6

24 ways 2007 edition 5

http://24ways.org/200701

SO WHAT’S ALPHA CHANNEL TRANSPARENCY?

Cast your minds back to the Ghost of Christmas Past, the

humble GIF. Images in GIF format offer transparency, but

that transparency is either on or off for any given pixel.

Each pixel’s either fully transparent, or a solid colour. In

GIF, transparency is effectively just a special colour you

can chose for a pixel.

The PNG format tackles the problem rather differently.

As well as having any colour you chose, each pixel also

carries a separate channel of information detailing how

transparent it is. This alpha channel enables a pixel to be

fully transparent, fully opaque, or critically, any step in

between.

This enables designers to produce images that can have,

for example, soft edges without any of the ‘halo effect’

traditionally associated with GIF transparency. If you’ve

ever worked on a site that has different colour schemes

and therefore requires multiple versions of each graphic

against a different colour, you’ll immediately see the

benefit.

What’s perhaps more interesting than that, however, is

the extra creative freedom this gives designers in creating

beautiful sites that can remain web-like in their ability to

adjust, scale and reflow.

6 24 ways 2007 edition

http://www.w3.org/TR/PNG-DataRep.html#DR.Alpha-channel

THE INTERNET EXPLORER PROBLEM

Up until IE7, there has been no fully native support for

PNG alpha channel transparency in Internet Explorer.

However, since IE5.5 there has been some support in the

form of proprietary filter called the AlphaImageLoader.

Internet Explorer filters can be applied directly in your

CSS (for both inline and background images), or by setting

the same CSS property with JavaScript.

CSS:

img {

filter:

progid:DXImageTransform.Microsoft.AlphaImageLoader(...);

}

JavaScript:

img.style.filter =

"progid:DXImageTransform.Microsoft.AlphaImageLoader(...)";

That may sound like a problem solved, but all is not as it

may appear. Firstly, as you may realise, there’s no CSS

property called filter in the W3C CSS spec. It’s a

proprietary extension added by Microsoft that could

potentially cause other browsers to reject your entire CSS

rule.

Secondly, AlphaImageLoader does not magically add full

PNG transparency support so that a PNG in the page will

just start working. Instead, when applied to an element in

Transparent PNGs in Internet Explorer 6

24 ways 2007 edition 7

http://www.w3.org/TR/CSS21/propidx.html

the page, it draws a new rendering surface in the same

space that element occupies and loads a PNG into it. If

that sounds weird, it’s because that’s precisely what it is.

However, by and large the result is that PNGs with an

alpha channel can be accommodated.

THE PITFALLS

So, whilst support for PNG transparency in IE5.5 and 6 is

possible, it’s not without its problems.

Background images cannot be positioned or repeated

The AlphaImageLoader does work for background

images, but only for the simplest of cases. If your design

requires the image to be tiled (background-repeat) or

positioned (background-position) you’re out of luck. The

AlphaImageLoader allows you to set a sizingMethod to

either crop the image (if necessary) or to scale it to fit.

Not massively useful, but something at least.

Delayed loading and resource use

The AlphaImageLoader can be quite slow to load, and

appears to consume more resources than a standard

image when applied. Typically, you’d need to add

thousands of GIFs or JPEGs to a page before you saw any

noticeable impact on the browser, but with the

8 24 ways 2007 edition

AlphaImageLoader filter applied Internet Explorer can

become sluggish after just a handful of alpha channel

PNGs.

The other noticeable effect is that as more instances of

the AlphaImageLoader are applied, the longer it takes to

render the PNGs with their transparency. The user sees

the PNG load in its original non-supported state (with

black or grey areas where transparency should be) before

one by one the filter kicks in and makes them properly

transparent.

Both the issue of sluggish behaviour and delayed load

only really manifest themselves with volume and size of

image. Use just a couple of instances and it’s fine, but be

careful adding more than five or six. As ever, test, test,

test.

Links become unclickable, forms unfocusable

This is a big one. There’s a bug/weirdness with

AlphaImageLoader that sometimes prevents interaction

with links and forms when a PNG background image is

used. This is sometimes reported as a z-index issue, but I

don’t believe it is. Rather, it’s an artefact of that weird way

the filter gets applied to the document almost outside of

the normal render process.

Transparent PNGs in Internet Explorer 6

24 ways 2007 edition 9

Often this can be solved by giving the links or form

elements hasLayout using position: relative; where

possible. However, this doesn’t always work and the non-

interaction problem cannot always be solved. You may

find yourself having to go back to the drawing board.

SIDESTEPPING THE DANGER ZONES

Frankly, it’s pretty bad news if you design a site, have that

design signed off by your client, build it and then find out

only at the end (because you don’t know what might

trigger a problem) that your search field can’t be focused

in IE6. That’s an absolute nightmare, and whilst it’s not

likely to happen, it’s possible that it might. It’s happened

to me. So what can you do?

The best approach I’ve found to this scenario is

1. Isolate the PNG or PNGs that are causing the problem.

Step through the PNGs in your page, commenting them

out one by one and retesting. Typically it’ll be the nearest

PNG to the problem, so try there first. Keep going until

you can click your links or focus your form fields.

2. This is where you really need luck on your side,

because you’re going to have to fake it. This will depend

on the design of the site, but some way or other create a

replacement GIF or JPEG image that will give you an

acceptable result. Then use conditional comments to

serve that image to only users of IE older than version 7.

10 24 ways 2007 edition

http://www.quirksmode.org/css/condcom.html

A hack, you say? Well, you started it chum.

APPLYING ALPHAIMAGELOADER

Because the filter property is invalid CSS, the safest

pragmatic approach is to apply it selectively with

JavaScript for only Internet Explorer versions 5.5 and 6.

This helps ensure that by default you’re serving standard

CSS to browsers that support both the CSS and PNG

standards correct, and then selectively patching up only

the browsers that need it.

Several years ago, Aaron Boodman wrote and released a

script called sleight for doing just that. However, sleight

dealt only with images in the page, and not background

images applied with CSS. Building on top of Aaron’s work,

I hacked sleight and came up with bgsleight for applying

the filter to background images instead. That was in 2003,

and over the years I’ve made a couple of improvements

here and there to keep it ticking over and to resolve

conflicts between sleight and bgsleight when used

together. However, with alpha channel PNGs becoming

much more widespread, it’s time for a new version.

INTRODUCING SUPERSLEIGHT

SuperSleight adds a number of new and useful features

that have come from the day-to-day needs of working

with PNGs.

Transparent PNGs in Internet Explorer 6

24 ways 2007 edition 11

http://youngpup.net
http://youngpup.net/projects/sleight/
http://allinthehead.com/retro/289/sleight-update-alpha-png-backgrounds-in-ie

▪ Works with both inline and background images,

replacing the need for both sleight and bgsleight

▪ Will automatically apply position: relative to links

and form fields if they don’t already have position set.

(Can be disabled.)

▪ Can be run on the entire document, or just a selected

part where you know the PNGs are. This is better for

performance.

▪ Detects background images set to no-repeat and sets

the scaleMode to crop rather than scale.

▪ Can be re-applied by any other JavaScript in the page –

useful if new content has been loaded by an Ajax request.

Download SuperSleight

Implementation

Getting SuperSleight running on a page is quite

straightforward, you just need to link the supplied

JavaScript file (or the minified version if you prefer) into

your document inside conditional comments so that it is

delivered to only Internet Explorer 6 or older.

<!--[if lte IE 6]>

<script type="text/javascript"

src="supersleight-min.js"></script>

<![endif]-->

12 24 ways 2007 edition

http://24ways.org/code/supersleight-transparent-png-in-ie6/supersleight.zip

Supplied with the JavaScript is a simple transparent GIF

file. The script replaces the existing PNG with this before

re-layering the PNG over the top using

AlphaImageLoaded. You can change the name or path of

the image in the top of the JavaScript file, where you’ll

also find the option to turn off the adding of position:

relative to links and fields if you don’t want that.

The script is kicked off with a call to supersleight.init()

at the bottom. The scope of the script can be limited to

just one part of the page by passing an ID of an element to

supersleight.limitTo(). And that’s all there is to it.

Update March 2008: a version of this script as a jQuery

plugin is also now available.

Transparent PNGs in Internet Explorer 6

24 ways 2007 edition 13

http://allinthehead.com/retro/338/supersleight-jquery-plugin
http://allinthehead.com/retro/338/supersleight-jquery-plugin

ABOUT THE AUTHOR

Drew McLellan is lead developer on your favourite small CMS,

Perch. He is Director and Senior Developer at UK-based web

development agency edgeofmyseat.com, and formerly Group

Lead at the Web Standards Project. When not publishing 24

ways, Drew keeps a personal site covering web development

issues and themes, takes photos and tweets a lot.

14 24 ways 2007 edition

http://grabaperch.com/
http://allinthehead.com/
http://flickr.com/drewm/
http://twitter.com/drewm

Andrew Turner 24ways.org/200702

2. Get To Grips with
Slippy Maps

Online mapping has definitely hit
mainstream. Google Maps made ‘slippy
maps’ popular and made it easy for any
developer to quickly add a dynamic map to
his or her website. You can now find maps
for store locations, friends nearby,
upcoming events, and embedded in blogs.

In this tutorial we’ll show you how to easily add a map to

your site using the Mapstraction mapping library. There

are many map providers available to choose from, each

with slightly different functionality, design, and terms of

service. Mapstraction makes deciding which provider to

use easy by allowing you to write your mapping code

once, and then easily switch providers.

Get To Grips with Slippy Maps

24 ways 2007 edition 15

http://24ways.org/200702
http://www.mapstraction.com/
http://www.mapstraction.com/

ASSEMBLE THE PIECES

Utilizing any of the mapping library typically consists of

similar overall steps:

1. Create an HTML div to hold the map

2. Include the Javascript libraries

3. Create the Javascript Map element

4. Set the initial map center and zoom level

5. Add markers, lines, overlays and more

CREATE THE MAP DIV

The HTML div is where the map will actually show up on

your page. It needs to have a unique id, because we’ll

refer to that later to actually put the map here. This also

lets you have multiple maps on a page, by creating

individual divs and Javascript map elements. The size of

the div also sets the height and width of the map. You set

the size using CSS, either inline with the element, or via a

CSS reference to the element id or class. For this

example, we’ll use inline styling.

<div id="map" style="width: 400px; height: 400px;"></div>

INCLUDE JAVASCRIPT LIBRARIES

A mapping library is like any Javascript library. You need

to include the library in your page before you use the

methods of that library. For our tutorial, we’ll need to

16 24 ways 2007 edition

include at least two libraries: Mapstraction, and the

mapping API(s) we want to display. Our first example we’ll

use the ubiquitous Google Maps library. However, you can

just as easily include Yahoo, MapQuest, or any of the

other supported libraries.

Another important aspect of the mapping libraries is that

many of them require an API key. You will need to agree to

the terms of service, and get an API key these.

<script src="http://maps.google.com/

maps?file=api&v=2&key=YOUR_KEY" type="text/

javascript"></script>

<script type="text/javascript"

src="http://mapstraction.com/src/

mapstraction.js"></script>

CREATE THE MAP

Great, we’ve now put in all the pieces we need to start

actually creating our map. This is as simple as creating a

new Mapstraction object with the id of the HTML div we

created earlier, and the name of the mapping provider we

want to use for this map.

With several of the mapping libraries you will need to set

the map center and zoom level before the map will appear.

The map centering actually triggers the initialization of

the map.

Get To Grips with Slippy Maps

24 ways 2007 edition 17

var mapstraction = new Mapstraction('map','google');

var myPoint = new LatLonPoint(37.404,-122.008);

mapstraction.setCenterAndZoom(myPoint, 10);

A note about zoom levels. The setCenterAndZoom function

takes two parameters, the center as a LatLonPoint, and a

zoom level that has been defined by mapping libraries.

The current usage is for zoom level 1 to be “zoomed out”,

or view the entire earth – and increasing the zoom level as

you zoom in. Typically 17 is the maximum zoom, which is

about the size of a house.

Different mapping providers have different quality of

zoomed in maps over different parts of the world. This is a

perfect reason why using a library like Mapstraction is

very useful, because you can quickly change mapping

providers to accommodate users in areas that have bad

coverage with some maps.

To switch providers, you just need to include the

Javascript library, and then change the second parameter

in the Mapstraction creation. Or, you can call the switch

method to dynamically switch the provider.

So for Yahoo Maps (demo):

var mapstraction = new Mapstraction('map','yahoo');

or Microsoft Maps (demo):

var mapstraction = new Mapstraction('map','microsoft');

18 24 ways 2007 edition

http://maps.yahoo.com/
http://mapstraction.com/demo.php?map=yahoo
http://local.live.com/
http://mapstraction.com/demo.php?map=microsoft

want a 3D globe in your browser? try FreeEarth (demo):

var mapstraction = new Mapstraction('map','freeearth');

or even OpenStreetMap (free your data!) (demo):

var mapstraction = new

Mapstraction('map','openstreetmap');

Visit the Mapstraction multiple map demo page for an

example of how easy it is to have many maps on your

page, each with a different provider.

ADDING MARKERS

While adding your first map is fun, and you can probably

spend hours just sliding around, the point of adding a map

to your site is usually to show the location of something.

So now you want to add some markers. There are a couple

of ways to add to your map.

The simplest is directly creating markers. You could either

hard code this into a rather static page, or dynamically

generate these using whatever tools your site is built on.

var marker = new Marker(new

LatLonPoint(37.404,-122.008));

marker.setInfoBubble("It's easy to add maps to your

site");

mapstraction.addMarker(marker);

Get To Grips with Slippy Maps

24 ways 2007 edition 19

http://freeearth.poly9.com/
http://mapstraction.com/demo.php?map=freeearth
http://www.openstreetmap.org/
http://mapstraction.com/demo.php?map=openstreetmap

There is a lot more you can do with markers, including

changing the icon, adding timestamps, automatically

opening the bubble, or making them draggable.

While it is straight-forward to create markers one by one,

there is a much easier way to create a large set of

markers. And chances are, you can make it very easy by

extending some data you already are sharing: RSS.

Specifically, using GeoRSS you can easily add a large set of

markers directly to a map. GeoRSS is a community built

standard (like Microformats) that added geographic

markup to RSS and Atom entries. It’s as simple as adding

<georss:point>42 -83</georss:point> to your feeds to

share items via GeoRSS. Once you’ve done that, you can

add that feed as an ‘overlay’ to your map using the

function:

mapstraction.addOverlay("http://api.flickr.com/services/

feeds/

groups_pool.gne?id=322338@N20&format=rss_200&georss=1");

Mapstraction also supports KML for many of the mapping

providers. So it’s easy to add various data sources

together with your own data. Check out Mapufacture for

a growing index of available GeoRSS feeds and KML

documents.

20 24 ways 2007 edition

http://georss.org/
http://georss.org/
http://code.google.com/apis/kml/documentation/
http://mapufacture.com/

PLAY WITH YOUR NEW TOYS

Mapstraction offers a lot more functionality you can

utilize for demonstrating a lot of geographic data on your

website. It also includes geocoding and routing

abstraction layers for making sure your users know where

to go. You can see more on the Mapstraction website:

http://mapstraction.com.

ABOUT THE AUTHOR

Andrew Turner is a neogeographer and co-founder of

Mapufacture, a personalizable geospatial search and

aggregation company. He helps expand the GeoWeb by

Get To Grips with Slippy Maps

24 ways 2007 edition 21

http://mapstraction.com
http://highearthorbit.com/
http://mapufacture.com

advocating open standards and developing tools such as

GeoPress to make it easy to add location to your blog or CMS.

Andrew also wrote O’Reilly’s Introduction to Neogeography.

22 24 ways 2007 edition

http://georss.org/geopress
http://www.oreilly.com/catalog/neogeography/

Elliot Jay Stocks 24ways.org/200703

3. The Neverending
(Background Image)
Story

Everyone likes candy for Christmas, and
there’s none better than eye candy. Well,
that, and just more of the stuff. Today we’re
going to combine both of those good points
and look at how to create a beautiful
background image that goes on and on…
forever!

Of course, each background image is different, so instead

of agonising over each and every pixel, I’m going to

concentrate on five key steps that you can apply to any of

your own repeating background images. In this example,

we’ll look at the Miami Beach background image used on

the new FOWA site, which I’m afraid is about as un-festive

as you can get.

The Neverending (Background Image) Story

24 ways 2007 edition 23

http://24ways.org/200703
http://futureofwebapps.com/

1. CHOOSE YOUR IMAGE WISELY

I find there are three main criteria when judging photos

you’re considering for repetition manipulation (or

‘repetulation’, as I like to say)…

▪ simplicity (beware of complex patterns)

▪ angle and perspective (watch out for shadows and

obvious vanishing points)

▪ consistent elements (for easy cloning)

You might want to check out this annotated version of the

image, where I’ve highlighted elements of the photo that

led me to choose it as the right one.

The original image purchased from iStockPhoto.

24 24 ways 2007 edition

http://media.24ways.org/2007/03/step01-diagram.jpg
http://media.24ways.org/2007/03/step01-diagram.jpg

The Photoshopped version used on the FOWA site.

2. THE POWER OF HORIZONTAL LINES

With the image chosen and your cursor poised for some

Photoshop magic, the most useful thing you can do is drag

out the edge pixels from one side of the image to create a

kind of rough colour ‘template’ on which to work over. It

doesn’t matter which side you choose, although you might

find it beneficial to use the one with the simplest spread of

colour and complex elements.

Click and hold on the marquee tool in the toolbar and

select the ‘single column marquee tool’, which will span

the full height of your document but will only be one pixel

wide. Make the selection right at the edge of your

document, press ctrl-c / cmd-c to copy the selection you

made, create a new layer, and hit ctrl-v / cmd-v to paste

The Neverending (Background Image) Story

24 ways 2007 edition 25

the selection onto your new layer. using free transform

(ctrl-t / cmd-t), drag out your selection so that it becomes

as wide as your entire canvas.

A one-pixel-wide selection stretched out to the entire

width of the canvas.

3. CLONING

It goes without saying that the trusty clone tool is one of

the most important in the process of creating a seamlessly

repeating background image, but I think it’s important to

be fairly loose with it. Always clone on to a new layer so

that you’ve got the freedom to move it around, but above

all else, use the eraser tool to tweak your cloned areas: let

that handle the precision stuff and you won’t have to

worry about getting your clones right first time.

In the example below, you can see how I overcame the

problem of the far-left tree shadow being chopped off by

cloning the shadow from the tree on its right.

26 24 ways 2007 edition

The edge of the shadow is cut off and needs to be ‘made’

from a pre-existing element.

The successful clone completes the missing shadow.

The Neverending (Background Image) Story

24 ways 2007 edition 27

The two elements are obviously very similar but it doesn’t

look like a clone because the majority of the shape is

‘genuine’ and only a small part is a duplicate. Also, after

cloning I transformed the duplicate, erased parts of it,

used gradients, and — ooh, did someone mention

gradients?

4. NEVER UNDERESTIMATE A GRADIENT

For this image, I used gradients in a similar way to a brush:

covering large parts of the canvas with a colour that faded

out to a desired point, before erasing certain parts for

accuracy.

28 24 ways 2007 edition

Several of the gradients and brushes that make up the

‘customised’ part of the image, visible when the main

photograph layer is hidden.

The Neverending (Background Image) Story

24 ways 2007 edition 29

The full composite.

Gradients are also a bit of an easy fix: you can use a

gradient on one side of the image, flip it horizontally, and

then use it again on the opposite side to make a more

seamless join.

Speaking of which…

30 24 ways 2007 edition

5. SEWING THE SEAMS

No matter what kind of magic Photoshop dust you

sprinkle over your image, there will still always be the

area where the two edges meet: that scary ‘loop’ point.

Fret ye not, however, for there’s help at hand in the form

of a nice little cheat. Even though the loop point might still

be apparent, we can help hide it by doing something to

throw viewers off the scent.

The seam is usually easy to spot because it’s a blank area

with not much detail or colour variation, so in order to

disguise it, go against the rule: put something across it!

This isn’t quite as challenging as it may sound, because if

we intentionally make our own ‘object’ to span the join,

we can accurately measure the exact halfway point where

we need to split it across the two sides of the image. This

is exactly what I did with the FOWA background image: I

made some clouds!

A sky with no clouds in an unhappy one.

The Neverending (Background Image) Story

24 ways 2007 edition 31

A simple soft white brush creates a cloud-like formation in

the sky.

After taking the cloud’s opacity down to 20%, I used free

transform to highlight the boundaries of the layer. I then

moved it over to the right, so that the middle of the layer

perfectly aligned with the right side of the canvas.

32 24 ways 2007 edition

Finally, I duplicated the layer and did the same in reverse:

dragging the layer over to the left and making sure that

the middle of the duplicate layer perfectly aligned with

the left side of the canvas.

And there you have it! Boom! Ta-da! Et Voila! To see the

repeating background image in action, visit

futureofwebapps.com on a large widescreen monitor or

see a simulation of the effect.

Thanks for reading, folks. Have a great Christmas!

The Neverending (Background Image) Story

24 ways 2007 edition 33

http://futureofwebapps.com/
http://media.24ways.org/2007/03/step05-external.jpg

ABOUT THE AUTHOR

Elliot Jay Stocks is a designer, speaker, and author. He is also

the founder of typography magazine 8 Faces and, more

recently, the co-founder of Viewport Industries. He lives and

works in the countryside between Bristol and Bath, England.

Photo: Samantha Cliffe

34 24 ways 2007 edition

http://8faces.com/
http://viewportindustries.com/
http://samanthacliffe.com

Stuart Langridge 24ways.org/200704

4. Capturing Caps Lock

One of the more annoying aspects of having
to remember passwords (along with having
to remember loads of them) is that if you’ve
got Caps Lock turned on accidentally when
you type one in, it won’t work, and you
won’t know why. Most desktop computers
alert you in some way if you’re trying to
enter your password to log on and you’ve
enabled Caps Lock; there’s no reason why
the web can’t do the same. What we want is
a warning – maybe the user wants Caps Lock
on, because maybe their password is in
capitals – rather than something that
interrupts what they’re doing. Something
subtle.

But that doesn’t answer the question of how to do it.

Sadly, there’s no way of actually detecting whether Caps

Lock is on directly. However, there’s a simple work-

Capturing Caps Lock

24 ways 2007 edition 35

http://24ways.org/200704

around; if the user presses a key, and it’s a capital letter,

and they don’t have the Shift key depressed, why then

they must have Caps Lock on! Simple.

DOM scripting allows your code to be notified when a key

is pressed in an element; when the key is pressed, you get

the ASCII code for that key. Capital letters, A to Z, have

ASCII codes 65 to 90. So, the code would look something

like:

on a key press

if the ASCII code for the key is between 65 and 90

and if shift is pressed

warn the user that they have Caps Lock on, but let

them carry on

end if

end keypress

The actual JavaScript for this is more complicated,

because both event handling and keypress information

differ across browsers. Your event handling functions are

passed an event object, except in Internet Explorer where

you use the global event object; the event object has a

which parameter containing the ASCII code for the key

pressed, except in Internet Explorer where the event

object has a keyCode parameter; some browsers store

whether the shift key is pressed in a shiftKey parameter

and some in a modifiers parameter. All this boils down to

code that looks something like this:

36 24 ways 2007 edition

keypress: function(e) {

var ev = e ? e : window.event;

if (!ev) {

return;

}

var targ = ev.target ? ev.target : ev.srcElement;

// get key pressed

var which = -1;

if (ev.which) {

which = ev.which;

} else if (ev.keyCode) {

which = ev.keyCode;

}

// get shift status

var shift_status = false;

if (ev.shiftKey) {

shift_status = ev.shiftKey;

} else if (ev.modifiers) {

shift_status = !!(ev.modifiers & 4);

}

// At this point, you have the ASCII code in “which”, // and

shift_status is true if the shift key is pressed

}

Then it’s just a check to see if the ASCII code is between

65 and 90 and the shift key is pressed. (You also need to

do the same work if the ASCII code is between 97 (a) and

122 (z) and the shift key is not pressed, because shifted

letters are lower-case if Caps Lock is on.)

Capturing Caps Lock

24 ways 2007 edition 37

if (((which >= 65 && which <= 90) && !shift_status) ||

((which >= 97 && which <= 122) && shift_status)) {

// uppercase, no shift key

/* SHOW THE WARNING HERE */

} else {

/* HIDE THE WARNING HERE */

}

The warning can be implemented in many different ways:

highlight the password field that the user is typing into,

show a tooltip, display text next to the field. For simplicity,

this code shows the warning as a previously created

image, with appropriate alt text. Showing the warning

means creating a new tag with DOM scripting,

dropping it into the page, and positioning it so that it’s

next to the appropriate field. The image looks like this:

You know the position of the field the user is typing into

(from its offsetTop and offsetLeft properties) and how

wide it is (from its offsetWidth properties), so use

createElement to make the new img element, and then

absolutely position it with style properties so that it

appears in the appropriate place (near to the text field).

38 24 ways 2007 edition

The image is a transparent PNG with an alpha channel, so

that the drop shadow appears nicely over whatever else is

on the page. Because Internet Explorer version 6 and

below doesn’t handle transparent PNGs correctly, you

need to use the AlphaImageLoader technique to make the

image appear correctly.

newimage = document.createElement('img');

newimage.src = "http://farm3.static.flickr.com/2145/

2067574980_3ddd405905_o_d.png";

newimage.style.position = "absolute";

newimage.style.top = (targ.offsetTop - 73) + "px";

newimage.style.left = (targ.offsetLeft +

targ.offsetWidth - 5) + "px";

newimage.style.zIndex = "999";

newimage.setAttribute("alt", "Warning: Caps Lock is on");

if (newimage.runtimeStyle) {

// PNG transparency for IE

newimage.runtimeStyle.filter +=

"progid:DXImageTransform.Microsoft.AlphaImageLoader(src='http://farm3.static.flickr.com/

2145/

2067574980_3ddd405905_o_d.png',sizingMethod='scale')";

}

document.body.appendChild(newimage);

Note that the alt text on the image is also correctly set.

Next, all these parts need to be pulled together. On page

load, identify all the password fields on the page, and

attach a keypress handler to each. (This only needs to be

done for password fields because the user can see if Caps

Lock is on in ordinary text fields.)

Capturing Caps Lock

24 ways 2007 edition 39

http://24ways.org/2007/supersleight-transparent-png-in-ie6

var inps = document.getElementsByTagName("input");

for (var i=0, l=inps.length; i

The “create an image” code from above should only be run

if the image is not already showing, so instead of creating

a newimage object, create the image and attach it to the

password field so that it can be checked for later (and not

shown if it’s already showing). For safety, all the code

should be wrapped up in its own object, so that its

functions don’t collide with anyone else’s functions. So,

create a single object called capslock and make all the

functions be named methods of the object:

var capslock = {

...

keypress: function(e) {

}

...

}

Also, the “create an image” code is saved into its own

named function, show_warning(), and the converse

“remove the image” code into hide_warning(). This has

the advantage that developers can include the JavaScript

library that has been written here, but override what

actually happens with their own code, using something

like:

<script src="jscapslock.js" type="text/

javascript"></script>

<script type="text/javascript">

40 24 ways 2007 edition

capslock.show_warning(target) {

// do something different here to warn the user

}

capslock.hide_warning(target) {

// hide the warning that we created in

show_warning() above

}

</script>

And that’s all. Simply include the JavaScript library in your

pages, override what happens on a warning if that’s more

appropriate for what you’re doing, and that’s all you need.

