

Credits

24 ways is the advent calendar for web
geeks. For twenty-four days each December
we publish a daily dose of web design and
development goodness to bring you all a
little Christmas cheer.

▪ 24 ways is brought to you by Perch CMS

▪ Produced by Drew McLellan, Brian Suda, Anna

Debenham and Owen Gregory.

▪ Designed by Paul Robert Lloyd.

▪ eBook published by edgeofmyseat.com and produced

by Rachel Andrew.

▪ Possible only with the help and dedication of our

authors.

2 24 ways 2008 edition

http://grabaperch.com/?ref=24w01
http://allinthehead.com/
http://suda.co.uk/
http://maban.co.uk/
http://maban.co.uk/
http://fullcreammilk.co.uk/
http://paulrobertlloyd.com/
http://edgeofmyseat.com
http://rachelandrew.co.uk/
http://24ways.org/authors/
http://24ways.org/authors/

2008

This year saw Apple’s App Store open, and
the release of Android 1.0 and Google
Chrome 1.0. Taking all that in its stride, 24
ways brought its seasonal perspective to
bear on business, with articles on project
management, the path from design to
development, how to charm clients, and
killer contracts. Also, a first look at modular
layout systems. Pulse, meet finger.

Easing The Path from Design to Development...................... 5

Geometric Background Patterns ..17

User Styling..27

Sitewide Search On A Shoe String..42

Art Directing with Looking Room ...57

Using Google App Engine as Your Own Content Delivery

Network ..69

How To Create Rockband'ism ..82

The IE6 Equation ...87

2008

24 ways 2008 edition 3

Charm Clients, Win Pitches ..94

A Christmas hCard From Me To You109

Easier Page States for Wireframes122

Checking Out: Progress Meters...128

The First Tool You Reach For ...136

Rocking Restrictions ...145

Making Modular Layout Systems ..151

What Your Turkey Can Teach You About Project

Management ..158

A Festive Type Folly...170

Shiny Happy Buttons ..182

Moo'y Christmas...192

Ghosts On The Internet...208

Geotag Everywhere with Fire Eagle218

Absolute Columns..238

Contract Killer ...248

Recession Tips For Web Designers.......................................264

4 24 ways 2008 edition

Drew McLellan 24ways.org/200801

1. Easing The Path from
Design to Development

As a web developer, I have the pleasure of
working with a lot of different designers.
There has been a lot of industry discussion
of late about designers and developers,
focusing on how different we sometimes are
and how the interface between our
respective phases of a project (that is to say
moving from a design phase into
production) can sometimes become a
battleground.

I don’t believe it has to be a battleground. It’s actually

more like being a dance partner – our steps are different,

but as long as we know our own part and have a little

knowledge of our partner’s steps, it all goes together to

form a cohesive dance. Albeit with less spandex and fewer

sequins (although that may depend on the project in

question).

Easing The Path from Design to Development

24 ways 2008 edition 5

http://24ways.org/200801

As the process usually flows from design towards

development, it’s most important that designers have a

little knowledge of how the site is going to be built. At the

specialist web development agency I’m part of, we find

that designs that have been well considered from a

technical perspective help to keep the project on track

and on budget.

Based on that experience, I’ve put together my checklist

of things that designers should consider before handing

their work over to a developer to build.

LAYOUT

One rookie mistake made by traditionally trained

designers transferring to the web is to forget a web

browser is not a fixed medium. Unlike designing a

magazine layout or a piece of packaging, there are lots of

available options to consider. Should the layout be fluid

and resize with the window, or should it be set to a fixed

width? If it’s fluid, which parts expand and which not? If

it’s fixed, should it sit in the middle of the window or to

one side?

If any part of the layout is going to be flexible (get wider

and narrower as required), consider how any graphics are

affected. Images don’t usually look good if displayed at

anything other that their original size, so should they

6 24 ways 2008 edition

http://edgeofmyseat.com/

behave? If a column is going to get wider than it’s shown in

the Photoshop comp, it may be necessary to provide

separate wider versions of any background images.

TEXT SIZE AND CONTENT VOLUME

A related issue is considering how the layout behaves

with both different sizes of text and different volumes of

content. Whilst text zooming rather than text resizing is

becoming more commonplace as the default behaviour in

browsers, it’s still a fundamentally important principal of

web design that we are suggesting and not dictating how

something should look. Designs must allow for a little give

and take in the text size, and how this affects the design

needs to be taken into consideration.

Keep in mind that the same font can display differently in

different places and platforms. Something as simple as

Times will display wider on a Mac than on Windows.

However, the main impact of text resizing is the change in

how much vertical space copy takes up. This is particularly

important where space is limited by the design (making

text bigger causes many more problems than making text

smaller). Each element from headings to box-outs to

navigation items and buttons needs to be able to expand

at least vertically, if not horizontally as well. This may

require some thought about how elements on the page

may wrap onto new lines, as well as again making sure to

provide extended versions of any graphical elements.

Easing The Path from Design to Development

24 ways 2008 edition 7

Similarly, it’s rare theses days to know exactly what

content you’re working with when a site is designed.

Many, if not most sites are designed as a series of

templates for some kind of content management system,

and so designs cannot be tweaked around any specific

item of content. Designs must be able to cope with both

much greater and much lesser volumes of content that

might be thrown in at the lorem ipsum phase.

Particular things to watch out for are things like headings

(how do they wrap onto multiple lines) and any user-

generated items like usernames. It can be very easy to

forget that whilst you might expect something like a

username to be 8-12 characters, if the systems powering

your site allow for 255 characters they’ll always be

someone who’ll go there. Expect them to do so.

Again, if your site is content managed or not, consider the

possibility that the structure might be expanded in the

future. Consider how additional items might be added to

each level of navigation. Whilst it’s rarely desirable to

make significant changes without revisiting the site’s

information architecture more thoroughly, it’s an

inevitable fact of life that the structure needs a little bit of

flexibility to change over time.