See the script in action.

ABOUT THE AUTHOR

Capturing Caps Lock

24 ways 2007 edition 41

http://kryogenix.org/code/browser/jscapslock/jscapslock.js
http://kryogenix.org/code/browser/jscapslock/jscapslock.html

Stuart Langridge is a web hacker, author, and speaker living in

the UK. When not writing books about JavaScript or trying to

convince more people to use Ubuntu, he’s a founder member of

the WaSP’s DOM Scripting Task Force and one quarter of the

team at LugRadio, the world’s best open source radio show.

Code and writings and (the occasional rant) are to be found at

kryogenix.org; Stuart is to be found outside in the rain looking

for the smoking area.

Photo: Lodewijk Schutte

42 24 ways 2007 edition

http://www.sitepoint.com/books/dhtml1/
http://www.webstandards.org/action/dstf
http://lugradio.org/
http://kryogenix.org/
http://www.flickr.com/photos/low/168768279/

Mark Norman Francis 24ways.org/200705

5. My Other Christmas
Present Is a Definition
List

A note

from

the editors: readers should note that the HTML5

redefinition of definition lists has come to pass and is now

à la mode.

Last year, I looked at how the markup for tag
clouds was generally terrible. I thought this
year I would look not at a method of
marking up a common module, but instead
just at a simple part of HTML and how it
generally gets abused.

No, not tables. Definition lists. Ah, definition lists. Often

used but rarely understood.

My Other Christmas Present Is a Definition List

24 ways 2007 edition 43

http://24ways.org/200705
http://24ways.org/2006/marking-up-a-tag-cloud
http://24ways.org/2006/marking-up-a-tag-cloud

Examining the definition of definitions

To start with, let’s see what the HTML spec has to say

about them.

Definition lists vary only slightly from other
types of lists in that list items consist of two
parts: a term and a description.

The canonical example of a definition list is a dictionary.

Words can have multiple descriptions (even the word

definition has at least five). Also, many terms can share a

single definition (for example, the word colour can also be

spelt color, but they have the same definition).

Excellent, we can all grasp that. But it very quickly starts

to fall apart. Even in the HTML specification the definition

list is mis-used.

Another application of DL, for example, is for
marking up dialogues, with each DT naming a
speaker, and each DD containing his or her
words.

Wrong. Completely and utterly wrong. This is the biggest

flaw in the HTML spec, along with dropping support for

the start attribute on ordered lists. “Why?”, you may ask.

Let me give you an example from Romeo and Juliet, act 2,

scene 2.

44 24 ways 2007 edition

<dt>Juliet</dt>

<dd>Romeo!</dd>

<dt>Romeo</dt>

<dd>My niesse?</dd>

<dt>Juliet</dt>

<dd>At what o'clock tomorrow shall I send to thee?</dd>

<dt>Romeo</dt>

<dd>At the hour of nine.</dd>

Now, the problem here is that a given definition can have

multiple descriptions (the DD). Really the dialog

“descriptions” should be rolled up under the terms, like so:

<dt>Juliet</dt>

<dd>Romeo!</dd>

<dd>At what o'clock tomorrow shall I send to thee?</dd>

<dt>Romeo</dt>

<dd>My niesse?</dd>

<dd>At the hour of nine.</dd>

Suddenly the play won’t make anywhere near as much

sense. (If it’s anything, the correct markup for a play is an

ordered list of CITE and BLOCKQUOTE elements.)

This is the first part of the problem. That simple example

has turned definition lists in everyone’s mind from pure

definitions to more along the lines of a list with pre-

configured heading(s) and text(s).

Screen reader, enter stage left.

My Other Christmas Present Is a Definition List

24 ways 2007 edition 45

In many screen readers, a simple definition list would be

read out as “definition term equals definition description”.

So in our play excerpt, Juliet equals Romeo! That’s not

right, either. But this also leads a lot of people astray with

definition lists to believing that they are useful for key/

value pairs.

Behaviour and convention

The WHAT-WG have noticed the common mis-use of the

DL, and have codified it into the new spec. In the HTML5

draft, a definition list is no longer a definition list.

The dl element introduces an unordered
association list consisting of zero or more
name-value groups (a description list). Each
group must consist of one or more names (dt
elements) followed by one or more values (dd
elements).

They also note that the “dl element is inappropriate for

marking up dialogue, since dialogue is ordered”. So for

that example they have created a DIALOG (sic) element.

Strange, then, that they keep DL as-is but instead refer to

it an “association list”. They have not created a new AL

element, and kept DL for the original purpose. They have

46 24 ways 2007 edition

http://www.whatwg.org/specs/web-apps/current-work/#the-dl
http://www.whatwg.org/specs/web-apps/current-work/#the-dl

chosen not to correct the usage or to create a new

opportunity for increased specificity in our HTML, but to

“pave the cowpath” of convention.

How to use a definition list

Given that everyone else is using a DL incorrectly, should

we? Well, if they all jumped off a bridge, would you too?

No, of course you wouldn’t. We don’t have HTML5 yet, so

we’re stuck with the existing semantics of HTML4 and

XHTML1. Which means that:

▪ Listing dialogue is not defining anything.

▪ Listing the attributes of a piece of hardware (resolution

= 1600×1200) is illustrating sample values, not defining

anything (however, stating what ‘resolution’ actually

means in this context would be a definition).

▪ Listing the cast and crew of a given movie is not

defining the people involved in making movies. (Stuart

Gordon may have been the director of Space Truckers, but

that by no means makes him the true definition of a

director.)

▪ A menu of navigation items is simply a nested ordered

or unordered list of links, not a definition list.

▪ Applying styling handles to form labels and elements is

not a good use for a definition list.

And so on.

My Other Christmas Present Is a Definition List

24 ways 2007 edition 47

Living by the specification, a definition list should be used

for term definitions – glossaries, lexicons and dictionaries

– only.

Anything else is a crime against markup.

ABOUT THE AUTHOR

Mark Norman Francis is obsessed with HTML, semantics, code

quality and doing things right. He is based in London, England

and hopes one day to start blogging properly at

marknormanfrancis.com.

48 24 ways 2007 edition

http://marknormanfrancis.com/

Gareth Rushgrove 24ways.org/200706

6. Minification: A
Christmas Diet

The festive season is generally more about
gorging ourselves than staying thin but
we’re going to change all that with a quick
introduction to minification.

Performance has been a hot topic this last year. We’re

building more complex sites and applications but at the

same time trying to make then load faster and behave

more responsively. What is a discerning web developer to

do?

Minification is the process of make something smaller, in

the case of web site performance we’re talking about

reducing the size of files we send to the browser. The

primary front-end components of any website are HTML,

CSS, Javascript and a sprinkling of images. Let’s find some

tools to trim the fat and speed up our sites.

Minification: A Christmas Diet

24 ways 2007 edition 49

http://24ways.org/200706

For those that want to play along at home you can

download the various utilities for Mac or Windows. You’ll

want to be familiar with running apps on the command

line too.

HTMLTIDY

HTMLTidy optimises and strips white space from HTML

documents. It also has a pretty good go at correcting any

invalid markup while it’s at it.

tidy -m page.html

CSSTIDY

CSSTidy takes your CSS file, optimises individual rules (for

instance transforming padding-top: 10px; padding-

bottom: 10px; to padding: 10px 0;) and strips unneeded

white space.

csstidy style.css style-min.css

JSMIN

JSMin takes your javascript and makes it more compact.

With more and more websites using javascript to power

(progressive) enhancements this can be a real bandwidth

hog. Look out for pre-minified versions of libraries and

frameworks too.

50 24 ways 2007 edition

http://media.24ways.org/2007/06/osx.zip
http://media.24ways.org/2007/06/windows.zip
http://tidy.sourceforge.net/
http://csstidy.sourceforge.net/
http://www.crockford.com/javascript/jsmin.html

jsmin <script.js >script-min.js

Remember to run JSLint before you run JSMin to catch

some common problems.

OPTIPNG

Images can be a real bandwidth hog and making all of

them smaller with OptiPNG should speed up your site.

optipng image.png

All of these tools have an often bewildering array of

options and generally good documentation included as

part of the package. A little experimentation will get you

even more bang for your buck.

For larger projects you likely won’t want to be manually

minifying all your files. The best approach here is to

integrate these tools into your build process and have

your live website come out the other side smaller than it

went in.

You can also do things on the server to speed things up;

GZIP compression for instance or compilation of

resources to reduce the number of HTTP requests. If

you’re interested in performance a good starting point is

the Exceptional Performance section on the Yahoo

Developer Network and remember to install the YSlow

Firebug extension while you’re at it.

Minification: A Christmas Diet

24 ways 2007 edition 51

http://www.jslint.com/lint.html
http://optipng.sourceforge.net
http://developer.yahoo.com/performance/
http://developer.yahoo.com/
http://developer.yahoo.com/
http://developer.yahoo.com/yslow/

ABOUT THE AUTHOR

Gareth Rushgrove is web developer based in Cambridge and

working in London for Global Radio. At work he spends most of

his time writing Python and Django based applications or

tinkering with testing tools.

In the past Gareth worked on everything from successful

marketing campaigns to enterprise content management and

financial service applications. These days he’s generally found

shouting about the benefits of APIs, XMPP and embracing the

web as a platform.

When not working, Gareth can be found blogging over on

morethanseven.net or uploading code to github.com/garethr.

He’s previously kept himself busy organising a BarCamp in

52 24 ways 2007 edition

http://morethanseven.net
http://github.com/garethr

Newcastle upon Tyne and starting the Refresh Newcastle user

group. He also helped out on the board of the Thinking Digital

conference last year.

Photo: David Thompson

Minification: A Christmas Diet

24 ways 2007 edition 53

http://flickr.com/photos/fatty/2840968418/

Mark Boulton 24ways.org/200707

7. Typesetting Tables

Tables have suffered in recent years on the
web. They were used for laying out web
pages. Then, following the Web Standards
movement, they’ve been renamed by the
populous as `data tables’ to ensure that we
all know what they’re for. There have been
some great tutorials for the designing tables
using CSS for presentation and focussing on
the semantics in the displaying of data in
the correct way. However, typesetting tables
is a subtle craft that has hardly had a
mention.

Table design can often end up being a technical exercise.

What data do we need to display? Where is the data

coming from and what form will it take? When was the

last time your heard someone talk about lining numerals?

Or designing to the reading direction?

TABLES ARE NOT READ LIKE SENTENCES

When a reader looks at, and tries to understand, tabular

data, they’re doing a bunch of things at the same time.

54 24 ways 2007 edition

http://24ways.org/200707

1. Generally, they’re task based; they’re looking for

something.

2. They are reading horizontally AND vertically

Reading a table is not like reading a paragraph in a novel,

and therefore shouldn’t be typeset in the same way.

Designing tables is information design, it’s functional

typography—it’s not a time for eye candy.

TYPESETTING TABLES

Typesetting great looking tables is largely an exercise in

restraint. Minimal interference with the legibility of the

table should be in the forefront of any designers mind.

When I’m designing tables I apply some simple rules:

1. Plenty of negative space

2. Use the right typeface

3. Go easy on the background tones, unless you’re giving

reading direction visual emphasis

4. Design to the reading direction

By way of explanation, here are those rules as applied to

the following badly typeset table.

YOUR DEFAULT TABLE

This table is a mess. There is no consideration for the

person trying to read it. Everything is too tight. The

typeface is wrong. It’s flat. A grim table indeed.

Typesetting Tables

24 ways 2007 edition 55

Let’s see what we can do about that.

PLENTY OF NEGATIVE SPACE

The badly typeset table has been set with default padding.

There has been little consideration for the ascenders and

descenders in the type interfering with the many

horizontal rules.

The first thing we do is remove most of the lines, or rules.

You don’t need them – the data in the rows forms its own

visual rules. Now, with most of the rules removed, the

ones that remain mean something; they are indicating

56 24 ways 2007 edition

some kind of hierarchy to the help the reader understand

what the different table elements mean – in this case the

column headings.

Now we need to give the columns and rows more negative

space. Note the framing of the column headings. I’m giving

them more room at the bottom. This negative space is

active—it’s empty for a reason. The extra air in here also

gives more hierarchy to the column headings.

Typesetting Tables

24 ways 2007 edition 57

USE THE RIGHT TYPEFACE

The default table is set in a serif typeface. This isn’t ideal

for a couple of reasons. This serif typeface has a standard

set of text numerals. These dip below the baseline and are

designed for using figures within text, not on their own.

58 24 ways 2007 edition

What you need to use is a typeface with lining numerals.

These align to the baseline and are more legible when

used for tables.

Sans serif typefaces generally have lining numerals. They

are also arguably more legible when used in tables.

Typesetting Tables

24 ways 2007 edition 59

GO EASY ON THE BACKGROUND TONES,
UNLESS YOU’RE GIVING READING DIRECTION
VISUAL EMPHASIS

We’ve all seen background tones on tables. They have

their use, but my feeling is that use should be functional

and not decorative.

If you have a table that is long, but only a few columns

wide, then alternate row shading isn’t that useful for

showing the different lines of data. It’s a common

misconception that alternate row shading is to increase

legibility on long tables. That’s not the case. Shaded rows

are to aid horizontal reading across multiple table

columns. On wide tables they are incredibly useful for

helping the reader find what they want.

60 24 ways 2007 edition

Background tone can also be used to give emphasis to the

reading direction. If we want to emphasis a column, that

can be given a background tone.

Typesetting Tables

24 ways 2007 edition 61

HIERARCHY

As I said earlier, people may be reading a table vertically,

and horizontally in order to find what they want.

Sometimes, especially if the table is complex, we need to

give them a helping hand.

62 24 ways 2007 edition

Visually emphasising the hierarchy in tables can help the

reader scan the data. Column headings are particularly

important. Column headings are often what a reader will

go to first, so we need to help them understand that the

column headings are different to the stuff beneath them,

and we also need to give them more visual importance.

We can do this by making them bold, giving them ample

negative space, or by including a thick rule above them.

We can also give the row titles the same level of emphasis.

Typesetting Tables

24 ways 2007 edition 63

In addition to background tones, you can give emphasis to

reading direction by typesetting those elements in bold.

You shouldn’t use italics—with sans serif typefaces the

difference is too subtle.

So, there you have it. A couple of simple guidelines to

make your tables cleaner and more readable.

64 24 ways 2007 edition

ABOUT THE AUTHOR

Mark Boulton is a graphic designer from near Cardiff in the UK.

He used to work as a Senior Designer for the BBC, before he

took leave of his senses and formed his own design consultancy,

Mark Boulton Design. He studied typography, enjoys watching

a good boxing match, and is partial to a really good cuppa.

Typesetting Tables

24 ways 2007 edition 65

http://www.markboulton.co.uk/

Matthew Somerville 24ways.org/200708

8. JavaScript
Internationalisation

OR:
WHY RUDOLPH IS MORE THAN JUST A SHINY
NOSE

Dunder sat, glumly staring at the computer
screen.

“What’s up, Dunder?” asked Rudolph, entering the stable

and shaking off the snow from his antlers.

“Well,” Dunder replied, “I’ve just finished coding the new

reindeer intranet Santa Claus asked me to do. You know

how he likes to appear to be at the cutting edge, talking

incessantly about Web 2.0, AJAX, rounded corners; he

even spooked Comet recently by talking about him as if he

were some pushy web server.

“I’ve managed to keep him happy, whilst also keeping it

usable, accessible, and gleaming — and I’m still on the back

row of the sleigh! But anyway, given the elves will be the

ones using the site, and they come from all over the world,

the site is in multiple languages. Which is great, except

when it comes to the preview JavaScript I’ve written for

the reindeer order form. Here, have a look…”

66 24 ways 2007 edition

http://24ways.org/200708

As he said that, he brought up the

textileRef:8234272265470b85d91702:linkStartMarker:“order

form in French”:/examples/javascript-

internationalisation/initial.fr.html on the screen. (Same in

English).

“Looks good,” said Rudolph.

“But if I add some items,” said Dunder, “the preview

appears in English, as it’s hard-coded in the JavaScript. I

don’t want separate code for each language, as that’s just

silly — I thought about just having if statements, but that

doesn’t scale at all…”

“And there’s more, you aren’t displaying large numbers in

French properly, either,” added Rudolph, who had been

playing and looking at part of the source code:

function update_text() {

var hay = getValue('hay');

var carrots = getValue('carrots');

var bells = getValue('bells');

var total = 50 * bells + 30 * hay + 10 * carrots;

var out = 'You are ordering '

+ pretty_num(hay) + ' bushel' + pluralise(hay) + '

of hay, '

+ pretty_num(carrots) + ' carrot' +

pluralise(carrots)

+ ', and ' + pretty_num(bells) + ' shiny bell' +

pluralise(bells)

+ ', at a total cost of ' + pretty_num(total)

+ ' gold pieces. Thank you.';

JavaScript Internationalisation

24 ways 2007 edition 67

http://24ways.org/examples/javascript-internationalisation/initial.en.html
http://24ways.org/examples/javascript-internationalisation/initial.en.html

document.getElementById('preview').innerHTML = out;

}

function pretty_num(n) {

n += '';

var o = '';

for (i=n.length; i>3; i-=3) {

o = ',' + n.slice(i-3, i) + o;

}

o = n.slice(0, i) + o;

return o;

}

function pluralise(n) {

if (n!=1) return 's';

return '';

}

“Oh, botheration!” cried Dunder. “This is just so

complicated.”

“It doesn’t have to be,” said Rudolph, “you just have to

think about things in a slightly different way from what

you’re used to. As we’re only a simple example, we won’t

be able to cover all possibilities, but for starters, we need

some way of providing different information to the script

dependent on the language. We’ll create a global i18n

object, say, and fill it with the correct language

information. The first variable we’ll need will be a

thousands separator, and then we can change the

pretty_num function to use that instead:

68 24 ways 2007 edition

function pretty_num(n) {

n += '';

var o = '';

for (i=n.length; i>3; i-=3) {

o = i18n.thousands_sep + n.slice(i-3, i) + o;

}

o = n.slice(0, i) + o;

return o;

}

“The i18n object will also contain our translations, which

we will access through a function called _() — that’s just

an underscore. Other languages have a function of the

same name doing the same thing. It’s very simple:

function _(s) {

if (typeof(i18n)!='undefined' && i18n[s]) {

return i18n[s];

}

return s;

}

“So if a translation is available and provided, we’ll use that;

otherwise we’ll default to the string provided — which is

helpful if the translation begins to lag behind the site’s

text at all, as at least something will be output.”

“Got it,” said Dunder. “ _('Hello Dunder') will print the

translation of that string, if one exists, ‘Hello Dunder’ if

not.”

JavaScript Internationalisation

24 ways 2007 edition 69

“Exactly. Moving on, your plural function breaks even in

English if we have a word where the plural doesn’t add an

s — like ‘children’.”

“You’re right,” said Dunder. “How did I miss that?”

“No harm done. Better to provide both singular and plural

words to the function and let it decide which to use,

performing any translation as well:

function pluralise(s, p, n) {

if (n != 1) return _(p);

return _(s);

}

“We’d have to provide different functions for different

languages as we employed more elves and got more

complicated — for example, in Polish, the word ‘file’

pluralises like this: 1 plik, 2-4 pliki, 5-21 plików, 22-24

pliki, 25-31 plików, and so on.” (More information on

plural forms)

“Gosh!”

“Next, as different languages have different word orders,

we must stop using concatenation to construct sentences,

as it would be impossible for other languages to fit in; we

have to keep coherent strings together. Let’s rewrite your

update function, and then go through it:

70 24 ways 2007 edition

http://www.gnu.org/software/gettext/manual/html_node/Plural-forms.html
http://www.gnu.org/software/gettext/manual/html_node/Plural-forms.html

function update_text() {

var hay = getValue('hay');

var carrots = getValue('carrots');

var bells = getValue('bells');

var total = 50 * bells + 30 * hay + 10 * carrots;

hay = sprintf(pluralise('%s bushel of hay', '%s

bushels of hay', hay), pretty_num(hay));

carrots = sprintf(pluralise('%s carrot', '%s carrots',

carrots), pretty_num(carrots));

bells = sprintf(pluralise('%s shiny bell', '%s shiny

bells', bells), pretty_num(bells));

var list = sprintf(_('%s, %s, and %s'), hay, carrots,

bells);

var out = sprintf(_('You are ordering %s, at a total

cost of %s gold pieces.'),

list, pretty_num(total));

out += ' ';

out += _('Thank you.');

document.getElementById('preview').innerHTML = out;

}

“ sprintf is a function in many other languages that, given

a format string and some variables, slots the variables into

place within the string. JavaScript doesn’t have such a

function, so we’ll write our own. Again, keep it simple for

now, only integers and strings; I’m sure more complete

ones can be found on the internet.

function sprintf(s) {

var bits = s.split('%');

var out = bits[0];

var re = /^([ds])(.*)$/;

for (var i=1; i<bits.length; i++) {

JavaScript Internationalisation

24 ways 2007 edition 71

p = re.exec(bits[i]);

if (!p || arguments[i]==null) continue;

if (p[1] == 'd') {

out += parseInt(arguments[i], 10);

} else if (p[1] == 's') {

out += arguments[i];

}

out += p[2];

}

return out;

}

“Lastly, we need to create one file for each language,

containing our i18n object, and then include that from the

relevant HTML. Here’s what a blank translation file would

look like for your order form:

var i18n = {

thousands_sep: ',',

"%s bushel of hay": '',

"%s bushels of hay": '',

"%s carrot": '',

"%s carrots": '',

"%s shiny bell": '',

"%s shiny bells": '',

"%s, %s, and %s": '',

"You are ordering %s, at a total cost of

%s gold pieces.": '',

"Thank you.": ''

};

72 24 ways 2007 edition

“If you implement this across the intranet, you’ll want to

investigate the xgettext program, which can automatically

extract all strings that need translating from all sorts of

code files into a standard .po file (I think Python mode

works best for JavaScript). You can then use a different

program to take the translated .po file and automatically

create the language-specific JavaScript files for us.” (e.g.

German .po file for PledgeBank, mySociety’s .po-.js script,

example output)

With a flourish, Rudolph finished editing. “And there we

go, localised JavaScript in English, French, or German, all

using the same main code.”

“Thanks so much, Rudolph!” said Dunder.

“I’m not just a pretty nose!” Rudolph quipped. “Oh, and

one last thing — please comment liberally explaining the

context of strings you use. Your translator will thank you,

probably at the same time as they point out the four

hundred places you’ve done something in code that only

works in your language and no-one else’s…”

Thanks to Tim Morley and Edmund Grimley Evans for the

French and German translations respectively.

JavaScript Internationalisation

24 ways 2007 edition 73

https://secure.mysociety.org/cvstrac/fileview?f=mysociety/locale/de_DE.UTF-8/LC_MESSAGES/PledgeBank.po
https://secure.mysociety.org/cvstrac/fileview?f=mysociety/bin/gettext-makejs
http://www.pledgebank.com/js/pb.de.js
http://24ways.org/examples/javascript-internationalisation/final.en.html
http://24ways.org/examples/javascript-internationalisation/final.fr.html
http://24ways.org/examples/javascript-internationalisation/final.de.html

ABOUT THE AUTHOR

Matthew Somerville is a former civil servant, who realised that

actually getting to design and program stuff was more fun and

rewarding. He has helped to create various popular democracy

and civic websites, such as TheyWorkForYou and FixMyStreet,

wrote a nicer version of the UK train timetable site with

bookmarkable URLs, and holidays in Landmark Trust properties

as often as he can.

Photo: Tom Coates

74 24 ways 2007 edition

http://www.dracos.co.uk/
http://www.theyworkforyou.com/
http://www.fixmystreet.com/
http://traintimes.org.uk/
http://landmarktrust.dracos.co.uk/
http://www.flickr.com/photos/plasticbag/1364241437/

Natalie Downe 24ways.org/200709

9. Back To The Future of
Print

By now we have weathered the storm that
was the early days of web development, a
dangerous time when we used tables, inline
CSS and separate pages for print only
versions. We can reflect in a haggard old
sea-dog manner (“yarrr… I remember back
in the browser wars…”) on the bad practices
of the time. We no longer need convincing
that print stylesheets are the way to go1,
though some of the documentation for them
is a little outdated now.

I am going to briefly cover 8 tips and 4 main gotchas when

creating print stylesheets in our more enlightened era.

Back To The Future of Print

24 ways 2007 edition 75

http://24ways.org/200709

GETTING STARTED

As with regular stylesheets, print CSS can be included in a

number of ways2, for our purposes we are going to be

using the link

element.

<link rel="stylesheet" type="text/css"

media="print" href="print.css">

This is still my favourite way of linking to CSS files, its easy

to see what files are being included and to what media

they are being applied to. Without the media attribute

specified the link element defaults to the media type ‘all’

which means that the styles within then apply to print and

screen alike. The media type ‘screen’ only applies to the

screen and wont be picked up by print, this is the best way

of hiding styles from print.

Make sure you include your print styles after all your

other CSS, because you will need to override certain rules

and this is a lot easier if you are flowing with the cascade

than against it!

Another thing you should be thinking is ‘does it need to be

printed’. Consider the context3, if it is not a page that is

likely to be printed, such as a landing page or a section

index then the print styles should resemble the way the

page looks on the screen.

76 24 ways 2007 edition

Context is really important for the design of your print

stylesheet, all the tips and tricks that follow should be

taken in the context of the page. If for example you are

designing a print stylesheet for an item in a shopping cart,

it is irrelevant for the user to know the exact url of the link

that takes them to your checkout.

TIPS AND TRICKS

During these tip’s we are going to build up print styles for

a

textileRef:11112857385470b854b8411:linkStartMarker:“simple

example”:/examples/back-to-the-future-of-print/

demo-1.html

1. Remove the cruft

First things first, navigation, headers and most page

furniture are pretty much useless and dead space in print

so they will need to be removed, using display:none;.

2. Linearise your content

Content doesn’t work so well in columns in print,

especially if the content columns are long and intend to

stretch over multiple columns (as mentioned in the gotcha

section below). You might want to consider Lineariseing

Back To The Future of Print

24 ways 2007 edition 77

http://24ways.org/examples/back-to-the-future-of-print/demo-2.html
http://24ways.org/examples/back-to-the-future-of-print/demo-3.html

the content to flow down the page. If you have your

source order in correct priority this will make things a lot

easier4.

3. Improve your type

Once you have removed all the useless cruft and jiggled

things about a bit, you can concentrate more on the

typography of the page.

Typography is a complex topic5, but simply put serif-ed

fonts such as Georgia work better on print and sans serif-

ed fonts such as Verdana are more appropriate for screen

use. You will probably want to increase font size and line

height and change from px to pt (which is specifically a

print measurement).

4. Go wild on links

There are some incredibly fun things you can do with links

in print using CSS. There are two schools of thought, one

that consider it is best to disguise inline links as body text

because they are not click-able on paper. Personally I

believe it is useful to know for reference that the

document did link to somewhere originally.