8 24 ways 2008 edition

INTERACTIONS WITH AND WITHOUT
JAVASCRIPT

A great number of sites now make good use of JavaScript

to streamline the user interface and make everything just

that touch more usable. Remember, though, that any

developer worth their salt will start by building the

interface without JavaScript, get it all working, and then

layer that JavaScript on top. This is to allow for users

viewing the site without JavaScript available or enabled in

their browser.

Designers need to consider both states of any feature

they’re designing – how it looks and functions with and

without JavaScript. If the feature does something fancy

with Ajax, consider how the same can be achieved with

basic HTML forms, links and intermediary pages. These all

need to be designed, because this is how some of your

users will interact with the site.

LOGGED IN AND LOGGED OUT STATES

When designing any type of web application or site that

has a membership system – that is to say users can create

an account and log into the site – the design will need to

consider how any element is presented in both logged in

and logged out states. For some items there’ll be no

difference, whereas for others there may be considerable

differences.

Easing The Path from Design to Development

24 ways 2008 edition 9

Should an item be hidden completely not logged out

users? Should it look different in some way? Perhaps it

should look the same, but prompt the user to log in when

they interact with it. If so, what form should that prompt

take on and how does the user progress through the

authentication process to arrive back at the task they

were originally trying to complete?

Couple logged in and logged out states with the possible

absence of JavaScript, and every feature needs to be

designed in four different states:

▪ Logged out with JavaScript available

▪ Logged in with JavaScript available

▪ Logged out without JavaScript available

▪ Logged in without JavaScript available

FONTS

There are three main causes of war in this world;

religions, politics and fonts. I’ve said publicly before that I

believe the responsibility for this falls squarely at the feet

of Adobe Photoshop. Photoshop, like a mistress at a

brothel, parades a vast array of ropey, yet strangely

enticing typefaces past the eyes of weak, lily-livered

designers, who can’t help but crumble to their curvy

charms.

10 24 ways 2008 edition

Yet, on the web, we have to be a little more restrained in

our choice of typefaces. The purest solution is always to

make the best use of the available fonts, but this isn’t

always the most desirable solution from a design point of

view. There are several technical solutions such as

techniques that utilise Flash (like sIFR), dynamically

generated images and even canvas in newer browsers.

Discuss the best approach with your developer, as every

different technique has different trade-offs, and this may

impact the design in other ways.

MESSAGING

Any site that has interactive elements, from a simple

contact form through to fully featured online software

application, involves some kind of user messaging. By this

I mean the error messages when something goes wrong

and the success and thank-you messages when something

goes right. These typically appear as the result of an

interaction, so are easy to forget and miss off a Photoshop

comp.

For every form, consider what gets displayed to the user if

they make a mistake or miss something out, and also what

gets displayed back when the interaction is successful.

What do they see and where do the go next?

Easing The Path from Design to Development

24 ways 2008 edition 11

http://24ways.org/2007/increase-your-font-stacks-with-font-matrix

With Ajax interactions, the user doesn’t get any visual

feedback of the site waiting for a response from the

server unless you design it that way. Consider using a

‘waiting’ or ‘in progress’ spinner to give the user some

visual feedback of any background processes. How should

these look? How do they animate?

Similarly, also consider the big error pages like a 404.

With luck, these won’t often be seen, but it’s at the point

that they are when careful design matters the most.

FORM FIELDS

Depending on the visual style of your site, the look of a

browser’s default form fields and buttons can sometimes

jar. It’s understandable that many a designer wants to

change the way they look. Depending on the browser in

question, various things can be done to style form fields

and their buttons (although it’s not as flexible as most

would like).

A common request is to replace the default buttons with a

graphical button. This is usually achievable in most cases,

although it’s not easy to get a consistent result across all

browsers – particularly when it comes to vertical

positioning and the space surrounding the button. If the

layout is very precise, or if space is at a premium, it’s

always best to try and live with the browser’s default form

controls.

12 24 ways 2008 edition

Whichever way you go, it’s important to remember that in

general, each form field should have a label, and each form

should have a submit button. If you find that your form

breaks either of those rules, you should double check.

PRACTICAL TIPS FOR HANDING FILES OVER

There are a couple of basic steps that a design can carry

out to make sure that the developer has the best chance

of implementing the design exactly as envisioned.

If working with Photoshop of Fireworks or similar

comping tool, it helps to group and label layers to make it

easy for a developer to see which need to be turned on

and off to get to isolate parts of the page and different

states of the design. Also, if you don’t work in the same

office as your developer (and so they can’t quickly check

with you), provide a PDF of each page and state so that

your developer can see how each page should look aside

from any confusion with quick layers are switched on or

off. These also act as a handy quick reference that can be

used without firing up Photoshop (which can kill both

productivity and your machine).

Finally, provide a colour reference showing the RGB

values of all the key colours used throughout the design.

Without this, the developer will end up colour-picking

from the comps, and could potentially end up with

different colours to those you intended. Remember, for a

Easing The Path from Design to Development

24 ways 2008 edition 13

lot of developers, working in a tool like Photoshop is like

presenting a designer with an SSH terminal into a web

server. It’s unfamiliar ground and easy to get things

wrong. Be the expert of your own domain and help your

colleagues out when they’re out of their comfort zone.

That goes both ways.

IN CONCLUSION

When asked the question of how to smooth hand-over

between design and development, almost everyone who

has experienced this situation could come up with their

own list. This one is mine, based on some of the more

common experiences we have at edgeofmyseat.com. So in

bullet point form, here’s my checklist for handing a design

over.

▪ Is the layout fixed, or fluid?

▪ Does each element cope with expanding for larger text

and more content?

▪ Are all the graphics large enough to cope with an area

expanding?

▪ Does each interactive element have a state for with and

without JavaScript?

▪ Does each element have a state for logged in and

logged out users?

▪ How are any custom fonts being displayed? (and does

the developer have the font to use?)

14 24 ways 2008 edition

http://edgeofmyseat.com/

▪ Does each interactive element have error and success

messages designed?

▪ Do all form fields have a label and each form a submit

button?

▪ Is your Photoshop comp document well organised?

▪ Have you provided flat PDFs of each state?

▪ Have you provided a colour reference?

▪ Are we having fun yet?

ABOUT THE AUTHOR

Easing The Path from Design to Development

24 ways 2008 edition 15

Drew McLellan is lead developer on your favourite small CMS,

Perch. He is Director and Senior Developer at UK-based web

development agency edgeofmyseat.com, and formerly Group

Lead at the Web Standards Project. When not publishing 24

ways, Drew keeps a personal site covering web development

issues and themes, takes photos and tweets a lot.

16 24 ways 2008 edition

http://grabaperch.com/
http://allinthehead.com/
http://flickr.com/drewm/
http://twitter.com/drewm

Veerle Pieters 24ways.org/200802

2. Geometric Background
Patterns

When the design is finished and you’re
about to start the coding process, you have
to prepare your graphics. If you’re working
with a pattern background you need to
export only the repeating fragment. It can
be a bit tricky to isolate a fragment to
achieve a seamless pattern background. For
geometric patterns there is a method I
always follow and that I want to share with
you. Take for example a perfect 45° diagonal
line pattern.

Geometric Background Patterns

24 ways 2008 edition 17

http://24ways.org/200802

How do you define this pattern fragment so it will be

rendered seamlessly?

Here is the method I usually follow to avoid a mismatch.

First, zoom in so you see enough detail and you can

distinguish the pixels. Select the Rectangular Marquee

Selection tool and start your selection at the intersection

of 2 different colors of a diagonal line. Hold down the Shift

key while dragging so you drag a perfect square.

18 24 ways 2008 edition

Release the mouse when you reach the exact same

intesection (as your starting) point at the top right.

Copy this fragment (using Copy Merged: Cmd/Ctrl + Shift +

C) and paste the fragment in a new layer. Give this layer

the name ‘pattern’. Now hold down the Command Key

(Control Key on Windows) and click on the ‘pattern’ layer in

the Layers Palette to select the fragment. Now go to Edit >

Define Pattern, enter a name for your pattern and click OK.

Test your pattern in a new document. Create a new

document of 600 px by 400px, hit Cmd/Ctrl + A and go to

Edit > Fill… and choose your pattern. If the result is OK,

you have created a perfect pattern fragment.

Geometric Background Patterns

24 ways 2008 edition 19

Below you see this pattern enlarged. The guides show the

boundaries of the pattern fragment and the red pixels are

the reference points. The red pixels at the top right,

bottom right and bottom left should match the red pixel

at the top left.

20 24 ways 2008 edition

This technique should work for every geometric pattern.

Some patterns are easier than others, but this, and the

Photoshop pattern fill test, has always been my guideline.

OTHER GEOMETRIC PATTERN EXAMPLES

Example 1

Not all geometric pattern fragments are squares. Some

patterns look easy at first sight, because they look very

repetitive, but they can be a bit tricky.

Geometric Background Patterns

24 ways 2008 edition 21

Zoomed in pattern fragment with point of reference

shown:

22 24 ways 2008 edition

Example 2

Some patterns have a clear repeating point that can guide

you, such as the blue small circle of this pattern as you can

see from this zoomed in screenshot:

Zoomed in pattern fragment with point of reference

shown:

Geometric Background Patterns

24 ways 2008 edition 23

Example 3

The different diagonal colors makes a bit more tricky to

extract the correct pattern fragment.

24 24 ways 2008 edition

The orange dot, which is the starting point of the selection

is captured a few times inside the fragment selection:

Geometric Background Patterns

24 ways 2008 edition 25

ABOUT THE AUTHOR

Veerle Pieters is a graphic/web designer based in Deinze,

Belgium. Starting in ’92 as a freelance graphic designer, Veerle

worked on print design before focussing more on webdesign

and GUI (since ’96). She runs her own design studio Duoh!

together with Geert Leyseele. Veerle has been blogging since

2003 and is considered number 39 on the list of “NxE’s Fifty

Most Influential ‘Female’ Bloggers“.

26 24 ways 2008 edition

http://veerle.duoh.com
http://www.duoh.com
http://northxeast.com/general/nxe�s-fifty-most-influential-female-bloggers/
http://northxeast.com/general/nxe�s-fifty-most-influential-female-bloggers/

Jon Hicks 24ways.org/200803

3. User Styling

During the recent US elections, Twitter
decided to add an ‘election bar’ as part of
their site design. You could close it if it
annoyed you, but the action wasn’t
persistent and the bar would always come
back like a bad penny.

The solution to common browsing problems like this is

CSS. ‘User styling’ (or the creepy ‘skinning’) is the creation

of CSS rules to customise and personalise a particular

domain. Aside from hiding adverts and other annoyances,

there are many reasons for taking the time and effort to

do it:

▪ Improving personal readability by changing text size

and colour

▪ Personalising the look of a web app like GMail to look

less insipid

▪ Revealing microformats

User Styling

24 ways 2008 edition 27

http://24ways.org/200803
http://hicksdesign.co.uk/journal/highlight-microformats-with-css

▪ Sport! My dreams of site skinning tennis are not yet

fully realised, but it’ll be all the rage by next Christmas,

believe me.

Hopefully you’re now asking “But how? HOW?!”. The

process of creating a site skin is roughly as follows:

1. See something you want to change

2. Find out what it’s called, and if any rules already apply

to it

3. Write CSS rule(s) to override and/or enhance it.

4. Apply the rules

So let’s get stuck in…

See something

Let’s start small with Multimap.com. Look at that big

header – it takes up an awful lot of screen space doesn’t

it?

28 24 ways 2008 edition

No matter, we can fix it.

TOOLS

Now we need to find out where that big assed header is in

the DOM, and make overriding CSS rules. The best tool

I’ve found yet is the Mac OS X app, CSS Edit. It utilises a

slick ‘override stylesheets’ function and DOM Inspector.

Rather than give you all the usual DOM inspection tools,

CSS Edit’s is solely concerned with style. Go into ‘X-Ray’

mode, click an element, and look at the inspector window

to see every style rule governing it. Click the selector to

be taken to where it lives in the CSS. It really is a user

styling dream app.