When deciding which approach to take, consider the

context of your document, do people need to know where

they would have gone to? will it help or hinder them to

78 24 ways 2007 edition

http://24ways.org/examples/back-to-the-future-of-print/demo-4.html

know this information? Also for an alternative to the

below, take a look at Aaron Gustafson’s article on

generating footnotes for print6.

Using some clever selector trickery and CSS generated

content you can have the location of the link generated

after the link itself.

HTML:

<p>I wish Google

could find my keys</p>

CSS:

a:link:after,

a:visited:after,

a:hover:after,

a:active:after {

content: " <" attr(href) "> ";

}

But this is not perfect, in the above example the content

of the href is just naively plonked after the link text:

I wish Google <http://www.google.com/> would find my

keys </photoOfMyKeys.jpg>

As looking back over this printout the user is not

immediately aware of the location of the link, a better

solution is to use even more crazy selectors to deal with

relative links. We can also add a style to the generated

content so it is distinguishable from the link text itself.

Back To The Future of Print

24 ways 2007 edition 79

CSS:

a:link:after,

a:visited:after,

a:hover:after,

a:active:after {

content: " <" attr(href) "> ";

color: grey;

font-style: italic;

font-weight: normal;

}

a[href^="/"]:after {

content: " <http://www.example.com"attr(href)"> ";

}

The output is now what we were looking for (you will

need to replace example.com with your own root URL):

I wish Google <http://www.google.com/> would find my

keys <http://www.example.com/photoOfMyKeys.jpg>

Using regular expressions on the attribute selectors, one

final thing you can do is to suppress the generated

content on mailto: links, if for example you know the link

text always reflects the email address. Eg:

HTML:

me@example.com

CSS:

80 24 ways 2007 edition

a[href^="mailto"]:after {

content: "";

}

This example shows the above in action.

Of course with this clever technique, there are the usual

browser support issues. While it won’t look as intended in

browsers such as Internet Explorer 6 and 7 (IE6 and IE7) it

will not break either and will just degrade gracefully

because IE cannot do generated content. To the best of

my knowledge Safari 2+ and Opera 9.X support a colour

set on generated content whereas Firefox 2 & Camino

display this in black regardless of the link or inherited text

colour.

5. Jazz your headers for print

This is more of a design consideration, don’t go too nuts

though; there are a lot more limitations in print media

than on screen. For this example we are going to go for is

having a bottom border on h2’s and styling other headings

with graduating colors or font sizes.

And here is the example complete with jazzy headers.

Back To The Future of Print

24 ways 2007 edition 81

http://24ways.org/examples/back-to-the-future-of-print/demo-5.html
http://24ways.org/examples/back-to-the-future-of-print/demo-6.html

6. Build in general hooks

If you are building a large site with many different types of

page, you may find it useful to build into your CSS

structure, classes that control what is printed (e.g. noprint

and printonly). This may not be semantically ideal, but in

the past I have found it really useful for maintainability of

code across large and varied sites

7. For that extra touch of class

When printing pages from a long URL, even if the option is

turned on to show the location of the page in the header,

browsers may still display a truncated (and thus useless)

version.

Using the above tip (or just simply setting to

display:none in screen and display:block in print) you

can insert the URL of the page you are currently on for

print only, using JavaScript’s window.location.href

variable.

function addPrintFooter() {

var p = document.createElement('p');

p.className = 'print-footer';

p.innerHTML = window.location.href;

document.body.appendChild(p);

}

82 24 ways 2007 edition

http://24ways.org/examples/back-to-the-future-of-print/demo-7.html
http://24ways.org/examples/back-to-the-future-of-print/demo-7.html

You can then call this function using whichever onload or

ondomready handler suits your fancy. Here is our familiar

demo to show all the above in action

8. Tabular data across pages

If you are using tabled data in your document there are a

number of things you can do to increase usability of long

tables over several pages. If you use the <thead> element

this should repeat your table headers on the next page

should your table be split. You will need to set thead

{display: table-header-group;} explicitly for IE even

though this should be the default value.

Also if you use tr {page-break-inside: avoid;} this

should (browser support depending) stop your table row

from breaking across two pages. For more information on

styling tables for print please see the CSS discuss wiki7.

GOTCHAS

1. Where did all my content go?

Absolutely the most common mistake I see with print

styles is the truncated content bug. The symptom of this

is that only the first page of a div’s content will be printed,

the rest will look truncated after this.

Back To The Future of Print

24 ways 2007 edition 83

http://24ways.org/examples/back-to-the-future-of-print/demo-8.html
http://24ways.org/examples/back-to-the-future-of-print/demo-8.html

Floating long columns may still have this affect, as

mentioned in Eric Meyer’s article on ‘A List Apart’ article

from 20028; though in testing I am no longer able to

replicate this. Using overflow:hidden on long content in

Firefox however still causes this truncation. Overflow

hidden is commonly used to clear floats9.

A simple fix can be applied to resolve this, if the column is

floated you can override this with float:none similarly

overflow:hidden can be overridden with

overflow:visible or the offending rules can be banished

to a screen only stylesheet.

Using position:absolute on long columns also has a very

similar effect in truncating the content, but can be

overridden in print with position:static;

Whilst I only recommend having a print stylesheet for

content pages on your site; do at least check other landing

pages, section indexes and your homepage. If these are

inaccessible in print possibly due to the above gotcha, it

might be wise to provide a light dusting of print styles or

move the offending overflow / float rules to a screen only

stylesheet to fix the issues.

84 24 ways 2007 edition

http://24ways.org/examples/back-to-the-future-of-print/truncated-demo-1.html
http://24ways.org/examples/back-to-the-future-of-print/truncated-demo-2.html
http://24ways.org/examples/back-to-the-future-of-print/truncated-demo-3.html
http://24ways.org/examples/back-to-the-future-of-print/truncated-demo-4.html

2. Damn those background browser settings

One of the factors of life you now need to accept is that

you can’t control the user’s browser settings, no more

than you can control whether or not they use IE6. Most

browsers by default will not print background colours or

images unless explicitly told to by the user.

Naturally this causes a number of problems, for starters

you will need to rethink things like branding. At this point

it helps if you are doing the print styles early in the project

so that you can control the logo not being a background

image for example.

Where colour is important to the meaning of the

document, for example a status on an invoice, bear in

mind that a textural representation will also need to be

supplied as the user may be printing in black and white.

Borders will print however regardless of setting, so

assuming the user is printing in colour you can always use

borders to indicate colour.

Check the colour contrast of the text against white, this

may need to be altered without backgrounds. You should

check how your page looks with backgrounds turned on

too, for consistency with the default browser settings you

may want to override your background anyway.

Back To The Future of Print

24 ways 2007 edition 85

One final issue with backgrounds being off is list items. It

is relatively common practice to suppress the list-

style-type and replace with a background image to finely

control the bullet positioning. This technique doesn’t

translate to print, you will need to disable this background

bullet and re-instate your trusty friend the list-style-

type.

3. Using JavaScript in your CSS? … beware IE6

Internet explorer has an issue that when Javascript is

used in a stylesheet it applies this to all media types even

if only applied to screen. For example, if you happen to be

using expressions to set a width for IE, perhaps to mimic

min-width, a simple width:100% !important rule can

overcome the effects the expression has on your print

styles10.

4. De-enhance your Progressive enhancements

Quite a classic “doh” moment is when you realise that, of

course paper doesn’t support Javascript. If you have any

dynamic elements on the page, for example a document

collapsed per section, you really should have been using

Progressive enhancement techniques11 and building for

browsers without Javascript first, adding in the fancy stuff

later.

86 24 ways 2007 edition

If this is the case it should be trivial to override your wizzy

JS styles in your print stylesheet, to display all your

content and make it accessible for print, which is by far

the best method of achieving this affect.

AND FINALLY…

I refer you back to the nature of the document in hand,

consider the context of your site and the page. Use the

tips here to help you add that extra bit of flair to your

printed media.

Be careful you don’t get caught out by the common

gotchas, keep the design simple, test cross browser and

relish in the medium of print.

FURTHER READING

1 For more information constantly updated, please see the

CSS discuss wiki on print stylesheets

2 For more information on media types and ways of

including CSS please refer to the CSS discuss wiki on

Media Stylesheets

3 Eric Meyer talks to ThinkVitamin about the importance

of context when designing your print strategy.

Back To The Future of Print

24 ways 2007 edition 87

http://css-discuss.incutio.com/?page=PrintStylesheets
http://css-discuss.incutio.com/?page=MediaStylesheets
http://www.thinkvitamin.com/interviews/css/eric-meyer/

4 Mark Boulton describes how he applies a newspaper like

print stylesheet to an article in the Guardian website.

Mark also has some persuasive arguments that print

should not be left to last

5 Richard Rutter Has a fantastic resource on typography

which also applies to print.

6 Aaron Gustafson has a great solution to link problem by

creating footnotes at the end of the page.

7 The CSS discuss wiki has more detailed information on

printing tables and detailed browser support

8 This ‘A List Apart’ article is dated May 10th 2002 though

is still mostly relevant

9 Float clearing technique using ‘overflow:hidden’

10 Autistic Cuckoo describes the interesting insight with

regards to expressions specified for screen in IE6

remaining in print

11 Wikipedia has a good article on the definition of

progressive enhancement

12 For a really neat trick involving a dynamically

generated column to displaying <abbr> and <dfn>

meanings (as well as somewhere for the user to write

notes), try print previewing on Brian Suda’s site

88 24 ways 2007 edition

http://www.markboulton.co.uk/journal/comments/five_simple_steps_to_typesetting_on_the_web_printing_the_web
http://webtypography.net/toc/
http://www.alistapart.com/articles/improvingprint/
http://css-discuss.incutio.com/?page=PrintingTables
http://alistapart.com/articles/goingtoprint
http://www.quirksmode.org/css/clearing.html
http://www.autisticcuckoo.net/archive.php?id=2005/02/11/print-style-sheets-and-expression
http://en.wikipedia.org/wiki/Progressive_enhancement
http://suda.co.uk/notes/

ABOUT THE AUTHOR

Natalie Downe is an excitable client-side web developer at

Clearleft in Brighton, a perfectionist by nature and comes with

the expertise and breadth of knowledge of a web agency

background. Although front-end development and usability

engineering are her first loves, Natalie still has fun dabbling

with Python and poking the odd API. Natalie is also an

experienced usability consultant and project manager.

Back To The Future of Print

24 ways 2007 edition 89

http://natbat.net/
http://www.clearleft.com

Paul Boag 24ways.org/200710

10. 10 Ways To Get
Design Approval

One of the most challenging parts of the
web design process is getting design sign
off. It can prove time consuming,
demoralizing and if you are not careful can
lead to a dissatisfied client. What is more
you can end up with a design that you are
ashamed to include in your portfolio.

How then can you ensure that the design you produce is

the one that gets built? How can you get the client to sign

off on your design? Below are 10 tips learnt from years of

bitter experience.

1. DEFINE THE ROLE OF THE CLIENT AND
DESIGNER

Many of the clients you work with will not have been

involved in a web project before. Even if they have they

may have worked in a very different way to what you

would expect. Take the time at the beginning of the

project to explain their role in the design of the site.

90 24 ways 2007 edition

http://24ways.org/200710

The best approach is to emphasis that their job is to focus

on the needs of their users and business. They should

concentrate on the broad issues, while you worry about

the details of layout, typography and colour scheme.

By clarifying what you expect from the client, you help

them to provide the right kind of input throughout the

process.

2. UNDERSTAND THE BUSINESS

Before you open up Photoshop or put pen to paper, take

the time to make sure you properly understand not only

the brief but the organization behind the site. By

understanding their business objectives, organizational

structure and marketing strategy your design decisions

will be better informed.

You cannot rely upon the brief to provide all of the

information you need. It is important to dig deeper and

get as good an understanding of their business as

possible. This information will prove invaluable when

justifying your design decisions.

3. UNDERSTAND THE USERS

We all like to think of ourselves as user centric designers,

but exactly how much effort do you put into knowing your

users before beginning the design process?

10 Ways To Get Design Approval

24 ways 2007 edition 91

Take the time to really understand them the best you can.

Try to meet with some real prospective users and get to

know their needs. Failing that work with the client to

produce user personas to help picture exactly what kind

of people they are.

Understanding your users not only improves the quality

of your work, but also helps move the discussion away

from the personal preferences of the client, to the people

who’s opinion really matters.

4. AVOID MULTIPLE CONCEPTS

Many clients like the idea of having the option to choose

between multiple design concepts. However, although on

the surface this might appear to be a good idea it can

ultimately be counterproductive for design sign off.

In a world of limited budgets it is unwise to waste money

on producing designs that are ultimately going to be

thrown away. The resources would be better spent

refining a single design through multiple iterations.

What is more, multiple concepts often cause confusion

rather than clarity. It is common for a client to request one

element from one design and another from the second. As

any designer knows this seldom works.

92 24 ways 2007 edition

http://en.wikipedia.org/wiki/Personas

5. USE MOOD BOARDS

Clients are often better at expressing what they don’t like

than what they do. This is one of the reasons why they

favour producing multiple design concepts. An alternative

less costly approach is to create a series of mood boards.

These boards contain a collection of colours, typography

and imagery which represent different “moods” or

directions, which the design could take.

Mood boards are quick and easy to produce allowing you

to try out various design approaches with the client

without investing the time needed to produce complete

design concepts. This means that by the time you develop

a concept the client and designer have already

established an understanding about the direction of the

design.

6. SAY WHAT YOU LIKE

It is not uncommon for a client to ask for a design that

looks similar to another site they like. The problem is that

it can often be hard to establish exactly what it is about

the site that attracts them. Also in many cases the sites

they like are not something you are keen to emulate!

A better approach that was suggested to me by Andy

Budd is to show them sites that you think the design

should emulate. Keep a collection of screen captures from

well designed sites and pick out a few that are relevant to

10 Ways To Get Design Approval

24 ways 2007 edition 93

that particular client. Explain why you feel these designs

might suit their project and ask for their feedback. If they

don’t like your choices then expose them to more of your

collection and see what they pick out.

7. WIREFRAME THE HOMEPAGE

Often clients find it hard to distinguish between design

and content and so sometimes reject a design on the basis

that the content is not right. This is particularly true when

signing off the homepage.

You may therefore find it useful to establish the

homepage content before producing the design. That way

once they see the design they will not be distracted by the

content. One of the best ways to do this is by producing a

basic wireframe consisting of a series of content boxes.

Once this has been approved you will find the sign off of

design much easier.

8. PRESENT YOUR DESIGNS

Although it is true that a good design should speak for

itself it still needs presenting to the client. The client

needs to understand why you have made the design

decisions you have, otherwise they will judge the design

purely on personal preference.

94 24 ways 2007 edition

Talk them through the design explaining how it meets the

needs of their users and business objectives. Refer to the

mood boards and preferred sites the client approved and

explain how the design is a continuation of those. Never

simply email the design through and hope the client

interprets your work correctly!

9. PROVIDE WRITTEN SUPPORTING MATERIAL

Unfortunately, no matter how well you justify the design

to the client he is almost certain to want to show it to

others. He may need his bosses approval or require

internal buy in. At the very least he is going to want to get

a second opinion from a friend or colleague.

The problem with this is that you are not going to be there

to present to these people in the same way you did for the

client. You cannot expect the client to present your ideas

as well as you did. The reality is that you have lost control

of how the design is perceived.

One way to minimize this problem is to provide written

documentation supporting the design. This can be a

summary of the presentation you gave to the client and

allows him to distribute this along with the design. By

putting a written explanation with the design you ensure

that everybody who sees it gets the same message.

10 Ways To Get Design Approval

24 ways 2007 edition 95

10. CONTROL THE FEEDBACK

My final piece of advice for managing design sign off is to

control the way you receive feedback. A clients natural

inclination will be to give you his personal opinion on the

design. This is reinforced because you ask them what they

think of the design. Instead ask them what their users will

think of the design. Encourage them to think from the

users perspective.

Also encourage them to keep that overarching focus I

talked about in my first tip. Their tendency will be to try to

improve the design, however that should be your problem

not theirs. The role of a client should be to defend the

needs of their users and business not do the design.

Encourage the client to make comments such as “I am not

sure that my female users will like the masculine colours”

rather than “can we make the whole design pink.” It is

down to them to identify the problems and for you as the

designer to find the most appropriate solution.

So there you have it. My 10 tips to improve design sign off.

Will this ensure design approval every time?

Unfortunately not. However it should certainly help

smooth the way.

96 24 ways 2007 edition

ABOUT THE AUTHOR

Paul Boag is a user experience consultant based in Dorset,

England. He’s the founder of Headscape, a successful web

design agency and hosts the longest running web design

podcast at boagworld.com. He also writes for web design

publications and speaks at various conferences and workshops.

10 Ways To Get Design Approval

24 ways 2007 edition 97

http://www.headscape.co.uk/
http://www.boagworld.com/

Brian Suda 24ways.org/200711

11. Tracking Christmas
Cheer with Google Charts

A note

from

the editors: Since this article was written Google has

retired the Charts API.

Let’s get something out in the open: I love
statistics. As an informatician I can’t get
enough graphs, charts, and numbers. So you
can imagine when Google released their
Charts API I thought Christmas had come
early. I immediately began to draw up
graphs for the holiday season using the new
API; and using my new found chart-making
skills I’ll show you what you can and can’t
do with Google Charts.

MUMMY, IT’S MY FIRST CHART

The Google Charts API allows you to send data to Google;

in return they give you back a nicely-rendered graph. All

the hard work is done on Google’s servers — you need

only reference an image in your HTML. You pass along the

data — the numbers for the charts, axis labels, and so on —

98 24 ways 2007 edition

http://24ways.org/200711
http://code.google.com/apis/chart/

in the query string of the image’s URL. If you want to add

charts to your blog or web site, there’s probably no

quicker way to get started.

Here’s a simple example: if we add the following line to an

HTML page:

<img src="http://chart.apis.google.com/

chart?cht=lc&chs=200x125&chd=s:ZreelPuevfgznf2008" />

Then we’ll see the line graph in Figure 1 appear in our

page. That graph is hosted on Google’s own server1:

http://chart.apis.google.com/.

Figure 1: A simple example of a line graph created with

Google Charts.

If you look at the URL used in the example you’ll notice

we’re passing some parameters along in the query string

(the bit after the question mark). The query string looks

like this:

cht=lc&chs=200x125&chd=s:ZreelPuevfgznf2008

It’s contains everything Google Charts needs to draw the

graph. There are three parameters in the query string:

Tracking Christmas Cheer with Google Charts

24 ways 2007 edition 99

▪ cht; this specifies the type of chart Google Charts will

generate (in this case, lc is a line chart).

▪ chs, the value of which is 200x125; this defines the

chart’s size (200 pixels wide by 125 pixels high).

▪ chd, the value of which is s:ZreelPuevfgznf2008; this is

the actual chart data, which we’ll discuss in more detail

later.

These three parameters are the minimum you need to

send to Google Charts in order to create a chart. There

are lots more parameters you can send too (giving you

more choice over how a chart is displayed), but you have

to include at least these three before a chart can be

created. Using these three parameters you can create pie

charts, scatter plots, Venn diagrams, bar charts (and more)

up to 1,000 pixels wide or 1,000 pixels high (but no more

than 300,000 pixels in total).

CHRISTMAS PIE

After I discovered the option to create a pie chart I

instantly thought of graphing all the types of food and

beverages that I’ll consume at this year’s Christmas feast.

I can represent each item as a percentage of all the food

on a pie chart (just thinking about that makes me hungry).

By changing the value of the cht parameter in the image’s

query string I can change the chart type from a line chart

to a pie chart. Google Charts offers two different types of

100 24 ways 2007 edition

pie chart: a fancy three-dimensional version and a two-

dimensional overhead version. I want to stick with the

latter, so I need to change cht=lc to cht=p (the p telling

Google Charts to create a pie chart; if you want the three-

dimensional version, use cht=p3). As a pie chart is circular

I also need to adjust the size of the chart to make it

square. Finally, it would be nice to add a title to the graph.

I can do this by adding the optional parameter, chtt, to the

end of the image URL. I end up with the chart you see in

Figure 2.

Figure 2: Pie chart with a title.

Tracking Christmas Cheer with Google Charts

24 ways 2007 edition 101

To add this chart to your own page, you include the

following (notice that you can’t include spaces in URLs, so

you need to encode them as plus-signs.):

<img src="http://chart.apis.google.com/

chart?chtt=Food+and+Drink+Consumed+Christmas+2007&cht=p&chs=300x300&chd=s:ZreelPuevfgznf2008"

/>

Ok, that’s great, but there are still two things I want to do

before I can call this pie chart complete. First I want to

label each slice of the pie. And second I want to include

the proper data (at the moment the slices are

meaningless). If 2007 is anything like 2006, the break

down will be roughly as follows:

Egg nog 10%

Christmas Ham 20%

Milk (not including egg nog)8%

Cookies 25%

Roasted Chestnuts 5%

Chocolate 3%

Various Other Beverages 15%

Various Other Foods 9%

Snacks 5%

102 24 ways 2007 edition

I have nine categories of food and drink to be tracked, so I

need nine slice labels. To add these to the chart, I use the

chl parameter. All nine labels are sent in one value; I use

the vertical-pipe character, |, to separate them. So I need

to append the following to the query string:

chl=Egg+nog|Christmas+Ham|Milk+(not+including+egg+nog)|Cookies|Roast+Chestnuts|Chocolate|Various+Other+Beverages|Various+Other+Foods|Snacks

Next I need to add the corresponding percentage values

to the chart labels. Encoding the chart data is the trickiest

part of the Google Charts API — but by no means

complicated. There are three different ways to encode

your data on a chart. As I’m only dealing with small

numbers, I’m going to use what Google calls simple

encoding.

Simple encoding offers a sixty-two value spectrum in

which to represent data. Remember the mandatory

option, chd, from the first example? The value for this is

split into two parts: the type of encoding and the graph

data itself. These two parts are separated with a colon. To

use simple encoding, the first character of the chd option

must be a lower case s. Follow this with a colon and

everything after it is considered data for the graph.

In simple encoding, you have sixty-two values to

represent your data. These values are lowercase and

uppercase letters from the Latin alphabet (fifty-two

characters in total) and the digits 0 to 9. Each letter of the

alphabet represents a single number: A equals 0, B equals

Tracking Christmas Cheer with Google Charts

24 ways 2007 edition 103

1, and so on up to Z, which equals 25; a equals 26, b equals

27, and so on up to z, which equals 51. The ten digits

represent the numbers 52 to 61: 0 equals 52, 1 equals 53,

and 9 equals 61.

In the previous two examples we used the string

ZreelPuevfgznf2008 as our chart data; the Z is equal to

25, the r is equal to 42, the e is equal to 30, and so on. I

want to encode the percentage values 10, 20, 8, 25, 5, 3,

15, 9 and 5, so in simple encoding I would use the string

KUIZFDPJF.

If you think figuring this out for each chart may make your

head explode, don’t worry: help is out there.

Do you remember I said I needed to change the image

dimensions to be square, to accommodate the pie chart?

Well now I’m including labels I need even more room. And

as I’m in a Christmassy mood I’m going to add some

festive colours too.

The optional chco parameter is used to change the chart

color. You set this using the same hexadecimal (“hex”)

notation found in CSS. So let’s make our pie chart green

by adding chco=00AF33 (don’t start it with a hash

character as in CSS) to the image URL. If we only specify

one hex colour for the pie chart Google Charts will use

shades of that colour for each of the slices. To choose your

own colours, pass a comma separated list of colours. The

“Milk” and “Cookies” slices were consumed together, so

104 24 ways 2007 edition

http://james.cridland.net/code/google-chart.html

we can make those two slices more of a redish colour. I’ll

use shades of green for the other slices. My chco

parameter now looks like this:

chco=00AF33,4BB74C,EE2C2C,CC3232,33FF33,66FF66,9AFF9A,C1FFC1,CCFFCC.

After all this, I’m left with the following URL:

http://chart.apis.google.com/

chart?chco=00AF33,4BB74C,EE2C2C,CC3232,33FF33,66FF66,9AFF9A,C1FFC1,CCFFCC&chl=Egg+nog|Christmas+Ham|Milk+(not+including+egg+nog)|Cookies|Roast+Chestnuts|Chocolate|Various+Other+Beverages|Various+Other+Foods|Snacks&chtt=Food+and+Drink+Consumed+Christmas+2007&cht=p&chs=600x300&chd=s:KUIZFDPJF

What does that give us? I’m glad you asked. I have the

rather beautiful 600-pixel wide pie chart you see in Figure

3.

Figure 3: A Christmassy pie chart with labels.

Tracking Christmas Cheer with Google Charts

24 ways 2007 edition 105

BUT I DON’T LIKE PIE CHARTS

The pie chart was invented by the Scottish polymath

William Playfair in 1801. But not everyone is as excited by

pie charts as wee Billy, so if you’re an anti-pie-chartist,

what can you do?

You can easily reuse the same data but display it as a bar

graph in a snap. The first thing we need to do is change the

value of the cht parameter from p to bhg. This creates a

horizontal bar graph (you can request a vertical bar graph

using bvg). The data and labels all remain the same, but we

need to decide where the labels will appear. I’ll talk more

about how to do all this in the next section.

In Figure 4 you’ll see the newly-converted bar graph. The

URL for the graph is:

http://chart.apis.google.com/

chart?cht=bhg&chs=600x300&chd=s:KUIZFDPJF&chxt=x,y&chtt=Food+and+Drink+Consumed+Christmas+2007&chxl=1:|Egg+nog|Christmas+Ham|Milk+(not+including+egg+nog)|Cookies|Roast+Chestnuts|Chocolate|Various+Other+Beverages|Various+Other+Foods|Snacks&chco=00AF33

106 24 ways 2007 edition

Figure 4: The pie chart from Figure 3 represented as a bar

chart.

TWO LINES, ONE GRAPH

Pie charts and bar charts are interesting, but what if I

want to compare last year’s Christmas cheer with this

year’s? That sounds like I’ll need two lines on one graph.

The code is much the same as the previous examples; the

most obvious difference is I need to set up the chart as a

line graph. Creating some dummy values for the required

parameters, I end up with:

<img src="http://chart.apis.google.com/

chart?chs=800x300&cht=lxy&chd=t:0,100|0,100" />

The chs=800x300 sets the dimensions of the new chart,

while cht=lxy describes the type of chart we are using (in

this case a line chart with x and y co-ordinates). For the

chart data I’m going to demostrate a different encoding,

text encoding. To use this I start the value of the chd

parameter with “t:” instead of “s:”, and follow it with a list

of x coordinates, a vertical pipe, |, and a list of y

coordinates. Given the URL above, Google Charts will

render the chart shown in Figure 5.

Tracking Christmas Cheer with Google Charts

24 ways 2007 edition 107

Figure 5: A simple line graph with x and y co-ordinates.

To make this graph a little more pleasing to the eye, I can

add much the same as I did to the pie chart. I’ll add a chart

title. Maybe something like “Projected Christmas Cheer

for 2007”. Just as before I would add a chtt parameter to

the image URL:

&chtt=Projected+Christmas+Cheer+for+2007

Next, let’s add some labels on the y axis to represent a

scale from 0 to 100. On the x axis let’s label for the most

important days of December. To do this I need to use the

chart axis type parameter, chxt. This allows us to specify

the axes and associate some labels with them. As I’m only

interested in the y-axis (to the left of the chart) and the x-

axis (below the chart), we add chxt=x,y to our image URL.