User Styling

24 ways 2008 edition 29

http://macrabbit.com/cssedit/

Having said all that, you can achieve all this with free,

cross platform tools – namely Firefox with the Firebug

and Stylish extensions. We’ll be using them for these

examples, so make sure you have them installed if you

want to follow along.

30 24 ways 2008 edition

http://getfirebug.com/
https://addons.mozilla.org/en-US/firefox/addon/2108

Using Firebug, we can see that the page is very helpfully

marked up, and that whole top area is simply a div with an

ID of header.

Change Something

When you installed Stylish, it added a page and brush icon

to your status bar. Click on that, and choose Write Style >

for Multimap.com. The other options allow you to only

create a style for a particular part of a website or URL, but

we want this to apply to the whole of Multimap:

User Styling

24 ways 2008 edition 31

The ‘Add Style’ window then pops up, with the @-moz-

document query at the top:

@namespace url(http://www.w3.org/1999/xhtml);

@-moz-document domain("multimap.com") {

}

All you need to do is add the CSS to hide the header, in

between the curly brackets.

@namespace url(http://www.w3.org/1999/xhtml);

@-moz-document domain("multimap.com") {

#header {display: none;}

}

32 24 ways 2008 edition

A click of the preview button shows us that it’s worked!

Now the map appears further up the page. The ethics of

hiding adverts is a discussion for another time, but let’s

face it, when did you last whoop at the sight of a banner?

Make Something Better

If we’re happy with our modifications, all we need to do is

give it a name and save. Whenever you visit

Multimap.com, the style will be available. Stylish also

allows you to toggle a style on/off via the status bar menu.

If you feel you want to share this style with the world,

User Styling

24 ways 2008 edition 33

then userstyles.org is the place to do it. It’s a grand

repository of customisations that Stylish connects with.

Whenever you visit a site, you can see if anyone else has

written a style for it, again, via the status bar menu “Find

Styles for this Page”. Selecting this with “BBC News”

shows that there are plenty of options, ranging from small

layout tweaks to redesigns:

What’s more, whenever a style is updated, Stylish will

notify you, and offer a one-click process to update it. This

does only work in Firefox and Flock, so I’ll cover ways of

applying site styles to other browsers later.

34 24 ways 2008 edition

http://userstyles.org/

Specific Techniques

IMPORTANT!

In the Multimap example there wasn’t a display specified

on that element, but it isn’t always going to be that easy.

You may have spent most of your CSS life being a good

designer and not resorting to adding !important to give

your rule priority. There’s no way to avoid this in user

styling – if you’re overriding an existing rule it’s a

necessity! Be prepared to be typing !important a lot.

STAR SELECTOR

The Universal Selector is a particularly useful way to start

a style. For example, if we want to make Flickr use

Helvetica before Arial (as they should’ve done!), we can

cover all occurrences with just one rule:

* {font-family: "Helvetica Neue", Helvetica, sans-serif

!important;}

You can also use it to select ‘everything within an element’,

by placing it after the element name:

#content * {font-family: "Helvetica Neue", Helvetica,

sans-serif !important;}

User Styling

24 ways 2008 edition 35

http://reference.sitepoint.com/css/universalselector

SWAPPING IMAGES

If you’re changing something a little more complex, such

as Google Reader, then at some point you’ll probably want

to change an . The technique for replacing an image

involves:

1. making your replacement image the background of

the tag

2. adding padding top and left to the size of you image to

push the ‘top’ image away

3. making the height and width zero.

The old image is then pushed out of the way and hidden

from view, allowing the replacement in the background to

be revealed. Targeting the image may require using an

attribute selector:

img[src="/reader/ui/

3544433079-tree-view-folder-open.gif"] {

padding: 16px 0 0 16px;

width: 0 !important;

height: 0 !important;

background-image: url(

AAAf8/

36 24 ways 2008 edition

9hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAA

Bx0RVh0U29mdHdhcmUAQWRvYmUgRmlyZXdvcmtzIENTM5jWRgMAAAAVdE

VYdENyZWF0aW9uIFRpbWUAMjkvNi8wOJJ/

BVgAAAG3SURBVDiNpZIhb5RBEIaf

2W+vpIagIITSBIHBgsGjEYQaFLYShcITDL+ABIPnh4BFN0GQNFA4Cnf3fbszL2L3

jiuEVLDJbCazu8+8Mzsmif9ZBvDy7bvXlni0HRe8eXL/

zuPzABng62J5kFKaAQS

QgJAOgHMB9vDZq+d71689Hcyw9LfAZAYdioE10VSJo6OPL/

KNvSuHD+7dhU

0vHEsDUUWJChIlYJIjFx5BuMB2mJY/DnMoOJl/

R147oBUR0QAm8LAGCOEh3IO

ULiAl8jSOy/

nPetGsbGRKjktEiBCEHMlQj4loCuu4zCXCi4lUHTNDtGqEiACTqAFSI

OgAUAKv4bkWVy2g6tAbJtGy0TNugM3HADmlurKH27dVZSecxjboXggiAsMItR

h99wTILdewYRpXVJWtY85k7fPW8e1GpJFJacgesXs6VYYomz9G2yDhwPB7NEB

BDAMK7WYJlisYVBCpfaJBeB+eocFyVyAgCaoMCTJSTOOCWSyILrAnaXpSexRsx

GGAZ0AR+XT+5fjzyfwSpnUB/1w64xizVI/

t6q3b+58+vJ96mWtLf9haxNoc8M

v7N3d+AT4XPcFIxghoAAAAAElFTkSuQmCC) no-repeat !important;

}

Woah boy! What was all that gubbins in the background-

image? It was a Data URI, and you can create these easily

with Hixie’s online tool. It’s simply the image translated

into text so that it can be embedded in the CSS, cutting

down on the number of http requests. It’s also a necessity

with Mozilla browsers, as they don’t allow user CSS to

reference images stored locally. Converting images to

URI’s avoids this, as well as making a style easily portable

– no images folder to pass around.