Now I need my label data. This is slightly more tricky

because I want the data evenly spaced without labelling

every item. The parameter for labels is chxl, the chart axis

label. You match a label to an axis by using a number. So

0:Label1 is the zero index of chxt — in this case the x-axis.

108 24 ways 2007 edition

1:Label2 is the first index of chxt — the y-axis. The order

of these parameters or labels doesn’t matter as long as

you associate them to their chxt correctly.

The next thing to know about chxl is that you can add an

empty label. Labels are separated by vertical pipe; if you

don’t put any text in a label, you just leave the two vertical

pipes empty (“||”) and Google Charts will allocate space

but no label.

For our vertical y axis, we want to label only 50% and

100% on the graph and plot them in their respective

places. Since the y-axis is the second item, 1: (remember

to start counting at zero), we add ten spaces to our image

URL, chxl=1:||||||50|||||100 This will output the 50

halfway and the 100 at the top; all the other spaces will be

empty.

We can do the same thing to get specific dates along the

x-axis as well. Let’s add the 1st of December, St. Nick’s

Day (the 6th), Christmas Day, Boxing Day (a holiday

common in the UK and the Commonwealth, on the 26th),

and the final day of the month, the 31st. Since this is the x-

axis I’ll use 0: as a reference in the chxt parameter tell

Google Charts which axis to label. In full, the chxl

parameter now looks like:

chxl=1:||||||50|||||100|0:|Dec+1st|||||6th||||10th|||||15th|||||20th|||||25th|26th|||||Dec+31st

That’s pretty.

Tracking Christmas Cheer with Google Charts

24 ways 2007 edition 109

Before we begin to graph our data, I’ll do one last thing:

add some grid lines to the chart so to better connect the

data to the labels. The parameter for this is chg, short for

chart grid lines. The parameter takes four comma-

separated arguments. The first is the x-axis spacing for

the grid. I have thirty-one days, so I need thirty vertical

lines. The chart is 100% wide, so 3.33 (100 divided by 30)

is the required spacing.

As for the y-axis: the axis goes up to 100% but we

probably only need to have a horizontal line every 10%, so

the required spacing is 10 (100 divided by 10). That is the

second argument.

The last two arguments control the dash-style of the grid-

lines. The first number is the length of the line dash and

the second is the space between the dashes. So 6,3 would

mean a six-unit dash with a three-unit space. I like a ratio

of 1,3 but you can change this as you wish. Now that I

have the four arguments, the chg parameter looks like:

chg=3.333,10,1,3

If I add that to the chart URL I end up with:

http://chart.apis.google.com/

chart?chs=800x300&cht=lxy&chd=t:0,100|0,100&chtt=Projected+Christmas+Cheer+for+2007&chxt=x,y&chxl=0:|Dec+1st|||||6th|||||||||||||||||||25th|26th|||||Dec+31st|1:||||||50|||||100&chg=3.3333,10,1,3

Which results in the chart shown in Figure 6.

110 24 ways 2007 edition

Figure 6: Chart ready to receive the Christmas cheer

values.

REAL DATA

Now the chart is ready I can add historical data from 2006

and current data from 2007.

Having a look at last year’s cheer levels we find some

highs and lows through-out the month:

Tracking Christmas Cheer with Google Charts

24 ways 2007 edition 111

Dec
1st

Advent starts; life is good 30%

Dec
6th

St. Nick’s Day, awake to find good things in my

shoes

45%

Dec
8th

Went Christmas carolling, nearly froze 20%

Dec
10th

Christmas party at work, very nice dinner 50%

Dec
18th

Panic Christmas shopping, hate rude people 15%

Dec
23rd

Off Work, home eating holiday food 80%

Dec
25th

Opened presents, good year, but got socks

again from Grandma

60%

Dec
26th

Boxing Day; we’re off and no one knows why 70%

Dec
28th

Third day of left overs 40%

Dec
29th

Procured some fireworks for new years 55%

Dec
31st

New Year’s Eve 80%

Since I’m plotting data for 2006 and 2007 on the same

graph I’ll need two different colours — one for each year’s

line — and a key to denote what each colour represents.

The key is controlled by the chdl (chart data legend)

parameter. Again, each part of the parameter is separated

by a vertical pipe, so for two labels I’ll use

chdl=2006|2007. I also want to colour-code them, so I’ll

112 24 ways 2007 edition

need to add the chco as I did for the pie chart. I want a red

line and a green line, so I’ll use chco=458B00,CD2626 and

add this to the image URL.

Let’s begin to plot the 2006 data on the Chart, replacing

our dummy data of chd=t:0,100|0,100 with the correct

information. The chd works by first listing all the x

coordinates (each separated by a comma), then a vertical

pipe, and then all the y coordinates (also comma-

separated). The chart is 100% wide, so I need to convert

the days into a percentage of the month.

The 1st of December is 0 and the 31st is 100. Everything

else is somewhere in between. Our formula is:

(d – 1) × 100 ÷ (31 – 1)

Where d is the day of the month. The formula states that

each day will be printed every 3.333 units; so the 6th of

December will be printed at 16.665 units. I can repeat the

process for the other dates listed to get the following x

coordinates: 0,16.7,23.3,33.3,60,76.7,83.3,86.7,93.3,96.7.

The y axis coordinates are easy because our scale is 100%,

just like our rating, so we can simply copy them across as

30,45,20,50,15,80,60,70,40,55,80. This gives us a final

chd value of:

chd=t:0,16.7,23.3,33.3,60,76.7,83.3,86.7,93.3,96.7,100|30,45,20,50,15,80,60,70,40,55,80

Onto 2007: I can put the data for the month so far to see

how we are trending.

Tracking Christmas Cheer with Google Charts

24 ways 2007 edition 113

Dec
1st

Christmas shopping finished already 50%

Dec
4th

Computer hard disk drive crashed (not Christmas

related accident, but put me in a bad mood)

10%

Dec
6th

Missed St. Nick’s Day completely due to

travelling

30%

Dec
9th

Dinner with friends before they travel 55%

Dec
11th

24ways article goes live 60%

Using the same system we did for 2006, I can take the five

data points and plot them on the chart. The new x axis

values will be 0,10,16.7,26.7 and the new y axis

50,10,30,65. We incorporate those into the image URL by

appending these values onto the chd parameter we

already have, which then becomes:

chd=t:0,16.7,23.3,33.3,60,76.7,83.3,86.7,93.3,96.7,100|30,45,20,50,15,80,60,70,40,55,80|0,10,16.7,26.7,33.3|50,10,30,55,60

Passing this to Google Charts results in Figure 7.

http://chart.apis.google.com/

chart?chs=800x300&cht=lxy&chd=t:0,100|0,100&chtt=Projected+Christmas+Cheer+for+2007&chxt=x,y&chxl=0:|Dec+1st|||||6th|||||||||||||||||||25th|26th|||||Dec+31st|1:||||||50|||||100&chg=3.3333,10,1,3&chd=t:0,16.7,23.3,33.3,60,76.7,83.3,86.7,93.3,96.7,100|30,45,20,50,15,80,60,70,40,55,80|0,10,16.7,26.7,33.3|50,10,30,55,60&chco=458B00,CD2626&chdl=2006|2007

114 24 ways 2007 edition

Figure 7: Projected Christmas cheer for 2006 and 2007.

DID SOMEONE MENTION EDWARD TUFTE?

Google Charts are a robust set of chart types that you can

create easily and freely using their API. As you can see,

you can graph just about anything you want using the line

graph, bar charts, scatter plots, venn diagrams and pie

charts. One type of chart conspicuously missing from the

API is sparklines. Sparklines were proposed by Edward

Tufte as “small, high resolution graphics embedded in a

context of words, numbers, images”. They can be

extremely useful, but can you create them in Google

Charts?

The answer is: “Yes, but it’s an undocumented feature”.

(The usual disclaimer about undocumented features

applies.)

If we take our original line graph example, and change the

value of the cht parameter from lc (line chart) to lfi

(financial line chart) the axis-lines are removed. This

allows you to make a chart — a sparkline — small enough

Tracking Christmas Cheer with Google Charts

24 ways 2007 edition 115

http://en.wikipedia.org/wiki/Sparkline

to fit into a sentence. Google uses the lfi type all

throughout the their financial site, but it’s not yet part of

the official API.

MerryChristmas http://chart.apis.google.com/

chart?cht=lfi&chs=100x15&chd=s:MerryChristmas

24ways http://chart.apis.google.com/

chart?cht=lfi&chs=100x15&chd=s:24ways&chco=999999

HappyHolidays http://chart.apis.google.com/

chart?cht=lfi&chs=100x15&chd=s:HappyHolidays&chco=ff0000

HappyNewYear http://chart.apis.google.com/

chart?cht=lfi&chs=100x15&chd=s:HappyNewYear&chco=0000ff

SUMMARY

The new Google Charts API is a powerful method for

creating charts and graphs of all types. If you apply a little

bit of technical skill you can create pie charts, bar graphs,

and even sparklines as and when you need them. Now

you’ve finished ready the article I hope you waste no more

time: go forth and chart!

FURTHER READING

▪ Google Charts API

▪ More on Google Charts

▪ How to handle negative numbers

▪ 12 Days of Christmas Pie Chart

116 24 ways 2007 edition

http://code.google.com/apis/chart/
http://gulopine.gamemusic.org/2007/12/google-chart-api-revisited.html
http://www.kryogenix.org/days/2007/12/08/negative-numbers-in-the-google-chart-api
http://icanhaz.com/12-days-pie

1 In order to remain within the 50,000 requests a day limit

the Google Charts API imposes, chart images on this page

have been cached and are being served from our own

servers. But the URLs work – try them!

ABOUT THE AUTHOR

Brian Suda is a master informatician working to make the web a

better place little by little everyday. Since discovering the

Internet in the mid-90s, Brian Suda has spent a good portion of

each day connected to it. His own little patch of Internet is

http://suda.co.uk, where many of his past projects and crazy

ideas can be found.

Photo: Jeremy Keith

Tracking Christmas Cheer with Google Charts

24 ways 2007 edition 117

http://suda.co.uk
http://www.flickr.com/photos/adactio/2829352818/

Simon Willison 24ways.org/200712

12. Unobtrusively
Mapping Microformats
with jQuery

Microformats are everywhere. You can’t
shake an electronic stick these days without
accidentally poking a microformat-enabled
site, and many developers use microformats
as a matter of course. And why not? After
all, why invent your own class names when
you can re-use pre-defined ones that give
your site extra functionality for free?

Nevertheless, while it’s good to know that users of tools

such as Tails and Operator will derive added value from

your shiny semantics, it’s nice to be able to reuse that

effort in your own code.

We’re going to build a map of some of my favourite

restaurants in Brighton. Fitting with the principles of

unobtrusive JavaScript, we’ll start with a semantically

marked up list of restaurants, then use JavaScript to add

the map, look up the restaurant locations and plot them as

markers.

118 24 ways 2007 edition

http://24ways.org/200712
http://microformats.org/
http://blog.codeeg.com/tails-firefox-extension-03/
https://addons.mozilla.org/en-US/firefox/addon/4106
http://en.wikipedia.org/wiki/Unobtrusive_JavaScript

We’ll be using a couple of powerful tools. The first is

jQuery, a JavaScript library that is ideally suited for

unobtrusive scripting. jQuery allows us to manipulate

elements on the page based on their CSS selector, which

makes it easy to extract information from microformats.

The second is Mapstraction, introduced here by Andrew

Turner a few days ago. We’ll be using Google Maps in the

background, but Mapstraction makes it easy to change to

a different provider if we want to later.

GETTING STARTED

We’ll start off with a simple collection of microformatted

restaurant details, representing my seven favourite

restaurants in Brighton. The full, unstyled list can be seen

in restaurants-plain.html. Each restaurant listing looks

like this:

<li class="vcard">

<h3><a class="fn org url"

href="http://www.riddleandfinns.co.uk/">Riddle &

Finns</h3>

<div class="adr">

<p class="street-address">12b Meeting House Lane</p>

<p>Brighton, <abbr

class="country-name" title="United Kingdom">UK</abbr></p>

<p class="postal-code">BN1 1HB</p>

</div>

<p>Telephone: +44 (0)1273 323

008</p>

Unobtrusively Mapping Microformats with jQuery

24 ways 2007 edition 119

http://jquery.com/
http://mapstraction.com/
http://24ways.org/2007/get-to-grips-with-slippy-maps
http://code.google.com/apis/maps/
http://24ways.org/examples/unobtrusively-mapping-microformats-with-jquery/restaurants-plain.html

<p>E-mail: <a href="mailto:info@riddleandfinns.co.uk"

class="email">info@riddleandfinns.co.uk</p>

Since we’re dealing with a list of restaurants, each hCard

is marked up inside a list item. Each restaurant is an

organisation; we signify this by placing the classes fn and

org on the element surrounding the restaurant’s name

(according to the hCard spec, setting both fn and org to

the same value signifies that the hCard represents an

organisation rather than a person).

The address information itself is contained within a div of

class adr. Note that the HTML <address> element is not

suitable here for two reasons: firstly, it is intended to

mark up contact details for the current document rather

than generic addresses; secondly, address is an inline

element and as such cannot contain the paragraphs

elements used here for the address information.

A nice thing about microformats is that they provide us

with automatic hooks for our styling. For the moment

we’ll just tidy up the whitespace a bit; for more advanced

style tips consult John Allsop’s guide from 24 ways 2006.

.vcard p {

margin: 0;

}

.adr {

margin-bottom: 0.5em;

}

120 24 ways 2007 edition

http://24ways.org/2006/styling-hcards-with-css

To plot the restaurants on a map we’ll need latitude and

longitude for each one. We can find this out from their

address using geocoding. Most mapping APIs include

support for geocoding, which means we can pass the API

an address and get back a latitude/longitude point.

Mapstraction provides an abstraction layer around these

APIs which can be included using the following script tag:

<script type="text/javascript"

src="http://mapstraction.com/src/

mapstraction-geocode.js"></script>

While we’re at it, let’s pull in the other external scripts

we’ll be using:

<script type="text/javascript"

src="jquery-1.2.1.js"></script>

<script src="http://maps.google.com/

maps?file=api&v=2&key=YOUR_KEY" type="text/

javascript"></script>

<script type="text/javascript"

src="http://mapstraction.com/src/

mapstraction.js"></script>

<script type="text/javascript"

src="http://mapstraction.com/src/

mapstraction-geocode.js"></script>

That’s everything set up: let’s write some JavaScript!

In jQuery, almost every operation starts with a call to the

jQuery function. The function simulates method

overloading to behave in different ways depending on the

Unobtrusively Mapping Microformats with jQuery

24 ways 2007 edition 121

http://en.wikipedia.org/wiki/Method_overloading
http://en.wikipedia.org/wiki/Method_overloading

arguments passed to it. When writing unobtrusive

JavaScript it’s important to set up code to execute when

the page has loaded to the point that the DOM is available

to be manipulated. To do this with jQuery, pass a callback

function to the jQuery function itself:

jQuery(function() {

// This code will be executed when the DOM is ready

});

INITIALISING THE MAP

The first thing we need to do is initialise our map.

Mapstraction needs a div with an explicit width, height

and ID to show it where to put the map. Our document

doesn’t currently include this markup, but we can insert it

with a single line of jQuery code:

jQuery(function() {

// First create a div to host the map

var themap = jQuery('<div id="themap"></div>').css({

'width': '90%',

'height': '400px'

}).insertBefore('ul.restaurants');

});

While this is technically just a single line of JavaScript

(with line-breaks added for readability) it’s actually doing

quite a lot of work. Let’s break it down in to steps:

var themap = jQuery('<div id="themap"></div>')

122 24 ways 2007 edition

Here’s jQuery’s method overloading in action: if you pass

it a string that starts with a < it assumes that you wish to

create a new HTML element. This provides us with a

handy shortcut for the more verbose DOM equivalent:

var themap = document.createElement('div');

themap.id = 'themap';

Next we want to apply some CSS rules to the element.

jQuery supports chaining, which means we can continue

to call methods on the object returned by jQuery or any of

its methods:

var themap = jQuery('<div id="themap"></div>').css({

'width': '90%',

'height': '400px'

})

Finally, we need to insert our new HTML element in to the

page. jQuery provides a number of methods for element

insertion, but in this case we want to position it directly

before the we are using to contain our restaurants.

jQuery’s insertBefore() method takes a CSS selector

indicating an element already on the page and places the

current jQuery selection directly before that element in

the DOM.

var themap = jQuery('<div id="themap"></div>').css({

'width': '90%',

'height': '400px'

}).insertBefore('ul.restaurants');

Unobtrusively Mapping Microformats with jQuery

24 ways 2007 edition 123

Finally, we need to initialise the map itself using

Mapstraction. The Mapstraction constructor takes two

arguments: the first is the ID of the element used to

position the map; the second is the mapping provider to

use (in this case google):

// Initialise the map

var mapstraction = new Mapstraction('themap','google');

We want the map to appear centred on Brighton, so we’ll

need to know the correct co-ordinates. We can use

www.getlatlon.com to find both the co-ordinates and the

initial map zoom level.

// Show map centred on Brighton

mapstraction.setCenterAndZoom(

new LatLonPoint(50.82423734980143, -0.14007568359375),

15 // Zoom level appropriate for Brighton city centre

);

We also want controls on the map to allow the user to

zoom in and out and toggle between map and satellite

view.

mapstraction.addControls({

zoom: 'large',

map_type: true

});

124 24 ways 2007 edition

http://www.getlatlon.com/

ADDING THE MARKERS

It’s finally time to parse some microformats. Since we’re

using hCard, the information we want is wrapped in

elements with the class vcard. We can use jQuery’s CSS

selector support to find them:

var vcards = jQuery('.vcard');

Now that we’ve found them, we need to create a marker

for each one in turn. Rather than using a regular

JavaScript for loop, we can instead use jQuery’s each()

method to execute a function against each of the hCards.

jQuery('.vcard').each(function() {

// Do something with the hCard

});

Within the callback function, this is set to the current

DOM element (in our case, the list item). If we want to call

the magic jQuery methods on it we’ll need to wrap it in

another call to jQuery:

jQuery('.vcard').each(function() {

var hcard = jQuery(this);

});

The Google maps geocoder seems to work best if you pass

it the street address and a postcode. We can extract these

using CSS selectors: this time, we’ll use jQuery’s find()

method which searches within the current jQuery

selection:

Unobtrusively Mapping Microformats with jQuery

24 ways 2007 edition 125

var streetaddress = hcard.find('.street-address').text();

var postcode = hcard.find('.postal-code').text();

The text() method extracts the text contents of the

selected node, minus any HTML markup.

We’ve got the address; now we need to geocode it.

Mapstraction’s geocoding API requires us to first

construct a MapstractionGeocoder, then use the

geocode() method to pass it an address. Here’s the code

outline:

var geocoder = new MapstractionGeocoder(onComplete,

'google');

geocoder.geocode({'address': 'the address goes here');

The onComplete function is executed when the geocoding

operation has been completed, and will be passed an

object with the resulting point on the map. We just want

to create a marker for the point:

var geocoder = new MapstractionGeocoder(function(result)

{

var marker = new Marker(result.point);

mapstraction.addMarker(marker);

}, 'google');

For our purposes, joining the street address and postcode

with a comma to create the address should suffice:

geocoder.geocode({'address': streetaddress + ', ' +

postcode});

126 24 ways 2007 edition

There’s one last step: when the marker is clicked, we want

to display details of the restaurant. We can do this with an

info bubble, which can be configured by passing in a string

of HTML. We’ll construct that HTML using jQuery’s

html() method on our hcard object, which extracts the

HTML contained within that DOM node as a string.

var marker = new Marker(result.point);

marker.setInfoBubble(

'<div class="bubble">' + hcard.html() + '</div>'

);

mapstraction.addMarker(marker);

We’ve wrapped the bubble in a div with class bubble to

make it easier to style. Google Maps can behave strangely

if you don’t provide an explicit width for your info bubbles,

so we’ll add that to our CSS now:

.bubble {

width: 300px;

}

That’s everything we need: let’s combine our code

together:

jQuery(function() {

// First create a div to host the map

var themap = jQuery('<div id="themap"></div>').css({

'width': '90%',

'height': '400px'

}).insertBefore('ul.restaurants');

// Now initialise the map

var mapstraction = new Mapstraction('themap','google');

Unobtrusively Mapping Microformats with jQuery

24 ways 2007 edition 127

mapstraction.addControls({

zoom: 'large',

map_type: true

});

// Show map centred on Brighton

mapstraction.setCenterAndZoom(

new LatLonPoint(50.82423734980143,

-0.14007568359375),

15 // Zoom level appropriate for Brighton city centre

);

// Geocode each hcard and add a marker

jQuery('.vcard').each(function() {

var hcard = jQuery(this);

var streetaddress =

hcard.find('.street-address').text();

var postcode = hcard.find('.postal-code').text();

var geocoder = new

MapstractionGeocoder(function(result) {

var marker = new Marker(result.point);

marker.setInfoBubble(

'<div class="bubble">' + hcard.html() + '</div>'

);

mapstraction.addMarker(marker);

}, 'google');

geocoder.geocode({'address': streetaddress + ', ' +

postcode});

});

});

Here’s the finished code.

128 24 ways 2007 edition

http://24ways.org/examples/unobtrusively-mapping-microformats-with-jquery/restaurants.html

There’s one last shortcut we can add: jQuery provides the

$ symbol as an alias for jQuery. We could just go through

our code and replace every call to jQuery() with a call to

$(), but this would cause incompatibilities if we ever

attempted to use our script on a page that also includes

the Prototype library. A more robust approach is to start

our code with the following:

jQuery(function($) {

// Within this function, $ now refers to jQuery

// ...

});

jQuery cleverly passes itself as the first argument to any

function registered to the DOM ready event, which

means we can assign a local $ variable shortcut without

affecting the $ symbol in the global scope. This makes it

easy to use jQuery with other libraries.

LIMITATIONS OF GEOCODING

You may have noticed a discrepancy creep in to the last

example: whereas my original list included seven

restaurants, the geocoding example only shows five. This

is because the Google Maps geocoder incorporates a rate

limit: more than five lookups in a second and it starts

returning error messages instead of regular results.

Unobtrusively Mapping Microformats with jQuery

24 ways 2007 edition 129

http://docs.jquery.com/Using_jQuery_with_Other_Libraries

In addition to this problem, geocoding itself is an inexact

science: while UK postcodes generally get you down to

the correct street, figuring out the exact point on the

street from the provided address usually isn’t too

accurate (although Google do a pretty good job).

Finally, there’s the performance overhead. We’re making

five geocoding requests to Google for every page served,

even though the restaurants themselves aren’t likely to

change location any time soon. Surely there’s a better way

of doing this?

Microformats to the rescue (again)! The geo microformat

suggests simple classes for including latitude and

longitude information in a page. We can add specific

points for each restaurant using the following markup:

<li class="vcard">

<h3 class="fn org">E-Kagen</h3>

<div class="adr">

<p class="street-address">22-23 Sydney Street</p>

<p>Brighton, <abbr

class="country-name" title="United Kingdom">UK</abbr></p>

<p class="postal-code">BN1 4EN</p>

</div>

<p>Telephone: +44 (0)1273 687

068</p>

<p class="geo">Lat/Lon:

50.827917,

-0.137764

</p>

130 24 ways 2007 edition

http://microformats.org/wiki/geo

As before, I used www.getlatlon.com to find the exact

locations – I find satellite view is particularly useful for

locating individual buildings.

Latitudes and longitudes are great for machines but not

so useful for human beings. We could hide them entirely

with display: none, but I prefer to merely de-emphasise

them (someone might want them for their GPS unit):

.vcard .geo {

margin-top: 0.5em;

font-size: 0.85em;

color: #ccc;

}

It’s probably a good idea to hide them completely when

they’re displayed inside an info bubble:

.bubble .geo {

display: none;

}

We can extract the co-ordinates in the same way we

extracted the address. Since we’re no longer geocoding

anything our code becomes a lot simpler:

$('.vcard').each(function() {

var hcard = $(this);

var latitude = hcard.find('.geo .latitude').text();

var longitude = hcard.find('.geo .longitude').text();

var marker = new Marker(new LatLonPoint(latitude,

longitude));

marker.setInfoBubble(

Unobtrusively Mapping Microformats with jQuery

24 ways 2007 edition 131

http://www.getlatlon.com/

'<div class="bubble">' + hcard.html() + '</div>'

);

mapstraction.addMarker(marker);

});

And here’s the finished geo example.

FURTHER READING

We’ve only scratched the surface of what’s possible with

microformats, jQuery (or just regular JavaScript) and a bit

of imagination. If this example has piqued your interest,

the following links should give you some more food for

thought.

▪ The hCard specification

▪ Notes on parsing hCards

▪ jQuery for JavaScript programmers – my extended

tutorial on jQuery.

▪ Dann Webb’s Sumo – a full JavaScript library for

parsing microformats, based around some clever

metaprogramming techniques.

▪ Jeremy Keith’s Adactio Austin – the first place I saw

using microformats to unobtrusively plot locations on a

map. Makes clever use of hEvent as well.

132 24 ways 2007 edition

http://24ways.org/examples/unobtrusively-mapping-microformats-with-jquery/restaurants-geo.html
http://microformats.org/wiki/hcard
http://microformats.org/wiki/hcard-parsing
http://simonwillison.net/2007/Aug/15/jquery/
http://www.danwebb.net/2007/2/9/sumo-a-generic-microformats-parser-for-javascript
http://austin.adactio.com/

ABOUT THE AUTHOR

Simon Willison is a freelance client- and server-side Web

developer and the co-creator of the Django Web framework.

Simon’s interests include OpenID and decentralised systems,

unobtrusive JavaScript, rapid application development and

RESTful Web Service APIs. Before going frelance Simon worked

on Yahoo!‘s Technology Development team, and prior to that at

the Lawrence Journal-World, an award winning local

newspaper in Kansas. Simon maintains a popular Web

development weblog at simonwillison.net

Photo: Tom Coates

Unobtrusively Mapping Microformats with jQuery

24 ways 2007 edition 133

http://www.djangoproject.com/
http://simonwillison.net/
http://flickr.com/photos/plasticbag/1358487255/

Ann McMeekin 24ways.org/200713

13. CSS for Accessibility

CSS is magical stuff. In the right hands, it
can transform the plainest of (well-
structured) documents into a visual feast.
But it’s not all fur coat and nae knickers (as
my granny used to say). Here are some
simple ways you can use CSS to improve the
usability and accessibility of your site.

Even better, no sexy visuals will be harmed by the use of

these techniques. Promise.

Nae knickers

This is less of an accessibility tip, and more of a reminder

to check that you’ve got your body background colour

specified.

If you’re sitting there wondering why I’m mentioning this,

because it’s a really basic thing, then you might be as

surprised as I was to discover that from a sample of over

200 sites checked last year, 35% of UK local authority

websites were missing their body background colour.

134 24 ways 2007 edition

http://24ways.org/200713
http://www.rnib.org.uk/wacblog/css/is-your-site-half-naked/
http://www.rnib.org.uk/wacblog/css/is-your-site-half-naked/

Forgetting to specify your body background colour can

lead to embarrassing gaps in coverage, which are not only

unsightly, but can prevent your users reading the text on

your site if they use a different operating system colour

scheme.

All it needs is the following line to be added to your CSS

file:

body {background-color: #fff;}

If you pair it with

color: #000;

… you’ll be assured of maintaining contrast for any areas

you inadvertently forget to specify, no matter what colour

scheme your user needs or prefers.

Even better, if you’ve got standard reset CSS you use,

make sure that default colours for background and text

are specified in it, so you’ll never be caught with your

pants down. At the very least, you’ll have a white

background and black text that’ll prompt you to change

them to your chosen colours.

Elbow room

Paying attention to your typography is important, but it’s

not just about making it look nice.

CSS for Accessibility

24 ways 2007 edition 135

Careful use of the line-height property can make your text

more readable, which helps everyone, but is particularly

helpful for those with dyslexia, who use screen

magnification or simply find it uncomfortable to read lots

of text online.

When lines of text are too close together, it can cause the

eye to skip down lines when reading, making it difficult to

keep track of what you’re reading across.

So, a bit of room is good.

That said, when lines of text are too far apart, it can be

just as bad, because the eye has to jump to find the next

line. That not only breaks up the reading rhythm, but can

make it much more difficult for those using Screen

Magnification (especially at high levels of magnification)

to find the beginning of the next line which follows on

from the end of the line they’ve just read.

Using a line height of between 1.2 and 1.6 times normal

can improve readability, and using unit-less line heights

help take care of any pesky browser calculation problems.

For example:

p {

font-family: "Lucida Grande", Lucida, Verdana,

Helvetica, sans-serif;

font-size: 1em;

line-height: 1.3;

}

136 24 ways 2007 edition

or if you want to use the shorthand version:

p {

font: 1em/1.3 "Lucida Grande", Lucida, Verdana,

Helvetica, sans-serif;

}

View some examples of different line-heights, based on

default text size of 100%/1em.

Further reading on Unitless line-heights from Eric Meyer.

Transformers: Initial case in disguise

Nobody wants to shout at their users, but there are some

occasions when you might legitimately want to use

uppercase on your site.

Avoid screen-reader pronunciation weirdness (where, for

example, CONTACT US would be read out as Contact U S,

which is not the same thing – unless you really are

offering your users the chance to contact the United

States) caused by using uppercase by using title case for

your text and using the often neglected text-transform

property to fake uppercase.

For example:

.uppercase {

text-transform: uppercase

}

CSS for Accessibility

24 ways 2007 edition 137

http://24ways.org/examples/css-for-accessibility/lineheight.html
http://24ways.org/examples/css-for-accessibility/lineheight.html
http://meyerweb.com/eric/thoughts/2006/02/08/unitless-line-heights/

Don’t overdo it though, as uppercase text is harder to

read than normal text, not to mention the whole

SHOUTING thing.

Linky love

When it comes to accessibility, keyboard only users

(which includes those who use voice recognition

software) who can see just fine are often forgotten about

in favour of screen reader users.

This Christmas, share the accessibility love and light up

those links so all of your users can easily find their way

around your site.

THE LINK OUTLINE

AKA: the focus ring, or that dotted box that goes around

links to show users where they are on the site.

The techniques below are intended to supplement this,

not take the place of it. You may think it’s ugly and want to

get rid of it, especially since you’re going to the effort of

tarting up your links.

Don’t.

Just don’t.

138 24 ways 2007 edition

THE NON-UNDERLINED UNDERLINE

If you listen to Jacob Nielsen, every link on your site

should be underlined so users know it’s a link.

You might disagree with him on this (I know I do), but if

you are choosing to go with underlined links, in whatever

state, then remove the default underline and replacing it

with a border that’s a couple of pixels away from the text.

The underline is still there, but it’s no longer cutting off

the bottom of letters with descenders (e.g., g and y) which

makes it easier to read.

This is illustrated in Examples 1 and 2.

You can modify the three lines of code below to suit your

own colour and border style preferences, and add it to

whichever link state you like.

text-decoration: none;

border-bottom: 1px #000 solid;

padding-bottom: 2px;

STANDING OUT FROM THE CROWD

Whatever way you choose to do it, you should be making

sure your links stand out from the crowd of normal text

which surrounds them when in their default state, and

especially in their hover or focus states.

CSS for Accessibility

24 ways 2007 edition 139

http://24ways.org/examples/css-for-accessibility/linkylove.html

A good way of doing this is to reverse the colours when on

hover or focus.

WELL-FOCUSED

Everyone knows that you can use the :hover pseudo class

to change the look of a link when you mouse over it, but,

somewhat ironically, people who can see and use a mouse

are the group who least need this extra visual clue, since

the cursor handily (sorry) changes from an arrow to a

hand.

So spare a thought for the non-pointing device users that

visit your site and take the time to duplicate that hover

look by using the :focus pseudo class.

Of course, the internets being what they are, it’s not quite

that simple, and predictably, Internet Explorer is the

culprit once more with it’s frustrating lack of support for

:focus. Instead it applies the :active pseudo class

whenever an anchor has focus.

What this means in practice is that if you want to make

your links change on focus as well as on hover, you need to

specify focus, hover and active.

Even better, since the look and feel necessarily has to be

the same for the last three states, you can combine them

into one rule.

140 24 ways 2007 edition

So if you wanted to do a simple reverse of colours for a

link, and put it together with the non-underline underlines

from before, the code might look like this:

a:link {

background: #fff;

color: #000;

font-weight: bold;

text-decoration: none;

border-bottom: 1px #000 solid;

padding-bottom: 2px;

}

a:visited {

background: #fff;

color: #800080;

font-weight: bold;

text-decoration: none;

border-bottom: 1px #000 solid;

padding-bottom: 2px;

}

a:focus, a:hover, a:active {

background: #000;

color: #fff;

font-weight: bold;

text-decoration: none;

border-bottom: 1px #000 solid;

padding-bottom: 2px;

}

Example 3 shows what this looks like in practice.

CSS for Accessibility

24 ways 2007 edition 141

http://24ways.org/examples/css-for-accessibility/linkylove.html

LOCATION, LOCATION, LOCATION

To take this example to it’s natural conclusion, you can add

an id of current (or something similar) in appropriate

places in your navigation, specify a full set of link styles for

current, and have a navigation which, at a glance, lets

users know which page or section they’re currently in.

Example navigation using location indicators.

and the source code

Conclusion

All the examples here are intended to illustrate the

concepts, and should not be taken as the absolute best

way to format links or style navigation bars – that’s up to

you and whatever visual design you’re using at the time.

They’re also not the only things you should be doing to

make your site accessible.

Above all, remember that accessibility is for life, not just

for Christmas.

142 24 ways 2007 edition

http://24ways.org/examples/css-for-accessibility/location.html
http://24ways.org/examples/css-for-accessibility/location.css

ABOUT THE AUTHOR

Ann McMeekin is passionate about accessibility and good

design, whether on the web or in the real world, and doesn’t

believe that one has to be sacrificed to achieve the other. This is

something she’s argued for several years, both in her work

(currently as a Web Accessibility Consultant for the RNIB, and

previously as a web designer) and to anyone who’ll sit still long

enough to listen. She blogs for herself at

http://www.pixeldiva.co.uk and for work at

http://www.rnib.org.uk/wacblog.

CSS for Accessibility

24 ways 2007 edition 143

http://www.pixeldiva.co.uk/
http://www.rnib.org.uk/
http://www.pixeldiva.co.uk/
http://www.rnib.org.uk/wacblog

Andrew Clarke 24ways.org/200714

14. Underpants Over My
Trousers

With Christmas approaching faster than a
speeding bullet, this is the perfect time for
you to think about that last minute present
to buy for the web geek in your life. If you’re
stuck for ideas for that special someone,
forget about that svelte iPhone case carved
from solid mahogany and head instead to
your nearest comic-book shop and pick up a
selection of comics or graphic novels. (I’ll be
using some of my personal favourite comic
books as examples throughout).

Trust me, whether your nearest and dearest has been

reading comics for a while or has never peered inside this

four-colour world, they’ll thank-you for it.

Aside from indulging their superhero fantasies, comic

books can provide web designers with a rich vein of

inspiring ideas and material to help them create shirt

button popping, trouser bursting work for the web. I know

from my own personal experience, that looking at aspects

144 24 ways 2007 edition

http://24ways.org/200714

of comic book design, layout and conventions and thinking

about the ways that they can inform web design has taken

my design work in often-unexpected directions.

There are far too many fascinating facets of comic book

design that provide web designers with inspiration to

cover in the time that it takes to pull your underpants over

your trousers. So I’m going to concentrate on one muscle

bound aspect of comic design, one that will make you

think differently about how you lay out the content of

your pages in panels.

A SUITCASE FULL OF KRYPTONITE

Now, to the uninitiated onlooker, the panels of a comic

book may appear to perform a similar function to still

frames from a movie. But inside the pages of a comic,

panels must work harder to help the reader understand

the timing of a story. It is this method for conveying

narrative timing to a reader that I believe can be highly

useful to designers who work on the web as timing, drama

and suspense are as important in the web world as they

are in worlds occupied by costumed crime fighters and

superheroes.

I’d like you to start by closing your eyes and thinking

about your own process for laying out panels of content

on a page. OK, you’ll actually be better off with your eyes

open if you’re going to carry on reading.

Underpants Over My Trousers

24 ways 2007 edition 145

I’ll bet you a suitcase full of Kryptonite that you often, if

not always, structure your page layouts, and decide on the

dimensions of those panels according to either:

▪ The base grid that you are working to

▪ The Golden Ratio or another mathematical schema

More likely, I bet that you decide on the size and the

number of your panels based on the amount of content

that will be going into them. From today, I’d like you to

think about taking a different approach. This approach

not only addresses horizontal and vertical space, but also

adds the dimension of time to your designs.

SLOWING DOWN THE ACTION

A comic book panel not only acts as a container for its

content but also indicates to a reader how much time

passes within the panel and as a result, how much time

the reader should focus their attention on that one panel.

Smaller panels create swift eye movement and shorter

bursts of attention. Larger panels give the perception of

more time elapsing in the story and subconsciously

demands that a reader devotes more time to focus on it.

146 24 ways 2007 edition

Concrete by Paul Chadwick (Dark Horse Comics)

This use of panel dimensions to control timing can also be

useful for web designers in designing the reading/user

experience. Imagine a page full of information about a

product or service. You’ll naturally want the reader to

focus for longer on the key benefits of your offering

rather than perhaps its technical specifications.

Now take a look at this spread of pages from Watchmen

by Alan Moore and Dave Gibbons.

Underpants Over My Trousers

24 ways 2007 edition 147

Watchmen by Alan Moore and Dave Gibbons (Diamond

Comic Distributors 2004)

Throughout this series of (originally) twelve editions,

artist Dave Gibbons stuck rigidly to his 3×3 panels per

page design and deviated from it only for dramatic

moments within the narrative.

In particular during the last few pages of chapter eleven,

Gibbons adds weight to the impending doom by slowing

down the action by using larger panels and forces the

reader to think longer about what was coming next. The

action then speeds up through twelve smaller panels until

the final panel: nothing more than white space and yet

one of the most iconic and thought provoking in the entire

twelve book series.

148 24 ways 2007 edition

Watchmen by Alan Moore and Dave Gibbons (Diamond

Comic Distributors 2004)

On the web it is common for clients to ask designers to fill

every pixel of screen space with content, perhaps not

understanding the drama that can be added by nothing

more than white space.

In the final chapter, Gibbons emphasises the carnage that

has taken place (unseen between chapters eleven and

twelve) by presenting the reader with six full pages

containing only single, large panels.

Underpants Over My Trousers

24 ways 2007 edition 149

Watchmen by Alan Moore and Dave Gibbons (Diamond

Comic Distributors 2004)

This drama, created by the artist’s use of panel

dimensions to control timing, is a technique that web

designers can also usefully employ when emphasising

important areas of content.

Think back for a moment to the home page of Apple Inc.,

during the launch of their iconic iPhone, where the page

contained nothing more than a large image and the phrase

“Say hello to iPhone”. Rather than fill the page with sales

messages, Apple’s designers allowed the space itself to

tell the story and created a real sense of suspense and

expectation among their readers.

150 24 ways 2007 edition

BORDERS

Whereas on the web, panel borders are commonly used

to add emphasis to particular areas of content, in comic

books they take on a different and sometimes opposite

role.

In the examples so far, borders have contained all of the

action. Removing a border can have the opposite effect to

what you might at first think. Rather than taking emphasis

away from their content, in comics, borderless panels

allow the reader’s eyes to linger for longer on the content

adding even stronger emphasis.

Concrete by Paul Chadwick (Dark Horse Comics)

This effect is amplified when the borderless content is

allowed to bleed to the edges of a page. Because the

content is no longer confined, except by the edges of the

page (both comic and web) the reader’s eye is left to

wander out into open space.

Underpants Over My Trousers

24 ways 2007 edition 151

Concrete by Paul Chadwick (Dark Horse Comics)

This type of open, borderless content panel can be highly

useful in placing emphasis on the most important content

on a page in exactly the very opposite way that we

commonly employ on the web today.

So why is time an important dimension to think about

when designing your web pages? On one level, we are

often already concerned with the short attention spans of

visitors to our pages and should work hard to allow them

to quickly and easily find and read the content that both

152 24 ways 2007 edition

they and we think is important. Learning lessons from

comic book timing can only help us improve that

experience.

On another: timing, suspense and drama are already

everyday parts of the web browsing experience. Will a

reader see what they expect when they click from one

page to the next? Or are they in for a surprise?

Most importantly, I believe that the web, like comics, is

about story telling: often the story of the experiences that

a customer will have when they use our product or service

or interact with our organisation. It is this element of

story telling than can be greatly improved by learning

from comics.

It is exactly this kind of learning and adapting from older,

more established and at first glance unrelated media that

you will find can make a real distinctive difference to the

design work that you create.

FILL YOUR STOCKINGS

If you’re a visual designer or developer and are not a

regular reader of comics, from the moment that you pick

up your first title, I know that you will find them inspiring.

I will be writing more, and speaking about comic design

applied to the web at several (to be announced) events

this coming year. I hope you’ll be slipping your underpants

Underpants Over My Trousers

24 ways 2007 edition 153

over your trousers and joining me then. In the meantime,

here is some further reading to pick up on your next visit

to a comic book or regular bookshop and slip into your

stockings:

▪ Comics and Sequential Art by Will Eisner (Northern

Light Books 2001)

▪ Understanding Comics: The Invisible Art by Scott

McCloud (Harper Collins 1994)

Have a happy superhero season.

(I would like to thank all of the talented artists, writers

and publishers whose work I have used as examples in this

article and the hundreds more who inspire me every day

with their tall tales and talent.)

154 24 ways 2007 edition

ABOUT THE AUTHOR

Andrew Clarke runs Stuff and Nonsense, a tiny web design

company where they make fashionably flexible websites.

Andrew’s the author of Transcending CSS and Hardboiled Web

Design and hosts the popular weekly podcast Unfinished

Business where he discusses the business side of web, design

and creative industries with his guests. He tweets as

@malarkey.

Underpants Over My Trousers

24 ways 2007 edition 155

http://stuffandnonsense.co.uk/
http://unfinished.bz/
http://unfinished.bz/
http://twitter.com/malarkey

Ethan Marcotte 24ways.org/200715

15. Conditional Love

“Browser.” The four-letter word of web
design.

I mean, let’s face it: on the good days, when things just

work in your target browsers, it’s marvelous. The air

smells sweeter, birds’ songs sound more melodious, and

both your design and your code are looking sharp.

But on the less-than-good days (which is, frankly, most of

them), you’re compelled to tie up all your browsers in a

sack, heave them into the nearest river, and start

designing all-imagemap websites. We all play favorites,

after all: some will swear by Firefox, Opera fans are

allegedly legion, and others still will frown upon anything

less than the latest WebKit nightly.

Thankfully, we do have an out for those little

inconsistencies that crop up when dealing with cross-

browser testing: CSS patches.

156 24 ways 2007 edition

http://24ways.org/200715

SPARE THE ROD, HACK THE BROWSER

Before committing browsercide over some rendering bug,

a designer will typically reach for a snippet of CSS fix the

faulty browser. Historically referred to as “hacks,” I prefer

Dan Cederholm’s more client-friendly alternative,

“patches”.

But whatever you call them, CSS patches all work along

the same principle: supply the proper property value to

the good browsers, while giving higher maintenance other

browsers an incorrect value that their frustrating

idiosyncratic rendering engine can understand.

Traditionally, this has been done either by exploiting

incomplete CSS support:

#content {

height: 1%; // Let's force hasLayout for old

versions of IE.

line-height: 1.6;

padding: 1em;

}

html>body #content {

height: auto; // Modern browsers get a proper height

value.

}

or by exploiting bugs in their rendering engine to deliver

alternate style rules:

Conditional Love

24 ways 2007 edition 157

http://simplebits.com/
http://www.simplebits.com/notebook/2005/10/26/patches.html

#content p {

font-size: .8em;

/* Hide from Mac IE5 */

font-size: .9em;

/* End hiding from Mac IE5 */

}

We’ve even used these exploits to serve up whole

stylesheets altogether:

@import url("core.css");

@media tty {

i{content:"\";/*" "*/}} @import 'windows-ie5.css';

/*";}

}/* */

The list goes on, and on, and on. For every browser, for

every bug, there’s a patch available to fix some rendering

bug.

But after some time working with standards-based

layouts, I’ve found that CSS patches, as we’ve traditionally

used them, become increasingly difficult to maintain. As

stylesheets are modified over the course of a site’s

lifetime, inline fixes we’ve written may become obsolete,

making them difficult to find, update, or prune out of our

CSS. A good patch requires a constant gardener to ensure

that it adds more than just bloat to a stylesheet, and inline

patches can be very hard to weed out of a decently sized

CSS file.

158 24 ways 2007 edition

http://css-discuss.incutio.com/?page=CssHack

GIVING THE KIDS SEPARATE ROOMS

Since I joined Airbag Industries earlier this year, every

project we’ve worked on has this in the head of its

templates:

<link rel="stylesheet" href="-/css/screen/main.css"

type="text/css" media="screen, projection" />

<!--[if lt IE 7]>

<link rel="stylesheet" href="-/css/screen/patches/

win-ie-old.css" type="text/css" media="screen,

projection" />

<![endif]-->

<!--[if gte IE 7]>

<link rel="stylesheet" href="-/css/screen/patches/

win-ie7-up.css" type="text/css" media="screen,

projection" />

<![endif]-->

The first element is, simply enough, a link element that

points to the project’s main CSS file. No patches, no hacks:

just pure, modern browser-friendly style rules. Which,

nine times out of ten, will net you a design that looks like

spilled eggnog in various versions of Internet Explorer.

But don’t reach for the mulled wine quite yet.

Immediately after, we’ve got a brace of conditional

comments wrapped around two other link elements.

These odd-looking comments allow us to selectively serve

up additional stylesheets just to the version of IE that

needs them. We’ve got one for IE 6 and below:

Conditional Love

24 ways 2007 edition 159

http://airbagindustries.com/
http://msdn2.microsoft.com/en-us/library/ms537512.aspx
http://msdn2.microsoft.com/en-us/library/ms537512.aspx

<!--[if lt IE 7]>

<link rel="stylesheet" href="-/css/screen/patches/

win-ie-old.css" type="text/css" media="screen,

projection" />

<![endif]-->

And another for IE7 and above:

<!--[if gte IE 7]>

<link rel="stylesheet" href="-/css/screen/patches/

win-ie7-up.css" type="text/css" media="screen,

projection" />

<![endif]-->

Microsoft’s conditional comments aren’t exactly new, but

they can be a valuable alternative to cooking CSS patches

directly into a master stylesheet. And though they’re not a

W3C-approved markup structure, I think they’re just

brilliant because they innovate within the spec: non-IE

devices will assume that the comments are just that, and

ignore the markup altogether.

This does, of course, mean that there’s a little extra

markup in the head of our documents. But this approach

can seriously cut down on the unnecessary patches

served up to the browsers that don’t need them. Namely,

we no longer have to write rules like this in our main

stylesheet:

#content {

height: 1%; // Let's force hasLayout for old versions

of IE.

160 24 ways 2007 edition

line-height: 1.6;

padding: 1em;

}

html>body #content {

height: auto; // Modern browsers get a proper height

value.

}

Rather, we can simply write an un-patched rule in our core

stylesheet:

#content {

line-height: 1.6;

padding: 1em;

}

And now, our patch for older versions of IE goes in—you

guessed it—the stylesheet for older versions of IE:

#content {

height: 1%;

}

The hasLayout patch is applied, our design’s repaired,

and—most importantly—the patch is only seen by the

browser that needs it. The “good” browsers don’t have to

incur any added stylesheet weight from our IE patches,

and Internet Explorer gets the conditional love it

deserves.

Most importantly, this “compartmentalized” approach to

CSS patching makes it much easier for me to patch and

maintain the fixes applied to a particular browser. If I need

Conditional Love

24 ways 2007 edition 161

to track down a bug for IE7, I don’t need to scroll through

dozens or hundreds of rules in my core stylesheet:

instead, I just open the considerably slimmer IE7-specific

patch file, make my edits, and move right along.

EVEN GOOD CHILDREN MISBEHAVE

While IE may occupy the bulk of our debugging time,

there’s no denying that other popular, modern browsers

will occasionally disagree on how certain bits of CSS

should be rendered. But without something as, well, pimp

as conditional comments at our disposal, how do we bring

the so-called “good browsers” back in line with our

design?

Assuming you’re loving the “one patch file per browser”

model as much as I do, there’s just one alternative:

JavaScript.

function isSaf() {

var isSaf = (document.childNodes && !document.all &&

!navigator.taintEnabled && !navigator.accentColorName) ?

true : false;

return isSaf;

}

function isOp() {

var isOp = (window.opera) ? true : false;

return isOp;

}

162 24 ways 2007 edition

Instead of relying on dotcom-era tactics of parsing the

browser’s user-agent string, we’re testing here for

support for various DOM objects, whose presence or

absence we can use to reasonably infer the browser we’re

looking at. So running the isOp() function, for example,

will test for Opera’s proprietary window.opera object, and

thereby accurately tell you if your user’s running

Norway’s finest browser.

With scripts such as isOp() and isSaf() in place, you can

then reasonably test which browser’s viewing your

content, and insert additional link elements as needed.

function loadPatches(dir) {

if (document.getElementsByTagName() &&

document.createElement()) {

var head = document.getElementsByTagName("head")[0];

if (head) {

var css = new Array();

if (isSaf()) {

css.push("saf.css");

} else if (isOp()) {

css.push("opera.css");

}

if (css.length) {

var link = document.createElement("link");

link.setAttribute("rel", "stylesheet");

link.setAttribute("type", "text/css");

link.setAttribute("media", "screen, projection");

for (var i = 0; i < css.length; i++) {

var tag = link.cloneNode(true);

tag.setAttribute("href", dir + css[0]);

Conditional Love

24 ways 2007 edition 163

http://en.wikipedia.org/wiki/User_agent

head.appendChild(tag);

}

}

}

}

}

Here, we’re testing the results of isSaf() and isOp(), one

after the other. For each function that returns true, then

the name of a new stylesheet is added to the oh-so-

cleverly named css array. Then, for each entry in css, we

create a new link element, point it at our patch file, and

insert it into the head of our template.

Fire it up using your favorite onload or

DOMContentLoaded function, and you’re good to go.

Scripteat Emptor

At this point, some of the audience’s more conscientious

‘scripters may be preparing to lob figgy pudding at this

author’s head. And that’s perfectly understandable;

relying on JavaScript to patch CSS chafes a bit against the

normally clean separation we have between our pages’

content, presentation, and behavior layers.

And beyond the philosophical concerns, this approach

comes with a few technical caveats attached:

164 24 ways 2007 edition

http://simonwillison.net/2004/May/26/addLoadEvent/
http://www.kryogenix.org/days/2007/09/26/shortloaded

BROWSER DETECTION? SO UN-133T.

Browser detection is not something I’d typically

recommend. Whenever possible, a proper DOM script

should check for the support of a given object or method,

rather than the device with which your users view your

content.

IT’S JAVASCRIPT, SO DON’T COUNT ON IT BEING AVAILABLE.

According to one site, roughly four percent of Internet

users don’t have JavaScript enabled. Your site’s stats

might be higher or lower than this number, but still: don’t

expect that every member of your audience will see these

additional stylesheets, and ensure that your content’s still

accessible with JS turned off.

BE A CONSTANT GARDENER.

The sample isSaf() and isOp() functions I’ve written will

tell you if the user’s browser is Safari or Opera. As a

result, stylesheets written to patch issues in an old

browser may break when later releases repair the

relevant CSS bugs.

You can, of course, add logic to these simple little scripts

to serve up version-specific stylesheets, but that way

madness may lie. In any event, test your work vigorously,

Conditional Love

24 ways 2007 edition 165

http://www.thecounter.com/stats/2007/December/javas.php
http://www.thecounter.com/stats/2007/December/javas.php

and keep testing it when new versions of the targeted

browsers come out. Make sure that a patch written today

doesn’t become a bug tomorrow.

Patching Firefox, Opera, and Safari isn’t something I’ve

had to do frequently: still, there have been occasions

where the above script’s come in handy. Between

conditional comments, careful CSS auditing, and some

judicious JavaScript, browser-based bugs can be handled

with near-surgical precision.

So pass the ‘nog. It’s patchin’ time.

ABOUT THE AUTHOR

166 24 ways 2007 edition

Ethan Marcotte is a web designer and developer who cares

about beautiful design, elegant code, and how the two intersect.

He is currently working on a book about responsive web design,

and drinking entirely too much coffee.

He swears profusely on Twitter, and would like to be an

unstoppable robot ninja when he grows up. Beep.

Photo: Brian Warren

Conditional Love

24 ways 2007 edition 167

http://ethanmarcotte.com/
http://books.alistapart.com/products/responsive-web-design
http://www.alistapart.com/articles/responsive-web-design/
http://twitter.com/beep
http://unstoppablerobotninja.com/
http://begoodnotbad.com/

Dave Shea 24ways.org/200716

16. Get In Shape

Pop quiz: what’s wrong with the following
navigation?

Maybe nothing. But then again, maybe there’s something

bugging you about the way it comes together, something

you can’t quite put your finger on. It seems well-designed,

but it also seems a little… off.

The design decisions that led to this eventual form were

no doubt well-considered:

▪ Client: The top level needs to have a “current page”

status indicator of some sort.

▪ Designer: How about a white tab?

▪ Client: Great! The second level needs to show up

underneath the first level though…

▪ Designer: Okay, but that white tab I just added makes it

hard to visually connect the bottom nav to the top.

▪ Client: Too late, we’ve seen the white tab and we love it.

Try and make it work.

168 24 ways 2007 edition

http://24ways.org/200716

▪ Designer: Right. So I placed the second level in its own

box.

▪ Client: Hmm. They seem too separated. I can’t tell that

the yellow nav is the second level of the first.

▪ Designer: How about an indicator arrow?

▪ Client: Brilliant!