User Styling

24 ways 2008 edition 37

http://software.hixie.ch/utilities/cgi/data/data

Don’t forget all your other CSS techniques at your

disposal: inserting your own content with :before and

:after pseudo classes, make elements semi-transparent

with opacity and round box corners without hacking . You

can have fun, and for once, enjoy the freedom of not

worrying about IE!

User styling without Stylish

Instead of using the Stylish extension, you can add rules to

the userContent.css file, or use @import in that file to load

a separate stylesheet. You can find this is in /Library/

Application Support/Camino/chrome/ on OS X, or C/

Program Files/Mozilla Firefox/Chrome on Windows. This

is only way to apply user styles in Camino, but what about

other browsers?

OPERA & OMNIWEB:

Both allow you to specify a custom CSS file as part of the

site’s preferences. Opera also allows custom javascript,

using the same syntax as Greasemonkey scripts (more on

that below)

SAFARI

There are a few options here: the PithHelmet and

SafariStand haxies both allow custom stylesheets, or

alternatively, a Greasemonkey style user script can

38 24 ways 2008 edition

http://www.culater.net/software/PithHelmet/PithHelmet.php
http://hetima.com/safari/stand-e.html

employed via GreaseKit. The latter is my favoured

solution on my Helvetireader theme, as it can allow for

more prescriptive domain rules, just like the Mozilla @-

moz-document method. User scripts are also the solution

supported by the widest range of browsers.

WHAT NOW?

Hopefully I’ve given you enough information for you to be

able start making your own styles. If you want to go

straight in and tackle the ‘Holy Grail’, then off with you to

GMail – I get more requests to theme that than anything

else!

If you’re a site author and want to encourage this sort of

tom foolery, a good way is to provide a unique class or ID

name with the body tag:

<body id="journal" class="hicksdesign-co-uk">

This makes it very easy to write rules that only apply to

that particular site. If you wanted to use Safari without

any of the haxies mentioned above, this method means

you can include rules in a general CSS file (chosen via

Preferences > Advanced > Stylesheet) without affecting

other sites.

One final revelation on user styling – it’s not just for web

sites. You can tweak the UI of Firefox itself with the

userChrome.css. You’ll need to use the in-built DOM

User Styling

24 ways 2008 edition 39

http://8-p.info/greasekit/
http://helvetireader.com/

Inspector instead of Firebug to inspect the window

chrome, instead of a page. Great if you want to make small

tweaks (changing the size of tab text for example) without

creating a full blown theme.

ABOUT THE AUTHOR

Jon Hicks is one half of the creative partnership Hicksdesign,

designing for a variety of mediums, but with a particular

fondness for icon and logo design. In fact he’s written a book,

about it called The Icon Handbook, released in January 2012.

His recent clients include Skype, Mailchimp, Shopify and Opera

Software, but is best known for his uncanny impression of

Lucius Malfoy singing “I only want to be with you”.

40 24 ways 2008 edition

http://www.hicksdesign.co.uk
http://iconhandbook.co.uk

He blogs about design and personal interests (mainly Dr Who

and Cycling) at hicksdesign.co.uk/journal

User Styling

24 ways 2008 edition 41

http://www.hicksdesign.co.uk/journal/

Christian Heilmann 24ways.org/200804

4. Sitewide Search On A
Shoe String

One of the questions I got a lot when I was
building web sites for smaller businesses
was if I could create a search engine for their
site. Visitors should be able to search only
this site and find things without the
maintainer having to put “related articles”
or “featured content” links on every page by
hand.

Back when this was all fields this wasn’t easy as you either

had to write your own scraping tool, use ht://dig or a paid

service from providers like Yahoo, Altavista or later on

Google. In the former case you had to swallow the bitter

pill of computing and indexing all your content and storing

it in a database for quick access and in the latter it hurt

your wallet.

Times have moved on and nowadays you can have the

same functionality for free using Yahoo’s “Build your own

search service” – BOSS. The cool thing about BOSS is that

it allows for a massive amount of hits a day and you can

42 24 ways 2008 edition

http://24ways.org/200804
http://www.htdig.org/

mash up the returned data in any format you want.

Another good feature of it is that it comes with JSON-P as

an output format which makes it possible to use it without

any server-side component!

Starting with a working HTML form

In order to add a search to your site, you start with a

simple HTML form which you can use without JavaScript.

Most search engines will allow you to filter results by

domain. In this case we will search “bbc.co.uk”. If you use

Yahoo as your standard search, this could be:

<form id="customsearch" action="http://search.yahoo.com/

search">

<div>

<label for="p">Search this site:</label>

<input type="text" name="p" id="term">

<input type="hidden" name="vs" id="site"

value="bbc.co.uk">

<input type="submit" value="go">

</div>

</form>

The Google equivalent is:

<form id="customsearch" action="http://www.google.co.uk/

search">

<div>

<label for="p">Search this site:</label>

<input type="text" name="as_q" id="term">

<input type="hidden" name="as_sitesearch" id="site"

Sitewide Search On A Shoe String

24 ways 2008 edition 43

value="bbc.co.uk">

<input type="submit" value="go">

</div>

</form>

In any case make sure to use the ID term for the search

term and site for the site, as this is what we are going to

use for the script. To make things easier, also have an ID

called customsearch on the form.

To use BOSS, you should get your own developer API for

BOSS and replace the one in the demo code. There is click

tracking on the search results to see how successful your

app is, so you should make it your own.