The problem is that the end result feels awkward and

forced. During the design process, little decisions were

made that ultimately affect the overall shape of the

navigation. What started out as a neatly contained

rounded rectangle ended up as an ambiguous double

shape that looks funny, though it’s often hard to pinpoint

precisely why.

THE SHAPE OF THINGS

Well the why in this case is because seemingly unrelated

elements in a design still end up visually interacting.

Adding a new item to a page impacts everything

surrounding it. In this navigation example, we’re looking

at two individual objects that are close enough to each

other that they form a relationship; if we reduce them to

strictly their outlines, it’s a little easier to see that this

particular combination registers oddly.

Get In Shape

24 ways 2007 edition 169

The two shapes float with nothing really grounding them.

If they were connected, perhaps it would be a different

story. The white tab divides the top shape in half, leaving a

gap in the middle of it. There’s very little balance in this

pairing because the overall shape of the navigation wasn’t

considered during the design process.

Here’s another example: Gmail. Great email client, but did

you ever closely look at what’s going on in that left hand

navigation? The continuous blue bar around the message

area spills out into the navigation. If we remove all text,

we’re left with this odd configuration:

Though the reasoning for anchoring the navigation

highlight against the message area might be sound, the

result is an irregular shape that doesn’t correspond with

anything in reality. You may never consciously notice it,

but once you do it’s hard to miss. One other example

courtesy of last.fm:

170 24 ways 2007 edition

http://last.fm/

The two header areas are the same shade of pink so they

appear to be closely connected. When reduced to their

outlines it’s easy to see that this combination is off-

balance: the edges don’t align, the sharp corners of the

top shape aren’t consistent with the rounded corners of

the bottom, and the part jutting out on the right of the

bottom one seems fairly random. The result is a duo of

oddly mis-matched shapes.

DESIGN STRATEGIES

Our minds tend to pick out familiar patterns. A clever

designer can exploit this by creating references in his or

her work to shapes and combinations with which viewers

are already familiar. There are a few simple ideas that can

be employed to help you achieve this: consistency,

balance, and completion.

Consistency

A fairly simple way to unify the various disparate shapes

on a page is by designing them with a certain amount of

internal consistency. You don’t need to apply an identical

size, colour, border, or corner treatment to every single

shape; devolving a design into boring repetition isn’t what

we’re after here. But it certainly doesn’t hurt to apply a

set of common rules to most shapes within your work.

Get In Shape

24 ways 2007 edition 171

Consider purevolume and its multiple rounded-corner

panels. From the bottom of the site’s main navigation to

the grey “Extras” panels halfway down the page (shown

above), multiple shapes use a common border radius for

unity. Different colours, different sizes, different content,

but the consistent outlines create a strong sense of

similarity. Not that every shape on the site follows this

rule; they break the pattern right at the top with a darker

sharp-cornered header, and again with the thumbnails

below. But the design remains unified, nonetheless.

Balance

Arguably the biggest problem with the last.fm example

earlier is one of balance. The area poking out of the

bottom shape created a fairly obvious imbalance for no

apparent reason. The right hand side is visually

emphasized due to the greater area of pink coverage, but

with the white gap left beside it, the emphasis seems

unwarranted. It’s possible to create tension in your design

172 24 ways 2007 edition

http://purevolume.com

by mismatching shapes and throwing off the balance, but

when that happens unintentionally it can look like a

mistake.

Above are a few examples of design elements in balanced

and unbalanced configurations. The examples in the top

row are undeniably more pleasing to the eye than those in

the bottom row. If these were fleshed out into full designs,

those derived from the templates in the top row would

naturally result in stronger work.

Take a look at the header on 9Rules for a study in well-

considered balance. On the left you’ll see a couple of

paragraphs of text, on the right you have floating

navigational items, and both flank the site’s logo. This

unusual layout combines multiple design elements that

look nothing alike, and places them together in a way that

anchors each so that no one weighs down the header.

Get In Shape

24 ways 2007 edition 173

http://9rules.com/

Completion

And finally we come to the idea of completion. Shapes

don’t necessarily need hard outlines to be read visually as

shapes, which can be exploited for various purposes.

Notice how Zend’s mid-page “Business Topics” and

“News” items (below) fade out to the right and bottom,

but the placement of two of these side-by-side creates an

impression of two panels rather than three disparate

floating columns. By allowing the viewer’s eye to

complete the shapes, they’ve lightened up the design of

the page and removed inessential lines. In a busy design

this technique could prove quite handy.

Along the same lines, the individual shapes within your

design may also be combined visually to form outlines of

larger shapes. The differently-coloured header and main

content/sidebar shapes on Veerle’s blog come together to

form a single central panel, further emphasized by the

slight drop shadow to the right.

IMPLEMENTATION

Studying how shape can be used effectively in design is

simply a starting point. As with all things design-related,

there are no hard and fast rules here; ultimately you may

174 24 ways 2007 edition

http://www.zend.com/en/
http://veerle.duoh.com/

choose to bring these principles into your work more

often, or break them for effect. But understanding how

shapes interact within a page, and how that effect is

ultimately perceived by viewers, is a key design principle

you can use to impress your friends.

ABOUT THE AUTHOR

Dave Shea is the Founder of Bright Creative, and co-organizer

of Web Directions North. He blogs sometimes at Mezzoblue

and Flickrs a bit more often than that. Oh, and there’s other

stuff too.

Get In Shape

24 ways 2007 edition 175

http://brightcreative.com/
http://north.webdirections.org/
http://www.mezzoblue.com/
http://flickr.com/photos/mezzoblue/
http://brightcreative.com/about/

Richard Rutter 24ways.org/200717

17. Increase Your Font
Stacks With Font Matrix

Web pages built in plain old HTML and CSS
are displayed using only the fonts installed
on users’ computers (@font-face
implementations excepted). To enable this,
CSS provides the font-family property for
specifying fonts in order of preference
(often known as a font stack). For example:

h1 {font-family: 'Egyptienne F', Cambria, Georgia,

serif}

So in the above rule, headings will be displayed in

Egyptienne F. If Egyptienne F is not available then

Cambria will be used, failing that Georgia or the final

fallback default serif font. This everyday bit of CSS will be

common knowledge among all 24 ways readers.

It is also a commonly held belief that the only fonts we can

rely on being installed on users’ computers are the core

web fonts of Arial, Times New Roman, Verdana, Georgia

and friends. But is that really true?

176 24 ways 2007 edition

http://24ways.org/200717
http://www.w3.org/TR/CSS21/fonts.html#propdef-font-family
http://www.safalra.com/web-design/typography/web-safe-fonts-myth/
http://icanhaz.com/EgyptienneF
http://en.wikipedia.org/wiki/Core_fonts_for_the_Web
http://en.wikipedia.org/wiki/Core_fonts_for_the_Web

If you look in the fonts folder of your computer, or even

your Mum’s computer, then you are likely to find a whole

load of fonts besides the core ones. This is because many

software packages automatically install extra typefaces.

For example, Office 2003 installs over 100 additional

fonts. Admittedly not all of these fonts are particularly

refined, and not all are suitable for the Web. However

they still do increase your options.

THE MATRIX

I have put together a matrix of (western) fonts showing

which are installed with Mac and Windows operating

systems, which are installed with various versions of

Microsoft Office, and which are installed with Adobe

Creative Suite.

Increase Your Font Stacks With Font Matrix

24 ways 2007 edition 177

http://media.24ways.org/2007/17/fontmatrix.html
http://media.24ways.org/2007/17/fontmatrix.html

The matrix is available for download as an Excel file and as

a CSV. There are no readily available statistics regarding

the penetration of Office or Creative Suite, but you can

probably take an educated guess based on your

knowledge of your readers.

The idea of the matrix is that use can use it to help

construct your font stack. First of all pick the font you’d

really like for your text – this doesn’t have to be in the

matrix. Then pick the generic family (serif, sans-serif,

cursive, fantasy or monospace) and a font from each of

the operating systems. Then pick any suitable fonts from

the Office and Creative Suite lists.

For example, you may decide your headings should be in

the increasingly ubiquitous Clarendon. This is a serif type

face. At OS-level the most similar is arguably Georgia.

Adobe CS2 comes with Century Old Style which has a

similar feel. Century Schoolbook is similar too, and is

installed with all versions of Office. Based on this your

font stack becomes:

font-family: 'Clarendon Std', 'Century Old Style

Std', 'Century Schoolbook', Georgia, serif

178 24 ways 2007 edition

http://media.24ways.org/2007/17/fontmatrix.xls
http://media.24ways.org/2007/17/fontmatrix.csv

Note the ‘Std’ suffix indicating a ‘standard’ OpenType file,

which will normally be your best bet for more esoteric

fonts.

I’m not suggesting the process of choosing suitable fonts

is an easy one. Firstly there are nearly two hundred fonts

in the matrix, so learning what each font looks like is

tricky and potentially time consuming (if you haven’t got

all the fonts installed on a machine to hand you’ll be doing

a lot of Googling for previews). And it’s not just as simple

as choosing fonts that look similar or have related

typographic backgrounds, they need to have similar

metrics as well, This is especially true in terms of x-height

which gives an indication of how big or small a font looks.

Increase Your Font Stacks With Font Matrix

24 ways 2007 edition 179

http://www.apaddedcell.com/web-fonts
http://www.papress.com/thinkingwithtype/letter/xheights.htm

OVER TO YOU

The main point of all this is that there are potentially more

fonts to consider than is generally accepted, so branch out

a little (carefully and tastefully) and bring a little variety to

sites out there. If you come up with any novel font stacks

based on this approach, please do blog them (tagged as

per the footer) and at some point they could all be

combined in one place for everyone to consider.

APPENDIX

What about Linux?

The only operating systems in the matrix are those from

Microsoft and Apple. For completeness, Linux operating

systems should be included too, although these are many

and varied and very much in a minority, so I omitted them

for time being. For the record, some Linux distributions

come packaged with Microsoft’s core fonts. Others use

the Vera family, and others use the Liberation family

which comprises fonts metrically identical to Times New

Roman and Arial.

Sources

The sources of font information for the matrix are as

follows:

▪ Windows XP SP2

180 24 ways 2007 edition

http://www.microsoft.com/typography/fonts/product.aspx?PID=145

▪ Windows Vista

▪ Office 2003

▪ Office 2007

▪ Mac OSX Tiger

▪ Mac OSX Leopard (scroll down two thirds)

▪ Office 2004 (Mac) by inspecting my Microsoft Office

2004/Office/Fonts folder

▪ Office 2008 (Mac) is expected to be as Office 2004 with

the addition of the Vista ClearType fonts

▪ Creative Suite 2 (see pdf link in first comment)

▪ Creative Suite 3

ABOUT THE AUTHOR

Increase Your Font Stacks With Font Matrix

24 ways 2007 edition 181

http://blogs.msdn.com/michkap/archive/2007/02/06/1607855.aspx
http://office.microsoft.com/en-us/help/HA011872311033.aspx
http://support.microsoft.com/kb/924623
http://docs.info.apple.com/article.html?artnum=301332
http://discussions.apple.com/thread.jspa?messageID=5875101
http://www.microsoft.com/typography/ClearTypeFonts.mspxw
http://www.adobeforums.com/webx/.3bba03f2
http://blogs.adobe.com/typblography/CS3fonts.html

Richard Rutter is a user experience consultant and director of

Clearleft. In 2009 he cofounded the webfont service, Fontdeck.

He runs an ongoing project called The Elements of Typographic

Style Applied to the Web, where he extols the virtues of good

web typography. Richard occasionally blogs at Clagnut, where

he writes about design, accessibility and web standards issues,

as well as his passion for music and mountain biking.

182 24 ways 2007 edition

http://clearleft.com/
http://fontdeck.com/
http://webtypography.net/
http://webtypography.net/
http://clagnut.com/

Christian Heilmann 24ways.org/200718

18. Keeping JavaScript
Dependencies At Bay

As we are writing more and more complex
JavaScript applications we run into issues
that have hitherto (god I love that word) not
been an issue. The first decision we have to
make is what to do when planning our app:
one big massive JS file or a lot of smaller,
specialised files separated by task.

Personally, I tend to favour the latter, mainly because it

allows you to work on components in parallel with other

developers without lots of clashes in your version control.

It also means that your application will be more

lightweight as you only include components on demand.

STARTING WITH A GLOBAL OBJECT

This is why it is a good plan to start your app with one

single object that also becomes the namespace for the

whole application, say for example myAwesomeApp:

Keeping JavaScript Dependencies At Bay

24 ways 2007 edition 183

http://24ways.org/200718

var myAwesomeApp = {};

You can nest any necessary components into this one and

also make sure that you check for dependencies like DOM

support right up front.

ADDING THE COMPONENTS

The other thing to add to this main object is a components

object, which defines all the components that are there

and their file names.

var myAwesomeApp = {

components :{

formcheck:{

url:'formcheck.js',

loaded:false

},

dynamicnav:{

url:'dynamicnav.js',

loaded:false

},

gallery:{

url:'gallery.js',

loaded:false

},

lightbox:{

url:'lightbox.js',

loaded:false

}

}

};

184 24 ways 2007 edition

Technically you can also omit the loaded properties, but it

is cleaner this way. The next thing to add is an

addComponent function that can load your components on

demand by adding new SCRIPT elements to the head of

the documents when they are needed.

var myAwesomeApp = {

components :{

formcheck:{

url:'formcheck.js',

loaded:false

},

dynamicnav:{

url:'dynamicnav.js',

loaded:false

},

gallery:{

url:'gallery.js',

loaded:false

},

lightbox:{

url:'lightbox.js',

loaded:false

}

},

addComponent:function(component){

var c = this.components[component];

if(c && c.loaded === false){

var s = document.createElement('script');

s.setAttribute('type', 'text/javascript');

s.setAttribute('src',c.url);

document.getElementsByTagName('head')[0].appendChild(s);

Keeping JavaScript Dependencies At Bay

24 ways 2007 edition 185

}

}

};

This allows you to add new components on the fly when

they are not defined:

if(!myAwesomeApp.components.gallery.loaded){

myAwesomeApp.addComponent('gallery');

};

VERIFYING THAT COMPONENTS HAVE BEEN
LOADED

However, this is not safe as the file might not be available.

To make the dynamic adding of components safer each of

the components should have a callback at the end of them

that notifies the main object that they indeed have been

loaded:

var myAwesomeApp = {

components :{

formcheck:{

url:'formcheck.js',

loaded:false

},

dynamicnav:{

url:'dynamicnav.js',

loaded:false

},

gallery:{

url:'gallery.js',

loaded:false

186 24 ways 2007 edition

},

lightbox:{

url:'lightbox.js',

loaded:false

}

},

addComponent:function(component){

var c = this.components[component];

if(c && c.loaded === false){

var s = document.createElement('script');

s.setAttribute('type', 'text/javascript');

s.setAttribute('src',c.url);

document.getElementsByTagName('head')[0].appendChild(s);

}

},

componentAvailable:function(component){

this.components[component].loaded = true;

}

}

For example the gallery.js file should call this

notification as a last line:

myAwesomeApp.gallery = function(){

// [... other code ...]

}();

myAwesomeApp.componentAvailable('gallery');

Keeping JavaScript Dependencies At Bay

24 ways 2007 edition 187

TELLING THE IMPLEMENTERS WHEN
COMPONENTS ARE AVAILABLE

The last thing to add (actually as a courtesy measure for

debugging and implementers) is to offer a listener

function that gets notified when the component has been

loaded:

var myAwesomeApp = {

components :{

formcheck:{

url:'formcheck.js',

loaded:false

},

dynamicnav:{

url:'dynamicnav.js',

loaded:false

},

gallery:{

url:'gallery.js',

loaded:false

},

lightbox:{

url:'lightbox.js',

loaded:false

}

},

addComponent:function(component){

var c = this.components[component];

if(c && c.loaded === false){

var s = document.createElement('script');

s.setAttribute('type', 'text/javascript');

s.setAttribute('src',c.url);

188 24 ways 2007 edition

document.getElementsByTagName('head')[0].appendChild(s);

}

},

componentAvailable:function(component){

this.components[component].loaded = true;

if(this.listener){

this.listener(component);

};

}

};

This allows you to write a main listener function that acts

when certain components have been loaded, for example:

myAwesomeApp.listener = function(component){

if(component === 'gallery'){

showGallery();

}

};

EXTENDING WITH OTHER COMPONENTS

As the main object is public, other developers can extend

the components object with own components and use the

listener function to load dependent components. Say you

have a bespoke component with data and labels in extra

files:

myAwesomeApp.listener = function(component){

if(component === 'bespokecomponent'){

myAwesomeApp.addComponent('bespokelabels');

};

Keeping JavaScript Dependencies At Bay

24 ways 2007 edition 189

if(component === 'bespokelabels'){

myAwesomeApp.addComponent('bespokedata');

};

if(component === 'bespokedata'){

myAwesomeApp,bespokecomponent.init();

};

};

myAwesomeApp.components.bespokecomponent = {

url:'bespoke.js',

loaded:false

};

myAwesomeApp.components.bespokelabels = {

url:'bespokelabels.js',

loaded:false

};

myAwesomeApp.components.bespokedata = {

url:'bespokedata.js',

loaded:false

};

myAwesomeApp.addComponent('bespokecomponent');

Following this practice you can write pretty complex apps

and still have full control over what is available when. You

can also extend this to allow for CSS files to be added on

demand.

INFLUENCES

If you like this idea and wondered if someone already uses

it, take a look at the Yahoo! User Interface library, and

especially at the YAHOO_config option of the global

YAHOO.js object.

190 24 ways 2007 edition

http://developer.yahoo.com/yui
http://developer.yahoo.com/yui/yahoo/
http://developer.yahoo.com/yui/yahoo/

ABOUT THE AUTHOR

Christian Heilmann grew up in Germany and, after a year

working for the red cross, spent a year as a radio producer.

From 1997 onwards he worked for several agencies in Munich

as a web developer. In 2000 he moved to the States to work for

Etoys and, after the .com crash, he moved to the UK where he

lead the web development department at Agilisys. In April 2006

he joined Yahoo! UK as a web developer and moved on to be the

Lead Developer Evangelist for the Yahoo Developer Network.

In December 2010 he moved on to Mozilla as Principal

Developer Evangelist for HTML5 and the Open Web. He

Keeping JavaScript Dependencies At Bay

24 ways 2007 edition 191

http://www.webkrauts.de/2007/12/18/grosse-javascript-applikationen-leicht-gemacht/
http://uk.yahoo.com/

publishes an almost daily blog at http://wait-till-i.com and runs

an article repository at http://icant.co.uk. He also authored

Beginning JavaScript with DOM Scripting and Ajax: From

Novice to Professional.

192 24 ways 2007 edition

http://wait-till-i.com
http://icant.co.uk
http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FBeginning-JavaScript-DOM-Scripting-Ajax%2Fdp%2F1590596803%2F&tag=24ways-20&linkCode=ur2&camp=1789&creative=9325
http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FBeginning-JavaScript-DOM-Scripting-Ajax%2Fdp%2F1590596803%2F&tag=24ways-20&linkCode=ur2&camp=1789&creative=9325

Jonathan Snook 24ways.org/200719

19. Christmas Is In The
AIR

That’s right, Christmas is coming up fast
and there’s plenty of things to do. Get the
tree and lights up, get the turkey, buy
presents and who know what else. And what
about Santa? He’s got a list. I’m pretty sure
he’s checking it twice.

Sure, we could use an existing list making web site or even

a desktop widget. But we’re geeks! What’s the fun in that?

Let’s build our own to-do list application and do it with

Adobe AIR!

WHAT’S ADOBE AIR?

Adobe AIR, formerly codenamed Apollo, is a runtime

environment that runs on both Windows and OSX (with

Linux support to follow). This runtime environment lets

you build desktop applications using Adobe technologies

like Flash and Flex. Oh, and HTML. That’s right, you web

Christmas Is In The AIR

24 ways 2007 edition 193

http://24ways.org/200719
http://labs.adobe.com/technologies/air/

standards lovin’ maniac. You can build desktop

applications that can run cross-platform using the trio of

technologies, HTML, CSS and JavaScript.

If you’ve tried developing with AIR before, you’ll need to

get re-familiarized with the latest beta release as many

things have changed since the last one (such as the API

and restrictions within the sandbox.)

TO GET STARTED

To get started in building an AIR application, you’ll need

two basic things:

1. The AIR runtime. The runtime is needed to run any

AIR-based application.

2. The SDK. The software development kit gives you all

the pieces to test your application. Unzip the SDK into any

folder you wish.

You’ll also want to get your hands on the JavaScript API

documentation which you’ll no doubt find yourself getting

into before too long. (You can download it, too.)

Also of interest, some development environments have

support for AIR built right in. Aptana doesn’t have support

for beta 3 yet but I suspect it’ll be available shortly.

194 24 ways 2007 edition

http://labs.adobe.com/downloads/air.html
http://labs.adobe.com/downloads/airsdk.html
http://livedocs.adobe.com/labs/air/1/jslr/index.html
http://livedocs.adobe.com/labs/air/1/jslr/index.html
http://download.macromedia.com/pub/labs/air/air_b3_docs_html_121207.zip
http://www.aptana.com/air/

Within the SDK, there are two main tools that we’ll use:

one to test the application (ADL) and another to build a

distributable package of our application (ADT). I’ll get into

this some more when we get to that stage of

development.

BUILDING OUR TO-DO LIST APPLICATION

The first step to building an application within AIR is to

create an XML file that defines our default application

settings. I call mine application.xml, mostly because

Aptana does that by default when creating a new AIR

project. It makes sense though and I’ve stuck with it.

Included in the templates folder of the SDK is an example

XML file that you can use.

The first key part to this after specifying things like the

application ID, version, and filename, is to specify what

the default content should be within the content tags.

Enter in the name of the HTML file you wish to load.

Within this HTML file will be our application.

<content>ui.html</content>

Create a new HTML document and name it ui.html and

place it in the same directory as the application.xml file.

The first thing you’ll want to do is copy over the

AIRAliases.js file from the frameworks folder of the

SDK and add a link to it within your HTML document.

Christmas Is In The AIR

24 ways 2007 edition 195

<script type="text/javascript"

src="AIRAliases.js"></script>

The aliases create shorthand links to all of the Flash-

based APIs.

Now is probably a good time to explain how to debug your

application.

Debugging our application

So, with our XML file created and HTML file started, let’s

try testing our ‘application’. We’ll need the ADL

application located in BIN folder of the SDK and tell it to

run the application.xml file.

/path/to/adl /path/to/application.xml

You can also just drag the XML file onto ADL and it’ll

accomplish the same thing. If you just did that and noticed

that your blank application didn’t load, you’d be correct.

It’s running but isn’t visible. Which at this point means

you’ll have to shut down the ADL process. Sorry about

that!

Changing the visibility

You have two ways to make your application visible. You

can do it automatically by setting the placing true in the

visible tag within the application.xml file.

196 24 ways 2007 edition

<visible>true</visible>

The other way is to do it programmatically from within

your application. You’d want to do it this way if you had

other startup tasks to perform before showing the

interface. To turn the UI on programmatically, simple set

the visible property of nativeWindow to true.

<script type="text/javascript">

nativeWindow.visible = true;

</script>

Sandbox Security

Now that we have an application that we can see when we

start it, it’s time to build the to-do list application. In doing

so, you’d probably think that using a JavaScript library is a

really good idea — and it can be but there are some

limitations within AIR that have to be considered.

An HTML document, by default, runs within the

application sandbox. You have full access to the AIR APIs

but once the onload event of the window has fired, you’ll

have a limited ability to make use of eval and other

dynamic script injection approaches. This limits the ability

of external sources from gaining access to everything the

AIR API offers, such as database and local file system

access. You’ll still be able to make use of eval for

evaluating JSON responses, which is probably the most

important if you wish to consume JSON-based services.

Christmas Is In The AIR

24 ways 2007 edition 197

If you wish to create a greater wall of security between

AIR and your HTML document loading in external

resources, you can create a child sandbox. We won’t need

to worry about it for our application so I won’t go any

further into it but definitely keep this in mind.

Finally, our application

Getting tired of all this preamble? Let’s actually build our

to-do list application. I’ll use jQuery because it’s small and

should suit our needs nicely. Let’s begin with some

structure:

<body>

<input type="text" id="text" value="">

<input type="button" id="add" value="Add">

<ul id="list">

</body>

Now we need to wire up that button to actually add a new

item to our to-do list.

<script type="text/javascript">

$(document).ready(function(){

// make sure the application is visible

nativeWindow.visible = true;

$('#add').click(function(){

var t = $('#text').val();

if(t)

{

// use DOM methods to create the new list item

var li = document.createElement('li');

198 24 ways 2007 edition

http://livedocs.adobe.com/labs/air/1/devappshtml/help.html?content=QuckStart_Sandbox_Bridge_HTML_1.html

// the extra space at the end creates a buffer

between the text

// and the delete link we're about to add

li.appendChild(document.createTextNode(t + ' '));

// create the delete link

var del = document.createElement('a');

// this makes it a true link. I feel dirty doing

this.

del.setAttribute('href', '#');

del.addEventListener('click', function(evt){

this.parentNode.parentNode.removeChild(this.parentNode);

});

del.appendChild(document.createTextNode('[del]'));

li.appendChild(del);

// append everything to the list

$('#list').append(li);

//reset the text box

$('#text').val('');

}

})

});

</script>

And just like that, we’ve got a to-do list! That’s it! Just

never close your application and you’ll remember

everything. Okay, that’s not very practical. You need to

have some way of storing your to-do items until the next

time you open up the application.

Christmas Is In The AIR

24 ways 2007 edition 199

STORING DATA

You’ve essentially got 4 different ways that you can store

data:

▪ Using the local database. AIR comes with SQLLite built

in. That means you can create tables and insert, update

and select data from that database just like on a web

server.

▪ Using the file system. You can also create files on the

local machine. You have access to a few folders on the

local system such as the documents folder and the

desktop.

▪ Using EcryptedLocalStore. I like using the

EcryptedLocalStore because it allows you to easily save

key/value pairs and have that information encrypted. All

this within just a couple lines of code.

▪ Sending the data to a remote API. Our to-do list could

sync up with Remember the Milk, for example.

To demonstrate some persistence, we’ll use the file

system to store our files. In addition, we’ll let the user

specify where the file should be saved. This way, we can

create multiple to-do lists, keeping them separate and

organized.

The application is now broken down into 4 basic tasks:

1. Load data from the file system.

2. Perform any interface bindings.

200 24 ways 2007 edition

http://www.rememberthemilk.com/services/api/

3. Manage creating and deleting items from the list.

4. Save any changes to the list back to the file system.

Loading in data from the file system

When the application starts up, we’ll prompt the user to

select a file or specify a new to-do list. Within AIR, there

are 3 main file objects: File, FileMode, and FileStream.

File handles file and path names, FileMode is used as a

parameter for the FileStream to specify whether the file

should be read-only or for write access. The FileStream

object handles all the read/write activity.

The File object has a number of shortcuts to default

paths like the documents folder, the desktop, or even the

application store. In this case, we’ll specify the documents

folder as the default location and then use the

browseForSave method to prompt the user to specify a

new or existing file. If the user specifies an existing file,

they’ll be asked whether they want to overwrite it.

var store = air.File.documentsDirectory;

var fileStream = new air.FileStream();

store.browseForSave("Choose To-do List");

Then we add an event listener for when the user has

selected a file. When the file is selected, we check to see if

the file exists and if it does, read in the contents, splitting

the file on new lines and creating our list items within the

interface.