Adding the BOSS magic

BOSS is a REST API, meaning you can use it in any HTTP

request or in a browser by simply adding the right

parameters to a URL. Say for example you want to search

“bbc.co.uk” for “christmas” all you need to do is open the

following URL:

http://boss.yahooapis.com/ysearch/web/v1/

christmas?sites=bbc.co.uk&format=xml&appid=YOUR-APPLICATION-

ID

Try it out and click it to see the results in XML. We don’t

want XML though, which is why we get rid of the

format=xml parameter which gives us the same

information in JSON:

44 24 ways 2008 edition

https://developer.yahoo.com/wsregapp/
https://developer.yahoo.com/wsregapp/
http://boss.yahooapis.com/ysearch/web/v1/christmas?sites=bbc.co.uk&format=xml&appid=Kzv_lcHV34HIybw0GjVkQNnw4AEXeyJ9Rb1gCZSGxSRNrcif_HdMT9qTE1y9LdI-
http://boss.yahooapis.com/ysearch/web/v1/christmas?sites=bbc.co.uk&format=xml&appid=Kzv_lcHV34HIybw0GjVkQNnw4AEXeyJ9Rb1gCZSGxSRNrcif_HdMT9qTE1y9LdI-
http://boss.yahooapis.com/ysearch/web/v1/christmas?sites=bbc.co.uk&format=xml&appid=Kzv_lcHV34HIybw0GjVkQNnw4AEXeyJ9Rb1gCZSGxSRNrcif_HdMT9qTE1y9LdI-

http://boss.yahooapis.com/ysearch/web/v1/

christmas?sites=bbc.co.uk&appid=YOUR-APPLICATION-

ID

JSON makes most sense when you can send the output to

a function and immediately use it. For this to happen all

you need is to add a callback parameter and the JSON

will be wrapped in a function call. Say for example we

want to call SITESEARCH.found() when the data was

retrieved we can do it this way:

http://boss.yahooapis.com/ysearch/web/v1/

christmas?sites=bbc.co.uk&callback=SITESEARCH.found&appid=YOUR-APPLICATION-

ID

You can use this immediately in a script node if you want

to. The following code would display the total amount of

search results for the term christmas on bbc.co.uk as an

alert:

<script type="text/javascript">

var SITESEARCH = {};

SITESEARCH.found = function(o){

alert(o.ysearchresponse.totalhits);

}

</script>

<script type="text/javascript"

src="http://boss.yahooapis.com/ysearch/web/v1/

christmas?sites=bbc.co.uk&callback=SITESEARCH.found&appid=Kzv_lcHV34HIybw0GjVkQNnw4AEXeyJ9Rb1gCZSGxSRNrcif_HdMT9qTE1y9LdI-">

</script>

Sitewide Search On A Shoe String

24 ways 2008 edition 45

http://boss.yahooapis.com/ysearch/web/v1/christmas?sites=bbc.co.uk&appid=Kzv_lcHV34HIybw0GjVkQNnw4AEXeyJ9Rb1gCZSGxSRNrcif_HdMT9qTE1y9LdI-
http://boss.yahooapis.com/ysearch/web/v1/christmas?sites=bbc.co.uk&appid=Kzv_lcHV34HIybw0GjVkQNnw4AEXeyJ9Rb1gCZSGxSRNrcif_HdMT9qTE1y9LdI-
http://boss.yahooapis.com/ysearch/web/v1/christmas?sites=bbc.co.uk&appid=Kzv_lcHV34HIybw0GjVkQNnw4AEXeyJ9Rb1gCZSGxSRNrcif_HdMT9qTE1y9LdI-
http://boss.yahooapis.com/ysearch/web/v1/christmas?sites=bbc.co.uk&callback=SITESEARCH.found&appid=Kzv_lcHV34HIybw0GjVkQNnw4AEXeyJ9Rb1gCZSGxSRNrcif_HdMT9qTE1y9LdI-
http://boss.yahooapis.com/ysearch/web/v1/christmas?sites=bbc.co.uk&callback=SITESEARCH.found&appid=Kzv_lcHV34HIybw0GjVkQNnw4AEXeyJ9Rb1gCZSGxSRNrcif_HdMT9qTE1y9LdI-
http://boss.yahooapis.com/ysearch/web/v1/christmas?sites=bbc.co.uk&callback=SITESEARCH.found&appid=Kzv_lcHV34HIybw0GjVkQNnw4AEXeyJ9Rb1gCZSGxSRNrcif_HdMT9qTE1y9LdI-
http://24ways.org/examples/sitewide-search-on-a-shoestring/script-node.html

However, for our example, we need to be a bit more clever

with this.

Enhancing the search form

Here’s the script that enhances a search form to show

results below it.

SITESEARCH = function(){

var config = {

IDs:{

searchForm:'customsearch',

term:'term',

site:'site'

},

loading:'Loading results...',

noresults:'No results found.',

appID:'YOUR-APP-ID',

results:20

};

var form;

var out;

function init(){

if(config.appID === 'YOUR-APP-ID'){

alert('Please get a real application ID!');

} else {

form =

document.getElementById(config.IDs.searchForm);

if(form){

form.onsubmit = function(){

var site =

document.getElementById(config.IDs.site).value;

var term =

46 24 ways 2008 edition

http://24ways.org/examples/sitewide-search-on-a-shoestring/boss-site-search.js
http://24ways.org/examples/sitewide-search-on-a-shoestring/enhance-form.html
http://24ways.org/examples/sitewide-search-on-a-shoestring/enhance-form.html

document.getElementById(config.IDs.term).value;

if(typeof site === 'string' && typeof term ===

'string'){

if(typeof out !== 'undefined'){

out.parentNode.removeChild(out);

}

out = document.createElement('p');

out.appendChild(document.createTextNode(config.loading));

form.appendChild(out);

var APIurl = 'http://boss.yahooapis.com/

ysearch/web/v1/' +

term +

'?callback=SITESEARCH.found&sites=' +

site + '&count=' +

config.results +

'&appid=' + config.appID;

var s = document.createElement('script');

s.setAttribute('src',APIurl);

s.setAttribute('type','text/javascript');

document.getElementsByTagName('head')[0].appendChild(s);

return false;

}

};

}

}

};

function found(o){

var list = document.createElement('ul');

var results = o.ysearchresponse.resultset_web;

if(results){

var item,link,description;

for(var i=0,j=results.length;i<j;i++){

Sitewide Search On A Shoe String

24 ways 2008 edition 47

item = document.createElement('li');

link = document.createElement('a');

link.setAttribute('href',results[i].clickurl);

link.innerHTML = results[i].title;

item.appendChild(link);

description = document.createElement('p');

description.innerHTML = results[i]['abstract'];

item.appendChild(description);

list.appendChild(item);