Christmas Is In The AIR

24 ways 2007 edition 201

store.addEventListener(air.Event.SELECT, fileSelected);

function fileSelected()

{

air.trace(store.nativePath);

// load in any stored data

var byteData = new air.ByteArray();

if(store.exists)

{

fileStream.open(store, air.FileMode.READ);

fileStream.readBytes(byteData, 0, store.size);

fileStream.close();

if(byteData.length > 0) { var s =

byteData.readUTFBytes(byteData.length); oldlist =

s.split(“\r\n”);

// create todolist items for(var i=0; i < oldlist.length; i++) {

createItem(oldlist[i], (new Date()).getTime() + i); } } }

}

Perform Interface Bindings

This is similar to before where we set the click event on

the Add button but we’ve moved the code to save the list

into a separate function.

$('#add').click(function(){

var t = $('#text').val();

if(t){

// create an ID using the time

createItem(t, (new Date()).getTime());

}

})

202 24 ways 2007 edition

Manage creating and deleting items from the list

The list management is now in its own function, similar to

before but with some extra information to identify list

items and with calls to save our list after each change.

function createItem(t, id)

{

if(t.length == 0) return;

// add it to the todo list

todolist[id] = t;

// use DOM methods to create the new list item

var li = document.createElement('li');

// the extra space at the end creates a buffer between

the text

// and the delete link we're about to add

li.appendChild(document.createTextNode(t + ' '));

// create the delete link

var del = document.createElement('a');

// this makes it a true link. I feel dirty doing this.

del.setAttribute('href', '#');

del.addEventListener('click', function(evt){

var id = this.id.substr(1);

delete todolist[id]; // remove the item from the list

this.parentNode.parentNode.removeChild(this.parentNode);

saveList();

});

del.appendChild(document.createTextNode('[del]'));

del.id = 'd' + id;

li.appendChild(del);

// append everything to the list

$('#list').append(li);

//reset the text box

Christmas Is In The AIR

24 ways 2007 edition 203

$('#text').val('');

saveList();

}

Save changes to the file system

Any time a change is made to the list, we update the file.

The file will always reflect the current state of the list and

we’ll never have to click a save button. It just iterates

through the list, adding a new line to each one.

function saveList(){

if(store.isDirectory) return;

var packet = '';

for(var i in todolist)

{

packet += todolist[i] + '\r\n';

}

var bytes = new air.ByteArray();

bytes.writeUTFBytes(packet);

fileStream.open(store, air.FileMode.WRITE);

fileStream.writeBytes(bytes, 0, bytes.length);

fileStream.close();

}

One important thing to mention here is that we check if

the store is a directory first. The reason we do this goes

back to our browseForSave call. If the user cancels the

dialog without selecting a file first, then the store points

to the documentsDirectory that we set it to initially. Since

we haven’t specified a file, there’s no place to save the list.

204 24 ways 2007 edition

Hopefully by this point, you’ve been thinking of some cool

ways to pimp out your list. Now we need to package this

up so that we can let other people use it, too.

CREATING A PACKAGE

Now that we’ve created our application, we need to

package it up so that we can distribute it. This is a two

step process. The first step is to create a code signing

certificate (or you can pay for one from Thawte which will

help authenticate you as an AIR application developer).

To create a self-signed certificate, run the following

command. This will create a PFX file that you’ll use to sign

your application.

adt -certificate -cn todo24ways 1024-RSA todo24ways.pfx

mypassword

After you’ve done that, you’ll need to create the package

with the certificate

adt -package -storetype pkcs12 -keystore todo24ways.pfx

todo24ways.air application.xml .

The important part to mention here is the period at the

end of the command. We’re telling it to package up all files

in the current directory.

After that, just run the AIR file, which will install your

application and run it.

Christmas Is In The AIR

24 ways 2007 edition 205

https://www.thawte.com/process/retail/new_devel

IMPORTANT THINGS TO REMEMBER ABOUT
AIR

When developing an HTML application, the rendering

engine is Webkit. You’ll thank your lucky stars that you

aren’t struggling with cross-browser issues. (My personal

favourites are multiple backgrounds and border radius!)

Be mindful of memory leaks. Things like Ajax calls and

event binding can cause applications to slowly leak

memory over time. Web pages are normally short lived

but desktop applications are often open for hours, if not

days, and you may find your little desktop application

taking up more memory than anything else on your

machine!

The WebKit runtime itself can also be a memory hog,

usually taking about 15MB just for itself. If you create

multiple HTML windows, it’ll add another 15MB to your

memory footprint. Our little to-do list application

shouldn’t be much of a concern, though.

The other important thing to remember is that you’re still

essentially running within a Flash environment. While you

probably won’t notice this working in small applications,

the moment you need to move to multiple windows or

need to accomplish stuff beyond what HTML and

JavaScript can give you, the need to understand some of

the Flash-based elements will become more important.

206 24 ways 2007 edition

Lastly, the other thing to remember is that HTML links

will load within the AIR application. If you want a link to

open in the users web browser, you’ll need to capture that

event and handle it on your own. The following code takes

the HREF from a clicked link and opens it in the default web

browser.

air.navigateToURL(new air.URLRequest(this.href));

ONLY THE BEGINNING

Of course, this is only the beginning of what you can do

with Adobe AIR. You don’t have the same level of control

as building a native desktop application, such as being

able to launch other applications, but you do have more

control than what you could have within a web

application. Check out the Adobe AIR Developer Center

for HTML and Ajax for tutorials and other resources.

Now, go forth and create your desktop applications and

hopefully you finish all your shopping before Christmas!

Download the example files.

Christmas Is In The AIR

24 ways 2007 edition 207

http://www.adobe.com/devnet/air/ajax/
http://www.adobe.com/devnet/air/ajax/
http://media.24ways.org/2007/19/IntroductionToAIR.zip

ABOUT THE AUTHOR

Jonathan Snook writes about tips, tricks, and bookmarks on his

blog at Snook.ca. He has also written for A List Apart and .net

magazine, and has co-authored two books, The Art and Science

of CSS and Accelerated DOM Scripting. He has also authored

and received world-wide acclaim for the self-published book,

Scalable and Modular Architecture for CSS sharing his

experience and best practices on CSS architecture.

Photo: Patrick H. Lauke

208 24 ways 2007 edition

http://snook.ca/
http://snook.ca/archives/writing/art_science_of_css
http://snook.ca/archives/writing/art_science_of_css
http://snook.ca/archives/javascript/accelerated_dom_scripting/
http://smacss.com
http://splintered.co.uk

Eric Meyer 24ways.org/200720

20. Diagnostic Styling

We’re all used to using CSS to make our
designs live and breathe, but there’s
another way to use CSS: to find out where
our markup might be choking on missing
accessibility features, targetless links, and
just plain missing content.

Note: the techniques discussed here mostly work in

Firefox, Safari, and Opera, but not Internet Explorer. I’ll

explain why that’s not really a problem near the end of the

article — and no, the reason is not “everyone should just

ignore IE anyway”.

BASIC DIAGNOSTICS

To pick a simple example, suppose you want to call out all

holdover font and center elements in a site. Simple: you

just add the following to your styles.

font, center {outline: 5px solid red;}

Diagnostic Styling

24 ways 2007 edition 209

http://24ways.org/200720

You could take it further and add in a nice lime

background or some such, but big thick red outlines

should suffice. Now you’ll be able to see the offenders

wherever as you move through the site. (Of course, if you

do this on your public server, everyone else will see the

outlines too. So this is probably best done on a

development server or local copy of the site.)

Not everyone may be familiar with outlines, which were

introduced in CSS2, so a word on those before we move

on. Outlines are much like borders, except outlines don’t

affect layout. Eh? Here’s a comparison.

On the left, you have a border. On the right, an outline.

The border takes up layout space, pushing other content

around and generally being a nuisance. The outline, on the

other hand, just draws into quietly into place. In most

current browsers, it will overdraw any content already

onscreen, and will be overdrawn by any content placed

later — which is why it overlaps the images above it, and is

overlapped by those below it.

Okay, so we can outline deprecated elements like font

and center. Is that all? Oh no.

210 24 ways 2007 edition

http://www.w3.org/TR/CSS21/ui.html#dynamic-outlines

ATTRIBUTION

Let’s suppose you also want to find any instances of inline

style — that is, use of the style attribute on elements in

the markup. This is generally discouraged (outside of

HTML e-mails, which I’m not going to get anywhere near),

as it’s just another side of the same coin of using font:

baking the presentation into the document structure

instead of putting it somewhere more manageable. So:

*[style], font, center {outline: 5px solid red;}

Adding that attribute selector to the rule’s grouped

selector means that we’ll now be outlining any element

with a style attribute.

There’s a lot more that attribute selectors will let use

diagnose. For example, we can highlight any images that

have empty alt or title text.

img[alt=""] {border: 3px dotted red;}

img[title=""] {outline: 3px dotted fuchsia;}

Now, you may wonder why one of these rules calls for a

border, and the other for an outline. That’s because I want

them to “add together” — that is, if I have an image which

possesses both alt and title, and the values of both are

empty, then I want it to be doubly marked.

Diagnostic Styling

24 ways 2007 edition 211

http://www.w3.org/TR/CSS21/selector.html#attribute-selectors

See how the middle image there has both red and fuchsia

dots running around it? (And am I the only one who sorely

misses the actual circular dots drawn by IE5/Mac?) That’s

due to its markup, which we can see here in a fragment

showing the whole table row.

<tr>

<th scope="row">empty title</th>

<td></td>

<td></td>

<td></td>

</tr>

Right, that’s all well and good, but it misses a rather more

serious situation: the selector img[alt=""] won’t match

an img element that doesn’t even have an alt attribute.

How to tackle this problem?

NOT A PROBLEM

Well, if you want to select something based on a negative,

you need a negative selector.

img:not([alt]) {border: 5px solid red;}

212 24 ways 2007 edition

This is really quite a break from the rest of CSS selection,

which is all positive: “select anything that has these

characteristics”. With :not(), we have the ability to say (in

supporting browsers) “select anything that hasn’t these

characteristics”. In the above example, only img elements

that do not have an alt attribute will be selected. So we

expand our list of image-related rules to read:

img[alt=""] {border: 3px dotted red;}

img[title=""] {outline: 3px dotted fuchsia;}

img:not([alt]) {border: 5px solid red;}

img:not([title]) {outline: 5px solid fuchsia;}

With the following results:

We could expand this general idea to pick up tables who

lack a summary, or have an empty summary attribute.

table[summary=""] {outline: 3px dotted red;}

table:not([summary]) {outline: 5px solid red;}

Diagnostic Styling

24 ways 2007 edition 213

When it comes to selecting header cells that lack the

proper scope, however, we have a trickier situation.

Finding headers with no scope attribute is easy enough,

but what about those that have a scope attribute with an

incorrect value?

In this case, we actually need to pull an on-off maneuver.

This has us setting all th elements to have a highlight style,

and then turn it off for the elements that meet our

criteria.

th {border: 2px solid red;}

th[scope="col"], th[scope="row"] {border: none;}

This was necessary because of the way CSS selectors

work. For example, consider this:

th:not([scope="col"]), th:not([scope="row"]) {border:

2px solid red;}

That would select…all thth elements, regardless of their

attrributes. That’s because every th element doesn’t have

a scope of col, doesn’t have a scope of row, or doesn’t have

either. There’s no escaping this selector o’ doom!

This limitation arises because :not() is limited to

containing a single “thing” within its parentheses. You

can’t, for example, say “select all elements except those

that are images which descend from list items”.

Reportedly, this limitation was imposed to make browser

implementation of :not() easier.

214 24 ways 2007 edition

Still, we can make good use of :not() in the service of

further diagnosing. Calling out links in trouble is a breeze:

a[href]:not([title]) {border: 5px solid red;}

a[title=""] {outline: 3px dotted red;}

a[href="#"] {background: lime;}

a[href=""] {background: fuchsia;}

Here we have a set that will call our attention to links

missing title information, as well as links that have no

valid target, whether through a missing URL or a

JavaScript-driven page where there are no link fallbacks

in the case of missing or disabled JavaScript (href="#").

AND WHAT ABOUT IE?

As I said at the beginning, much of what I covered here

doesn’t work in Internet Explorer, most particularly

:not() and outline. (Oh, so basically everything? -Ed.)

Diagnostic Styling

24 ways 2007 edition 215

I can’t do much about the latter. For the former, however,

it’s possible to hack your way around the problem by

doing some layered on-off stuff. For example, for images,

you replace the previously-shown rules with the

following:

img {border: 5px solid red;}

img[alt][title] {border-width: 0;}

img[alt] {border-color: fuchsia;}

img[alt], img[title] {border-style: double;}

img[alt=""][title],

img[alt][title=""] {border-width: 3px;}

img[alt=""][title=""] {border-style: dotted;}

It won’t have exactly the same set of effects, given the

inability to use both borders and outlines, but will still

highlight troublesome images.

216 24 ways 2007 edition

It’s also the case that IE6 and earlier lack support for even

attribute selectors, whereas IE7 added pretty much all

the attribute selector types there are, so the previous

code block won’t have any effect previous to IE7.

In a broader sense, though, these kinds of styles probably

aren’t going to be used in the wild, as it were. Diagnostic

styles are something only you see as you work on a site, so

you can make sure to use a browser that supports outlines

and :not() when you’re diagnosing. The fact that IE users

won’t see these styles is irrelevant since users of any

browser probably won’t be seeing these styles.

Personally, I always develop in Firefox anyway, thanks to

its ability to become a full-featured IDE through the

addition of extensions like Firebug and the Web

Developer Toolbar.

YEAH, ABOUT THAT…

It’s true that much of what I describe in this article is

available in the WDT. I feel there are two advantages to

writing your own set of diagnostic styles.

1. When you write your own styles, you can define

exactly what the visual results will be, and how they will

interact. The WDT doesn’t let you make its outlines

thicker or change their colors.

Diagnostic Styling

24 ways 2007 edition 217

http://www.getfirebug.com/
http://chrispederick.com/work/web-developer/
http://chrispederick.com/work/web-developer/

2. You can combine a bunch of diagnostics into a single

set of rules and add it to your site’s style sheet during the

diagnostic portion, thus ensuring they persist as you surf

around. This can be done in the WDT, but it isn’t as easy

(and, at least for me, not as reliable).

It’s also true that a markup validator will catch many of

the errors I mentioned, such as missing alt and summary

attributes. For some, that’s sufficient. But it won’t catch

everything diagnostic styles can, like empty alt values or

untargeted links, which are perfectly valid, syntactically

speaking.

DIAGNOSIS COMPLETE?

I hope this has been a fun look at the concept of diagnostic

styling as well as a quick introduction into possibly new

concepts like :not() and outlines. This isn’t all there is to

say, of course: there is plenty more that could be added to

a diagnostic style sheet. And everyone’s diagnostics will

be different, tuned to meet each person’s unique

situation.

Mostly, though, I hope this small exploration triggers

some creative thinking about the use of CSS to do more

than just lay out pages and colorize text. Given the

familiarity we acquire with CSS, it only makes sense to use

it wherever it might be useful, and setting up visible

diagnostic flags is just one more place for it to help us.

218 24 ways 2007 edition

ABOUT THE AUTHOR

Eric Meyer has been working with the web since late 1993 and

is an internationally recognized expert on the subjects of

HTML, CSS, and Web standards. A widely read author, he is the

principal consultant for Complex Spiral Consulting, which

counts among its clients America On-Line; Apple Computer,

Inc.; Wells Fargo Bank; and Macromedia. You can find more

detailed information on Eric’s personal Web page at

http://www.meyerweb.com/eric/.

Diagnostic Styling

24 ways 2007 edition 219

http://www.complexspiral.com/
http://www.meyerweb.com/eric/

Brian Fling 24ways.org/200721

21. Mobile 2.0

THINKING 2.0

As web geeks, we have a thick skin towards
jargon. We all know that “Web 2.0” has
been done to death. At Blue Flavor we even
have a jargon bucket to penalize those who
utter such painfully overused jargon with a
cash deposit. But Web 2.0 is a term that has
lodged itself into the conscience of the
masses. This is actually a good thing.

The 2.0 suffix was able to succinctly summarize all that

was wrong with the Web during the dot-com era as well

as the next evolution of an evolving media. While the core

technologies actually stayed basically the same, the

principles, concepts, interactions and contexts were

radically different.

With that in mind, this Christmas I want to introduce to

you the concept of Mobile 2.0. While not exactly a new

concept in the mobile community, it is relatively unknown

in the web community. And since the foundation of

Mobile 2.0 is the web, I figured it was about time for you

to get to know each other.

220 24 ways 2007 edition

http://24ways.org/200721
http://www.readwriteweb.com/archives/understanding_mobile_2.php

IT’S THE CARRIERS’ WORLD. WE JUST LIVE IN IT.

Before getting into Mobile 2.0, I thought first I should

introduce you to its older brother. You know the kind, the

kid with emotional problems that likes to beat up on you

and your friends for absolutely no reason. That is the

mobile of today.

The mobile ecosystem is a very complicated space often

and incorrectly compared to the Web. If the Web was a

freewheeling hippie — believing in freedom of

information and the unity of man through communities —

then Mobile is the cutthroat capitalist — out to pillage and

plunder for the sake of the almighty dollar. Where the

Web is relatively easy to publish to and ultimately make a

buck, Mobile is wrought with layers of complexity, politics

and obstacles.

I can think of no better way to summarize these

challenges than the testimony of Jason Devitt to the

United States Congress in what is now being referred to

as the “iPhone Hearing.” Jason is the co-founder and CEO

of SkyDeck a new wireless startup and former CEO of

Vindigo an early pioneer in mobile content.

As Jason points out, the mobile ecosystem is a closed door

environment controlled by the carriers, forcing the

independent publisher to compete or succumb to the will

of corporate behemoths.

But that is all about to change.

Mobile 2.0

24 ways 2007 edition 221

http://skydeck.com/

INTRODUCING MOBILE 2.0

Mobile 2.0 is term used by the mobile community to

describe the current revolution happening in mobile. It

describes the convergence of mobile and web services,

adding portability, ubiquitous connectivity and location-

aware services to add physical context to information

found on the Web.

It’s an important term that looks toward the future.

Allowing us to imagine the possibilities that mobile

technology has long promised but has yet to deliver. It

imagines a world where developers can publish mobile

content without the current constraints of the mobile

ecosystem.

Like the transition from Web 1.0 to 2.0, it signifies the

shift away from corporate or brand-centered experiences

to user-centered experiences. A focus on richer

interactions, driven by user goals. Moving away from

proprietary technologies to more open and standard

ones, more akin to the Web. And most importantly (from

our perspective as web geeks) a shift away from kludgy

one-off mobile applications toward using the Web as a

platform for content and services.

This means the world of the Web and the world of Mobile

are coming together faster than you can say ARPU

(Average Revenue Per User, a staple mobile term to you

webbies). And this couldn’t come at a better time. The

222 24 ways 2007 edition

importance of understanding and addressing user context

is quickly becoming a crucial consideration to every

interactive experience as the number of ways we access

information on the Web increases.

Mobile enables the power of the Web, the collective

information of millions of people, inherit payment

channels and access to just about every other mass media

to literally be overlaid on top of the physical world, in

context to the person viewing it.

Anyone who can’t imagine how the influence of mobile

technology can’t transform how we perform even the

simplest of daily tasks needs to get away from their

desktop and see the new evolution of information.

THE INSTIGATORS

But what will make Mobile 2.0 move from idillic concept

to a hardened market reality in 2008 will be four key

technologies. Its my guess that you know each them

already.

1. Opera

Opera is like the little train that could. They have been a

driving force on moving the Web as we know it on to

mobile handsets. Opera technology has proven itself to be

Mobile 2.0

24 ways 2007 edition 223

highly adaptable, finding itself preloaded on over 40

million handsets, available on televisions sets through

Nintendo Wii or via the Nintendo DS.

2. WebKit

Many were surprised when Apple chose to use KHTML

instead of Gecko (the guts of Firefox) to power their Safari

rendering engine. But WebKit has quickly evolved to be a

powerful and flexible browser in the mobile context.

WebKit has been in Nokia smartphones for a few years

now, is the technology behind Mobile Safari in the iPhone

and the iPod Touch and is the default web technology in

Google’s open mobile platform effort, Android.

3. The iPhone

The iPhone has finally brought the concepts and

principles of Mobile 2.0 into the forefront of consumers

minds and therefore developers’ minds as well. Over 500

web applications have been written specifically for the

iPhone since its launch. It’s completely unheard of to see

so many applications built for the mobile context in such a

short period of time.

224 24 ways 2007 edition

4. CSS & Javascript

Web 2.0 could not exist without the rich interactions

offered by CSS and Javascript, and Mobile 2.0 is no

different. CSS and Javascript support across multiple

phones historically has been, well… to put it positively…

utter crap.

Javascript finally allows developers to create interesting

interactions that support user goals and the mobile

context. Specially, AJAX allows us to finally shed the days

of bloated Java applications and focus on portable and

flexible web applications. While CSS — namely CSS3 —

allows us to create designs that are as beautiful as they

are economical with bandwidth and load times.

With Leaflets, a collection of iPhone optimized web apps

we created, we heavily relied on CSS3 to cache and reuse

design elements over and over, minimizing download

times while providing an elegant and user-centered

design.

Mobile 2.0

24 ways 2007 edition 225

http://www.getleaflets.com

IN CONCLUSION

It is the combination of all these instigators that is

significantly decreasing the bar to mobile publishing. The

market as Jason Devitt describes it, will begin to fade into

the background. And maybe the world of mobile will

finally start looking more like the Web that we all know

and love.

So after the merriment and celebration of the holiday is

over and you look toward the new year to refresh and

renew, I hope that you take a seriously consider the

mobile medium.

By this time next year, it is predicted that one-third of

humanity will be using mobile devices to access the Web.

226 24 ways 2007 edition

ABOUT THE AUTHOR

Brian Fling has been a leader in the web and mobile user

experience. He has worked with several Fortune 500 companies

to help design and develop their online experiences. Brian is a

frequent speaker and author on the issues on mobile design, the

mobile web and mobile user experience.

He co-created a series of iPhone web applications called

Leaflets to showcase the concepts of “Mobile 2.0” just two

weeks after the iPhone launched. Brian co-authored the

dotMobi Mobile Web Developers Guide, the first free

publication to cover mobile web design and development from

start to finish. He runs one of the largest online communities

focused on mobile design. He is currently writing O’Reilly

Media’s first book mobile, Mobile Design and Development.

Mobile 2.0

24 ways 2007 edition 227

http://getleaflets.com
http://dev.mobi/
http://mobiledesign.org
http://mobiledesign.org/book

Today Brian runs a small studio called Fling Media with his wife

Cyndi.

228 24 ways 2007 edition

http://flingmedia.com

Molly Holzschlag 24ways.org/200722

22. How Media Studies
Can Massage Your
Message

A young web designer once told his teacher
‘just get to the meat already.’ He was
frustrated with what he called the ‘history
lessons and name-dropping’ aspects of his
formal college course. He just wanted to
learn how to build Web sites, not examine
the reasons why.

Technique and theory are both integrated and necessary

portions of a strong education. The student’s perspective

has direct value, but also holds a distinct sorrow: Knowing

the how without the why creates a serious problem.

Without these surrounding insights we cannot tap into

the influence of the history and evolved knowledge that

came before. We cannot properly analyze, criticize,

evaluate and innovate beyond the scope of technique.

How Media Studies Can Massage Your Message

24 ways 2007 edition 229

http://24ways.org/200722

History holds the key to transcending former mistakes.

Philosophy encourages us to look at different points of

view. Studying media and social history empowers us as

Web workers by bringing together myriad aspects of

humanity in direct relation to the environment of society

and technology. Having an understanding of media,

communities, communication arts as well as logic,

language and computer savvy are all core skills of the best

of web designers in today’s medium.

CONTROLLING THE MESSAGE

‘The computer can’t tell you the emotional
story. It can give you the exact mathematical
design, but what’s missing is the eyebrows.’ –
Frank Zappa

Media is meant to express an idea. The great media

theorist Marshall McLuhan suggests that not only is

media interesting because it’s about the expression of

ideas, but that the media itself actually shapes the way a

given idea is perceived. This is what McLuhan meant when

he uttered those famous words: ‘The medium is the

message.’

If instead of actually serving a steak to a vegetarian friend,

what might a painting of the steak mean instead? Or a

sculpture of a cow? Depending upon the form of media in

question, the message is altered.

230 24 ways 2007 edition

Figure 1

Must we know the history of cows to appreciate the steak

on our plate? Perhaps not, but if we begin to examine how

that meat came to be on the plate, the social, cultural and

ideological associations of that cow, we begin to

understand the complexity of both medium and message.

A piece of steak on my plate makes me happy. A

vegetarian friend from India might disagree and even find

that that serving her a steak was very insensitive.

Takeaway: Getting the message right involves

understanding that message in order to direct it to your

audience accordingly.

How Media Studies Can Massage Your Message

24 ways 2007 edition 231

A SEPARATE PIECE

If we revisit the student who only wants technique, while

he might become extremely adept at the rendering of an

idea, without an understanding of the medium, how is he

to have greater control over how that idea is perceived?

Ultimately, his creativity is limited and his perspective

narrowed, and the teacher has done her student a

disservice without challenging him, particularly in a

scholastic environment, to think in liberal, creative and

ultimately innovative terms.

For many years, web pundits including myself have

promoted the idea of separation as a core concept within

creating effective front-end media for the Web. By this,

we’ve meant literal separation of the technologies and

documents: Markup for content; CSS for presentation;

DOM Scripting for behavior. While the message of

separation was an important part of understanding and

teaching best practices for manageable, scalable sites,

that separation is really just a separation of pieces, not of

entire disciplines.

For in fact, the medium of the Web is an integrated one.

That means each part of the desired message must be

supported by the media silos within a given site. The

visual designer must study the color, space, shape and

placement of visual objects (including type) into a

meaningful expression. The underlying markup is ideally

written as semantically as possible, promote the meaning

232 24 ways 2007 edition

of the content it describes. Any interaction and

functionality must make the process of the medium

support, not take away from, the meaning of the site or

Web application.

EXAMINATION: THE GLASS BEAD GAME

Figure 2

How Media Studies Can Massage Your Message

24 ways 2007 edition 233

Figure 2 shows two screenshots of CoreWave’s historic

‘Glass Bead Game.’ Fashioned after Herman Hesse’s novel

of the same name, the game was an exploration of how

ideas are connected to other ideas via multiple forms of

media. It was created for the Web in 1996 using server-

side randomization with .htmlx files in order to allow

players to see how random associations are in fact not

random at all.

Takeaway: We can use the medium itself to explore

creative ideas, to link us from one idea to the next, and to

help us better express those ideas to our audiences.

COMPUTERS AND HUMAN INTERACTION

Since our medium involves computers and human

interaction, it does us well to look to foundations of

computers and reason. Not long ago I was chatting with

Jared Spool on IM about this and that, and he asked me

‘So how do you feel about that?’ This caused me no end of

laughter and I instantly quipped back ‘It’s okay by me

ELIZA.’ We both enjoyed the joke, but then I tried to share

it with another dare I say younger colleague, and the

reference was lost.