}

} else {

list = document.createElement('p');

list.appendChild(document.createTextNode(config.noresults));

}

form.replaceChild(list,out);

out = list;

};

return{

config:config,

init:init,

found:found

};

}();

Oooohhhh scary code! Let’s go through this one bit at a

time:

We start by creating a module called SITESEARCH and give

it an configuration object:

SITESEARCH = function(){

var config = {

IDs:{

48 24 ways 2008 edition

searchForm:'customsearch',

term:'term',

site:'site'

},

loading:'Loading results...',

appID:'YOUR-APP-ID',

results:20

}

Configuration objects are a great idea to make your code

easy to change and also to override. In this case you can

define different IDs than the one agreed upon earlier,

define a message to show when the results are loading,

when there aren’t any results, the application ID and the

number of results that should be displayed.

Note: you need to replace “YOUR-APP-ID” with the real

ID you retrieved from BOSS, otherwise the script will

complain!

var form;

var out;

function init(){

if(config.appID === 'YOUR-APP-ID'){

alert('Please get a real application ID!');

} else {

We define form and out as variables to make sure that all

the methods in the module have access to them. We then

check if there was a real application ID defined. If there

wasn’t, the script complains and that’s that.

Sitewide Search On A Shoe String

24 ways 2008 edition 49

http://www.wait-till-i.com/2008/05/23/script-configuration/
https://developer.yahoo.com/wsregapp/
https://developer.yahoo.com/wsregapp/

form = document.getElementById(config.IDs.searchForm);

if(form){

form.onsubmit = function(){

var site =

document.getElementById(config.IDs.site).value;

var term =

document.getElementById(config.IDs.term).value;

if(typeof site === 'string' && typeof term ===

'string'){

If the application ID was a winner, we check if the form

with the provided ID exists and apply an onsubmit event

handler. The first thing we get is the values of the site we

want to search in and the term that was entered and

check that those are strings.

if(typeof out !== 'undefined'){

out.parentNode.removeChild(out);

}

out = document.createElement('p');

out.appendChild(document.createTextNode(config.loading));

form.appendChild(out);

If both are strings we check of out is undefined. We will

create a loading message and subsequently the list of

search results later on and store them in this variable. So

if out is defined, it’ll be an old version of a search (as users

will re-submit the form over and over again) and we need

to remove that old version.

We then create a paragraph with the loading message and

append it to the form.

50 24 ways 2008 edition

var APIurl = 'http://boss.yahooapis.com/ysearch/web/v1/'

+

term +

'?callback=SITESEARCH.found&sites=' +

site + '&count=' +

config.results +

'&appid=' + config.appID;

var s = document.createElement('script');

s.setAttribute('src',APIurl);

s.setAttribute('type','text/javascript');

document.getElementsByTagName('head')[0].appendChild(s);

return false;

}

};

}

}

};

Now it is time to call the BOSS API by assembling a

correct REST URL, create a script node and apply it to the

head of the document. We return false to ensure the

form does not get submitted as we want to stay on the

page.

Notice that we are using SITESEARCH.found as the

callback method, which means that we need to define this

one to deal with the data returned by the API.

Sitewide Search On A Shoe String

24 ways 2008 edition 51

function found(o){

var list = document.createElement('ul');

var results = o.ysearchresponse.resultset_web;

if(results){

var item,link,description;

We create a new list and then get the resultset_web

array from the data returned from the API. If there aren’t

any results returned, this array will not exist which is why

we need to check for it. Once we done that we can define

three variables to repeatedly store the item title we want

to display, the link to point to and the description of the

link.

for(var i=0,j=results.length;i<j;i++){

item = document.createElement('li');

link = document.createElement('a');

link.setAttribute('href',results[i].clickurl);

link.innerHTML = results[i].title;

item.appendChild(link);

description = document.createElement('p');

description.innerHTML = results[i]['abstract'];

item.appendChild(description);

list.appendChild(item);

}

We then loop over the results array and assemble a list of

results with the titles in links and paragraphs with the

abstract of the site. Notice the bracket notation for

abstract as abstract is a reserved word in JavaScript2 :).

52 24 ways 2008 edition

} else {

list = document.createElement('p');

list.appendChild(document.createTextNode(config.noresults));

}

form.replaceChild(list,out);

out = list;

};

If there aren’t any results, we define a paragraph with the

no results message as list. In any case we replace the old

out (the loading message) with the list and re-define out

as the list.

return{

config:config,

init:init,

found:found

};

}();

All that is left to do is return the properties and methods

we want to make public. In this case found needs to be

public as it is accessed by the API return. We return init

to make it accessible and config to allow implementers to

override any of the properties.

Using the script

In order to use this script, all you need to do is to add it

after the form in the document, override the API key with

your own and call init():

Sitewide Search On A Shoe String

24 ways 2008 edition 53

<form id="customsearch" action="http://search.yahoo.com/

search">

<div>

<label for="p">Search this site:</label>

<input type="text" name="p" id="term">

<input type="hidden" name="vs" id="site"

value="bbc.co.uk">

<input type="submit" value="go">

</div>

</form>

<script type="text/javascript"

src="boss-site-search.js"></script>

<script type="text/javascript">

SITESEARCH.config.appID =

'copy-the-id-you-know-to-get-where';

SITESEARCH.init();

</script>

Where to go from here

This is just a very simple example of what you can do with

BOSS. You can define languages and regions, retrieve and

display images and news and mix the results with other

data sources before displaying them. One very cool

feature is that by adding a view=keyterms parameter to

the URL you can get the keywords of each of the results to

drill deeper into the search. An example for this written in

PHP is available on the YDN blog. For JavaScript solutions

there is a handy wrapper called yboss available to help

you go nuts.

54 24 ways 2008 edition

http://developer.yahoo.net/blog/archives/2008/11/build_your_own.html
http://icant.co.uk/sandbox/yboss/

ABOUT THE AUTHOR

Christian Heilmann grew up in Germany and, after a year

working for the red cross, spent a year as a radio producer.