Raise your hand if you got the reference! Some of you will,

but many people who come to the Web medium do not

get the benefit of such historical references because we

are not formally educated in them. Joseph Weizenbaum

234 24 ways 2007 edition

created the ELIZA program, which emulates a Rogerian

Therapist, in 1966. It was an early study of computers and

natural human language. I was a little over 2 years old,

how about you?

CONVERSATION WITH ELIZA

There are fortunately a number of ELIZA emulators on

the Web. I found one at http://www.chayden.net/eliza/

Eliza.html that actually contains the source code (in Java)

that makes up the ELIZA script.

Figure 3 shows a screen shot of the interaction. ELIZA

first welcomes me, says ‘Hello, How do you do. Please

state your problem’ and we continue in a short loop of

conversation, the computer using cues from my answers

to create new questions and leading fragments of

conversation.

Figure 3

Albeit a very limited demonstration of how humans could

interact with a computer in 1966, it’s amusing to play with

now and compare it to something as richly interactive as

How Media Studies Can Massage Your Message

24 ways 2007 edition 235

http://www.chayden.net/eliza/Eliza.html
http://www.chayden.net/eliza/Eliza.html

the Microsoft Surface (Figure 4). Here, we see clear Lucite

blocks that display projected video. Each side of the block

has a different view of the video, so not only does one

have to match up the images as they are moving, but do so

in the proper directionality.

Figure 4

Takeway: the better we know our environment, the more

we can alter it to emulate, expand and even supersede our

message.

LEVERAGING HOLIDAY CHEER

Since most of us at least have a few days off for the

holidays now that Christmas is upon us, now’s a perfect

time to reflect on ones’ environment and examine the

236 24 ways 2007 edition

messages within it. Convince your spouse to find you a

few audio books for stocking stuffers. Find interactive

games to play with your kids and observe them, and

yourself, during the interaction. Pour a nice egg-nog and

sit down with a copy of Marshall McLuhan’s ‘The Medium

is the Massage.’ Leverage that holiday cheer and here’s to

a prosperous, interactive new year.

ABOUT THE AUTHOR

Molly E. Holzschlag works to educate designers and developers

on using Web technologies in practical ways to create highly

sustainable, maintainable, accessible, interactive and beautiful

How Media Studies Can Massage Your Message

24 ways 2007 edition 237

http://molly.com/

Web sites for the global community. A popular and colorful

individual, Molly has a particular passion for people, blogs, and

the use of technology for social progress.

Photo: Pete LePage

238 24 ways 2007 edition

Brian Oberkirch 24ways.org/200723

23. A Gift Idea For Your
Users: Respect, Yo

If, indeed, it is the thought that counts,
maybe we should pledge to make more
thoughtful design decisions. In addition to
wowing people who use the Web sites we
build with novel features, nuanced
aesthetics and the new new thing, maybe we
should also thread some subtle things
throughout our work that let folks know:
hey, I’m feeling ya. We’re simpatico. I hear
you loud and clear.

It’s not just holiday spirit that moves me to talk this way.

As good as people are, we need more than the horizon of

karma to overcome that invisible demon, inertia. Makers

of the Web, respectful design practices aren’t just the

right thing, they are good for business. Even if your site is

the one and only place to get experience x, y or zed, you

don’t rub someone’s face in it. You keep it free flowing,

you honor the possible back and forth of a healthy

A Gift Idea For Your Users: Respect, Yo

24 ways 2007 edition 239

http://24ways.org/200723

transaction, you are Johnny Appleseed with the humane

design cues. You make it clear that you are in it for the

long haul.

A peek back:

Think back to what search (and strategy) was like before

Google launched a super clean page with “I’m Feeling

Lucky” button. Aggregation was the order of the day (just

go back and review all the ‘strategic alliances’ that were

announced daily.) Yet the GOOG comes along with this

zen layout (nope, we’re not going to try to make you look

at one of our media properties) and a bold, brash,

teleport-me-straight-to-the-first-search-result button. It

could have been titled “We’re Feeling Cocky”. These were

radical design decisions that reset how people thought

about search services. Oh, you mean I can just find what I

want and get on with it?

It’s maybe even more impressive today, after the GOOG

has figured out how to monetize attention better than

anyone. “I’m Feeling Lucky” is still there. No doubt, it costs

the company millions. But by leaving a little money on the

table, they keep the basic bargain they started to strike in

1997. We’re going to get you where you want to go as

quickly as possible.

240 24 ways 2007 edition

http://valleywag.com/tech/google/im-feeling-lucky-button-costs-google-110-million-per-year-324927.php
http://valleywag.com/tech/google/im-feeling-lucky-button-costs-google-110-million-per-year-324927.php

Where are the places we might make the same kind of

impact in our work? Here are a few ideas:

Respect People’s Time

As more services become more integrated with our lives,

this will only become more important. How can you make

it clear that you respect the time a user has granted you?

USER-ORIENTED DEFAULTS

Default design may be the psionic tool in your belt.

Unseen, yet pow-er-ful. Look at your defaults. Who are

they set up to benefit? Are you depending on users not

checking off boxes so you can feel ok about sending them

email they really don’t want? Are you depending on users

not checking off boxes so you tilt privacy values in ways

most beneficial for your SERPs? Are you making it a little

too easy for 3rd party applications to run buckwild

through your system?

There’s being right and then there’s being awesome.

Design to the spirit of the agreement and not the letter.

See this?

A Gift Idea For Your Users: Respect, Yo

24 ways 2007 edition 241

Make sure that’s really the experience you think people

want. Whenever I see a service that defaults to not opting

me in their newsletter just because I bought a t shirt from

them, you can be sure that I trust them that much more.

And they are likely to see me again.

242 24 ways 2007 edition

REDUCE, REUSE

It’s likely that people using your service will have data and

profile credentials elsewhere. You should really think hard

about how you can let them repurpose some of that work

within your system. Can you let them reduce the number

of logins/passwords they have to manage by supporting

OpenID? Can you let them reuse profile information from

another service by slurping in (or even subscribing) to

hCards? Can you give them a leg up by reusing a friends

list they make available to you? (Note: please avoid the

anti-pattern of inviting your user to upload all her

credential data from 3rd party sites into your system.)

This is a much larger issue, and if you’d like to get involved,

have a look at the wiki, and dive in.

MAKE IT SIMPLE TO LEAVE

Oh, this drives me bonkers. Again, the more simple you

make it to increase or decrease involvement in your site,

or to just opt-out altogether, the better. This example

from Basecamp is instructive:

A Gift Idea For Your Users: Respect, Yo

24 ways 2007 edition 243

http://openid.net/
http://www.brianoberkirch.com/2007/08/02/deeelightful-making-profile-import-a-snap/
http://www.brianoberkirch.com/2007/08/02/deeelightful-making-profile-import-a-snap/
http://microformats.org/wiki/hcard-xfn-supporting-friends-lists
http://microformats.org/wiki/hcard-xfn-supporting-friends-lists
http://adactio.com/journal/1357
http://adactio.com/journal/1357
http://adactio.com/journal/1357
http://microformats.org/wiki/social-network-portability
http://www.basecamphq.com

At a glance, I can see what the implications are of

choosing a different type of account. I can also move

between account levels with one click. Finally, I can cancel

the service easily. No hoop jumping. Also, it should be

simple for users to take data with them or delete it.

Let Them Have Fun

Don’t overlook opportunities for pleasure. Even the most

mundane tasks can be made more enjoyable. Check out

one of my favorite pieces of interaction design from this

past year:

244 24 ways 2007 edition

Holy knob fiddling, Batman! What a great way to get

people to play with preference settings: an equalizer

metaphor. Those of a certain age will recall how fun it was

to make patterns with your uncle’s stereo EQ. I think this

is a delightful way to encourage people to optimize their

own experience of the news feed feature. Given the killer

nature of this feature, it was important for Facebook to

make it easy to fine tune.

I’d also point you to Flickr’s Talk Like A Pirate Day Easter

egg as another example of design that delights. What a

huge amount of work for a one-off, totally optional way to

experience the site. And what fun. And how true to its

brand persona. Brill.

Anti-hype

Don’t talk so much. Rather, ship and sample. Release code,

tell the right users. See what happens. Make changes.

Extend the circle a bit by showing some other folks.

Repeat.

The more you hype coming features, the more you talk

about what isn’t yet, the more you build unrealistic

expectations. Your genius can’t possibly match our

collective dreaming. Disappointment is inevitable. Yet, if

you craft the right melody and make it simple for people

to hum your tune, it will spread. Give it time. Listen.

A Gift Idea For Your Users: Respect, Yo

24 ways 2007 edition 245

http://blogs.atlassian.com/rebelutionary/archives/2007/09/flickr_supports_talk_like_a_pirate_day_1.html
http://blogs.atlassian.com/rebelutionary/archives/2007/09/flickr_supports_talk_like_a_pirate_day_1.html

Speak the Language of the Tribe

It’s respectful to speak in a human way. Not that you have

to get all zOMGWTFBBQ!!1 in your messaging. People

respond when you speak to them in a way that sounds

natural. Natural will, of course, vary according to context.

Again, listen in and people will signal the speech that

works in that group for those tasks. Reveal those cues in

your interface work and you’ll have powerful proof that

actual people are working on your Web site.

This example of Pownce‘s gender selector is the kind of

thing I’m talking about:

Now, this doesn’t mean you should mimic the lingo on

some cool kidz site. Your service doesn’t need to have a

massage when it’s down. Think about what works for you

and your tribe. Excellent advice here from Feedburner’s

246 24 ways 2007 edition

http://www.pownce.com

Dick Costolo on finding a voice for your service. Also,

Mule Design’s Erika Hall has an excellent talk on

improving your word fu.

Pass the mic, yo

Here is a crazy idea: you could ask your users what they

want. Maybe you could even use this input to figure out

what they really want. Tools abound. Comments, wikis,

forums, surveys. Embed the sexy new Get Satisfaction

widget and have a dynamic FAQ running.

The point is that you make it clear to people that they

have a means of shaping the service with you. And you

must showcase in some way that you are listening,

evaluating and taking action against some of that user

input.

You get my drift. There are any number of ways we can

show respect to those who gift us with their time, data,

feedback, attention, evangelism, money. Big things are in

the offing. I can feel the love already.

A Gift Idea For Your Users: Respect, Yo

24 ways 2007 edition 247

http://www.burningdoor.com/askthewizard/2007/11/have_a_company_voice.html
http://www.muledesign.com
http://weblog.muledesign.com/2007/10/copy_is_interface.php
http://weblog.muledesign.com/2007/10/copy_is_interface.php
http://getsatisfaction.com

ABOUT THE AUTHOR

Brian Oberkirch yammers a lot. He used to teach literature.

And do radio news. And write newspaper articles. Now he helps

people make Web stuff and talks up things like microformats

and other open design approaches that should make life better

for everyone. He carries on at brianoberkirch.com.

248 24 ways 2007 edition

http://microformats.org/
http://brianoberkirch.com

Drew McLellan 24ways.org/200724

24. Performance On A
Shoe String

Back in the summer, I happened to notice
the official Wimbledon All England Tennis
Club site had jumped to the top of Alexa’s
Movers & Shakers list — a list that tracks
sites that have had the biggest upturn or
downturn in traffic. The lawn tennis
championships were underway, and so
traffic had leapt from almost nothing to
crazy-busy in a no time at all.

Many sites have similar peaks in traffic, especially when

they’re based around scheduled events. No one cares

about the site for most of the year, and then all of a

sudden – wham! – things start getting warm in the data

centre. Whilst the thought of chestnuts roasting on an

open server has a certain appeal, it’s less attractive if you

care about your site being available to visitors. Take a look

Performance On A Shoe String

24 ways 2007 edition 249

http://24ways.org/200724
http://www.wimbledon.org/
http://www.wimbledon.org/
http://www.alexa.com/site/ds/movers_shakers?lang=en

at this Alexa traffic graph showing traffic patterns for

superbowl.com at the beginning of each year, and

wimbledon.org in the month of July.

Traffic graph from Alexa.com

Whilst not on the same scale or with such dramatic peaks,

we have a similar pattern of traffic here at 24ways.org.

Over the last three years we’ve seen a dramatic pick up in

traffic over the month of December (as would be

expected) and then a much lower, although steady load

throughout the year. What we do have, however, is the

luxury of knowing when the peaks will be. For a normal

site, be that a blog, small scale web app, or even a small

corporate site, you often just cannot predict when you

might get slashdotted, end up on the front page of Digg or

linked to from a similarly high-profile site. You just don’t

know when the peaks will be.

250 24 ways 2007 edition

http://www.alexa.com/data/details/traffic_details/wimbledon.org?site0=wimbledon.org&site1=superbowl.com&y=r&z=3&h=300&w=610&range=6y&size=Medium
http://slashdot.org/
http://digg.com/

If you’re a big commercial enterprise like the Super Bowl,

scaling up for that traffic is simply a cost of doing business.

But for most of us, we can’t afford to have massive

capacity sat there unused for 90% of the year. What you

have to do instead is work out how to deal with as much

traffic as possible with the modest resources you have.

In this article I’m going to talk about some of the things

we’ve learned about keeping 24 ways running throughout

December, whilst not spending a fortune on hosting we

don’t need for 11 months of each year. We’ve not always

got it right, but we’ve learned a lot along the way.

THE PROBLEM

To know how to deal with high traffic, you need to have a

basic idea of what happens when a request comes into a

web server. 24 ways is hosted on a single small virtual

dedicated server with a great little hosting company in the

UK. We run Apache with PHP and MySQL all on that one

server. When a request comes in a new Apache process is

started to deal with the request (or assigned if there’s one

available not doing anything). Each process takes a bunch

of memory, so there’s a finite number of processes that

you can run, and therefore a finite number of pages you

can serve at once before your server runs out of memory.

Performance On A Shoe String

24 ways 2007 edition 251

With our budget based on whatever is left over after beer,

we need to get best performance we can out of the

resources available. As the goal is to serve as many pages

as quickly as possible, there are several approaches we

can take:

1. Reducing the amount of memory needed by each

Apache process

2. Reducing the amount of time each process is needed

3. Reducing the number of requests made to the server

Yahoo! have published some information on what they

call Exceptional Performance, which is well worth reading,

and compliments many of my examples here. The Yahoo!

guidelines very much look at things from a user

perspective, which is always important.

SERVER TWEAKING

If you’re in the position of being able to change your

server configuration (our set-up gives us root access to

what is effectively a virtual machine) there are some basic

steps you can take to maximise the available memory and

reduce the memory footprint. Without getting too boring

and technical (whole books have been written on this)

there are a couple of things to watch out for.

Firstly, check what processes you have running that you

might not need. Every megabyte of memory that you free

up might equate to several thousand extra requests being

252 24 ways 2007 edition

http://developer.yahoo.com/performance/

served each day, so take a look at top and see what’s using

up your resources. Quite often a machine configured as a

web server will have some kind of mail server running by

default. If your site doesn’t use mail (ours doesn’t) make

sure it’s shut down and not using resources.

Secondly, have a look at your Apache configuration and

particularly what modules are loaded. The method for

doing this varies between versions of Apache, but again,

every module loaded increases the amount of memory

that each Apache process requires and therefore limits

the number of simultaneous requests you can deal with.

The final thing to check is that Apache isn’t configured to

start more servers than you have memory for. This is

usually done by setting the MaxClients directive. When

that limit is reached, your site is going to stop responding

to further requests. However, if all else goes well that

threshold won’t be reached, and if it does it will at least

stop the weight of the traffic taking the entire server

down to a point where you can’t even log in to sort it out.

Those are the main tidbits I’ve found useful for this site,

although it’s worth repeating that entire books have been

written on this subject alone.

Performance On A Shoe String

24 ways 2007 edition 253

CACHING

Although the site is generated with PHP and MySQL, the

majority of pages served don’t come from the database.

The process of compiling a page on-the-fly involves quite

a few trips to the database for content, templates,

configuration settings and so on, and so can be slow and

require a lot of CPU. Unless a new article or comment is

published, the site doesn’t actually change between

requests and so it makes sense to generate each page

once, save it to a file and then just serve all following

requests from that file.

We use QuickCache (or rather a plugin based on it) for

this. The plugin integrates with our publishing system

(Textpattern) to make sure the cache is cleared when

something on the site changes. A similar plugin called WP-

Cache is available for WordPress, but of course this could

be done any number of ways, and with any back-end

technology.

The important principal here is to reduce the time it takes

to serve a page by compiling the page once and serving

that cached result to subsequent visitors. Keep away from

your database if you can.

254 24 ways 2007 edition

http://sourceforge.net/projects/quickcache
http://wordpress.org/extend/plugins/wp-cache/
http://wordpress.org/extend/plugins/wp-cache/

OUTSOURCE YOUR FEEDS

We get around 36,000 requests for our feed each day.

That really only works out at about 7,000 subscribers

averaging five-and-a-bit requests a day, but it’s still

36,000 requests we could easily do without. Each request

uses resources and particularly during December, all

those requests can add up.

The simple solution here was to switch our feed over to

using FeedBurner. We publish the address of the

FeedBurner version of our feed here, so those 36,000

requests a day hit FeedBurner’s servers rather than ours.

In addition, we get pretty graphs showing how the

subscriber-base is building.

OFF-LOAD BIG FILES

Larger files like images or downloads pose a problem not

in bandwidth, but in the time it takes them to transfer. A

typical page request is very quick, a few seconds at the

most, resulting in the connection being freed up promptly.

Anything that keeps a connection open for a long time is

going to start killing performance very quickly.

Performance On A Shoe String

24 ways 2007 edition 255

http://www.feedburner.com/

This year, we started serving most of the images for

articles from a subdomain – media.24ways.org. Rather

than pointing to our own server, this subdomain points to

an Amazon S3 account where the files are held. It’s easy

to pigeon-hole S3 as merely an online backup solution,

and whilst not a fully fledged CDN, S3 works very nicely

for serving larger media files. The roughly 20GB of files

served this month have cost around $5 in Amazon S3

charges. That’s so affordable it may not be worth even

taking the files back off S3 once December has passed.

I found this article on Scalable Media Hosting with

Amazon S3 to be really useful in getting started. I upload

the files via a Firefox plugin (mentioned in the article) and

then edit the ACL to allow public access to the files. The

way S3 enables you to point DNS directly at it means that

you’re not tied to always using the service, and that it can

be transparent to your users.

If your site uses photographs, consider uploading them to

a service like Flickr and serving them directly from there.

Many photo sharing sites are happy for you to link to

images in this way, but do check the acceptable use

policies in case you need to provide a credit or link back.

256 24 ways 2007 edition

http://aws.amazon.com/s3
http://en.wikipedia.org/wiki/Content_Delivery_Network
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=1073&ref=featured
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=1073&ref=featured
http://flickr.com/

OFF-LOAD SMALL FILES

You’ll have noticed the pattern by now – get rid of as

much traffic as possible. When an article has a lot of

comments and each of those comments has an avatar

along with it, a great many requests are needed to fetch

each of those images. In 2006 we started using Gravatar

for avatars, but their servers were slow and were holding

up page loads. To get around this we started caching the

images on our server, but along with that came the burden

of furnishing all the image requests.

Earlier this year Gravatar changed hands and is now run

by the same team behind WordPress.com. Those guys

clearly know what they’re doing when it comes to high

performance, so this year we went back to serving avatars

directly from them.

If your site uses avatars, it really makes sense to use a

service like Gravatar where your users probably already

have an account, and where the image requests are going

to be dealt with for you.

KNOW WHAT YOU’RE PAYING FOR

The server account we use for 24 ways was opened in

November 2005. When we first hit the front page of Digg

in December of that year, we upgraded the server with a

bit more memory, but other than that we were still

running on that 2005 spec for two years. Of course, the

Performance On A Shoe String

24 ways 2007 edition 257

http://gravatar.com/
http://www.wordpress.com/

world of technology has moved on in those years, prices

have dropped and specs have improved. For the same

amount we were paying for that 2005 spec server, we

could have an account with twice the CPU, memory and

disk space.

So in November of this year I took out a new account and

transferred the site from the old server to the new. In that

single step we were prepared for dealing with twice the

amount of traffic, and because of a special offer at the

time I didn’t even have to pay the setup cost on the new

server. So it really pays to know what you’re paying for

and keep an eye out of ways you can make improvements

without needing to spend more money.

FURTHER STEPS

There’s nearly always more that can be done. For

example, there are some media files (particularly for older

articles) that are not on S3. We also serve our CSS directly

and it’s not minified or compressed. But by tackling the

big problems first we’ve managed to reduce load on the

server and at the same time make sure that the load being

placed on the server can be dealt with in the most frugal

way.

Over the last 24 days we’ve served up articles to more

than 350,000 visitors without breaking a sweat. On a

busy day, that’s been nearly 20,000 visitors in just 24

258 24 ways 2007 edition

http://24ways.org/2007/minification-a-christmas-diet

hours. While in the grand scheme of things that’s not a

huge amount of traffic, it can be a lot if you’re not

prepared for it. However, with a little planning for the

peaks you can help ensure that when the traffic arrives

you’re ready to capitalise on it.

Of course, people only visit 24 ways for the wealth of

knowledge and experience that’s tied up in the articles

here. Therefore I’d like to take the opportunity to thank all

our authors this year who have given their time as a gift to

the community, and to wish you all a very happy

Christmas.

Performance On A Shoe String

24 ways 2007 edition 259

ABOUT THE AUTHOR

Drew McLellan is lead developer on your favourite small CMS,

Perch. He is Director and Senior Developer at UK-based web

development agency edgeofmyseat.com, and formerly Group

Lead at the Web Standards Project. When not publishing 24

ways, Drew keeps a personal site covering web development

issues and themes, takes photos and tweets a lot.

260 24 ways 2007 edition

http://grabaperch.com/
http://allinthehead.com/
http://flickr.com/drewm/
http://twitter.com/drewm

	Credits
	2007
	Transparent PNGs in Internet Explorer 6
	So what’s alpha channel transparency?
	The Internet Explorer problem
	The pitfalls
	Background images cannot be positioned or repeated
	Delayed loading and resource use
	Links become unclickable, forms unfocusable

	Sidestepping the danger zones
	Applying AlphaImageLoader
	Introducing SuperSleight
	Implementation

	About the author

	Get To Grips with Slippy Maps
	Assemble the pieces
	Create the Map Div
	Include Javascript libraries
	Create the Map
	Adding Markers
	Play with your new toys
	About the author

	The Neverending (Background Image) Story
	1. Choose your image wisely
	2. The power of horizontal lines
	3. Cloning
	4. Never underestimate a gradient
	5. Sewing the seams
	About the author

	Capturing Caps Lock
	About the author

	My Other Christmas Present Is a Definition List
	Examining the definition of definitions
	Behaviour and convention
	How to use a definition list
	About the author

	Minification: A Christmas Diet
	HTMLTidy
	CSSTidy
	JSMin
	OptiPNG
	About the author

	Typesetting Tables
	Tables are not read like sentences
	Typesetting tables
	Your default table
	Plenty of negative space
	Use the right typeface
	Go easy on the background tones, unless you’re giving reading direction visual emphasis
	Hierarchy
	About the author

	JavaScript Internationalisation
	or: Why Rudolph Is More Than Just a Shiny Nose
	About the author

	Back To The Future of Print
	Getting started
	Tips and tricks
	1. Remove the cruft
	2. Linearise your content
	3. Improve your type
	4. Go wild on links
	5. Jazz your headers for print
	6. Build in general hooks
	7. For that extra touch of class
	8. Tabular data across pages

	Gotchas
	1. Where did all my content go?
	2. Damn those background browser settings
	3. Using JavaScript in your CSS? … beware IE6
	4. De-enhance your Progressive enhancements

	And Finally…
	Further Reading
	About the author

	10 Ways To Get Design Approval
	1. Define the role of the client and designer
	2. Understand the business
	3. Understand the users
	4. Avoid multiple concepts
	5. Use mood boards
	6. Say what you like
	7. Wireframe the homepage
	8. Present your designs
	9. Provide written supporting material
	10. Control the feedback
	About the author

	Tracking Christmas Cheer with Google Charts
	Mummy, it’s my first chart
	Christmas pie
	But I don’t like pie charts
	Two lines, one graph
	Real data
	Did someone mention Edward Tufte?
	Summary
	Further reading
	About the author

	Unobtrusively Mapping Microformats with jQuery
	Getting Started
	Initialising the map
	Adding the markers
	Limitations of Geocoding
	Further reading
	About the author

	CSS for Accessibility
	Nae knickers
	Elbow room
	Transformers: Initial case in disguise
	Linky love
	The link outline
	The non-underlined underline
	Standing out from the crowd
	Well-focused
	Location, Location, Location

	Conclusion
	About the author

	Underpants Over My Trousers
	A suitcase full of Kryptonite
	Slowing down the action
	Borders
	Fill your stockings
	About the author

	Conditional Love
	Spare the Rod, Hack the Browser
	Giving the Kids Separate Rooms
	Even Good Children Misbehave
	Scripteat Emptor
	Browser detection? So un-133t.
	It’s JavaScript, so don’t count on it being available.
	Be a constant gardener.

	About the author

	Get In Shape
	The Shape of Things
	Design Strategies
	Consistency
	Balance
	Completion

	Implementation
	About the author

	Increase Your Font Stacks With Font Matrix
	The Matrix
	Over to You
	Appendix
	What about Linux?
	Sources

	About the author

	Keeping JavaScript Dependencies At Bay
	Starting with a global object
	Adding the components
	Verifying that components have been loaded
	Telling the implementers when components are available
	Extending with other components
	Influences
	About the author

	Christmas Is In The AIR
	What’s Adobe AIR?
	To get started
	Building our To-do list application
	Debugging our application
	Changing the visibility
	Sandbox Security
	Finally, our application

	Storing Data
	Loading in data from the file system
	Perform Interface Bindings
	Manage creating and deleting items from the list
	Save changes to the file system

	Creating a Package
	Important things to remember about AIR
	Only the beginning
	About the author

	Diagnostic Styling
	Basic Diagnostics
	Attribution
	Not a Problem
	And What About IE?
	Yeah, About That…
	Diagnosis Complete?
	About the author

	Mobile 2.0
	Thinking 2.0
	It’s the Carriers’ world. We just live in it.
	Introducing Mobile 2.0
	The Instigators
	1. Opera
	2. WebKit
	3. The iPhone
	4. CSS & Javascript

	In Conclusion
	About the author

	How Media Studies Can Massage Your Message
	Controlling the Message
	A Separate Piece
	Examination: The Glass Bead Game
	Computers and Human Interaction
	Conversation with Eliza
	Leveraging Holiday Cheer
	About the author

	A Gift Idea For Your Users: Respect, Yo
	Respect People’s Time
	User-Oriented Defaults
	Reduce, Reuse
	Make it simple to leave

	Let Them Have Fun
	Anti-hype
	Speak the Language of the Tribe
	Pass the mic, yo
	About the author

	Performance On A Shoe String
	The Problem
	Server tweaking
	Caching
	Outsource your feeds
	Off-load big files
	Off-load small files
	Know what you’re paying for
	Further steps
	About the author