From 1997 onwards he worked for several agencies in Munich

as a web developer. In 2000 he moved to the States to work for

Etoys and, after the .com crash, he moved to the UK where he

lead the web development department at Agilisys. In April 2006

he joined Yahoo! UK as a web developer and moved on to be the

Lead Developer Evangelist for the Yahoo Developer Network.

In December 2010 he moved on to Mozilla as Principal

Developer Evangelist for HTML5 and the Open Web. He

Sitewide Search On A Shoe String

24 ways 2008 edition 55

http://www.webkrauts.de/2008/12/04/suche-mit-alles-und-scharf-boss/
http://uk.yahoo.com/

publishes an almost daily blog at http://wait-till-i.com and runs

an article repository at http://icant.co.uk. He also authored

Beginning JavaScript with DOM Scripting and Ajax: From

Novice to Professional.

56 24 ways 2008 edition

http://wait-till-i.com
http://icant.co.uk
http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FBeginning-JavaScript-DOM-Scripting-Ajax%2Fdp%2F1590596803%2F&tag=24ways-20&linkCode=ur2&camp=1789&creative=9325
http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FBeginning-JavaScript-DOM-Scripting-Ajax%2Fdp%2F1590596803%2F&tag=24ways-20&linkCode=ur2&camp=1789&creative=9325

Mark Boulton 24ways.org/200805

5. Art Directing with
Looking Room

Using
photographic composition techniques to start to art
direct on the template-driven web.

Think back to last night. There you are,
settled down in front of the TV, watching
your favourite soap opera, with nice hot cup
of tea in hand. Did you notice – whilst
engrossed in the latest love-triangle – that
the cameraman has worked very hard to
support your eye’s natural movement on-
screen? He’s carefully framed individual
shots to create balance.

Think back to last week. There you were, sat with your

mates watching the big match. Did you notice that the

cameraman frames the shot to go with the direction of

play? A player moving right will always be framed so that

he is on the far left, with plenty of ‘room’ to run into.

Art Directing with Looking Room

24 ways 2008 edition 57

http://24ways.org/200805

Both of these cameramen use a technique called Looking

Room, sometimes called Lead Room. Looking Room is the

space between the subject (be it a football, or a face), and

the edge of the screen. Specifically, Looking Room is the

negative space on the side the subject is looking or

moving. The great thing is, it’s not just limited to

photography, film or television; we can use it in web

design too.

BASIC FRAMING

Before we get into Looking Room, and how it applies to

web, we need to have a look at some basics of

photographic composition.

Many web sites use imagery, or photographs, to enhance

the content. But even with professionally shot

photographs, without a basic understanding of framing or

composition, you can damage how the image is perceived.

A simple, easy way to make photographs more interesting

is to fill the frame.

Take this rather mundane photograph of a horse:

58 24 ways 2008 edition

A typical point and click affair. But, we can work with this.

By closely cropping, and filling the frame, we can instantly

change the mood of the shot.

Art Directing with Looking Room

24 ways 2008 edition 59

http://flickr.com/photos/mikepedroncelli/114987037/

I’ve also added Looking Room on the right of the horse.

This is space that the horse would be walking into. It gives

the photograph movement.

SUBJECT, SPACE, AND MOVEMENT

Generally speaking, a portrait photograph will have a

subject and space around them. Visual interest in portrait

photography can come from movement; how the eye

moves around the shot. To get the eye moving, the

photographer modifies the space around the subject.

Look at this portrait:

60 24 ways 2008 edition

http://flickr.com/photos/mikepedroncelli/114987037/

The photography has framed the subject on the right,

allowing for whitespace, or Looking Room, in the direction

the subject is looking. The framing of the subject (1), with

the space to the left (2) – the Looking Room – creates

movement, shown by the arrow (3).

Art Directing with Looking Room

24 ways 2008 edition 61

http://flickr.com/photos/laenulfean/548688957/

Note the subject is not framed centrally (shown by the

lighter dotted line).

If the photographer had framed the subject with equal

space either side, the resulting composition is static, like

our horse.

62 24 ways 2008 edition

If the photographer framed the subject way over on the

left, as she is looking that way, the resulting whitespace on

the right leads a very uncomfortable composition.

Art Directing with Looking Room

24 ways 2008 edition 63

The root of this discomfort is what the framing is telling

our eye to do. The subject, looking to the left, suggests to

us that we should do the same. However, the Looking

Room on the right is telling our eye to occupy this space.

The result is a confusing back and forth.

HOW LOOKING ROOM APPLIES TO THE WEB

We can apply the same theory to laying out a web page or

application. Taking the three same elements – Subject,

Space, and resulting Movement – we can guide a user’s

eye to the elements we need to. As designers, or content

editors, framing photographs correctly can have a subtle

but important effect on how a page is visually scanned.

Take this example:

64 24 ways 2008 edition

The BBC homepage uses great photography as a way of

promoting content. Here, they have cropped the main

photograph to guide the user’s eye into the content.

By applying the same theory, the designer or content

editor has applied considerable Looking Room (2) to the

photograph to create balance with the overall page

design, but also to create movement of the user’s eye

toward the content (1)

Art Directing with Looking Room

24 ways 2008 edition 65

http://www.bbc.co.uk

If the image was flipped horizontally. The Looking Room is

now on the right. The subject of the photograph is looking

off the page, drawing the user’s eye away from the

content. Once again, this results in a confusing back and

forth as your eye fights its way over to the left of the page.

66 24 ways 2008 edition

A LITTLE BIT OF ART DIRECTION

Art Direction can be described as the act or process of

managing the visual presentation of content. Art

Direction is difficult to do on the web, because content

and presentation are, more often than not, separated. But

where there are images, and when we know the templates

that those images will populate, we can go a little way to

bridging the gap between content and presentation.

By understanding the value of framing and Looking Room,

and the fact that it extends beyond just a good looking

photograph, we can start to see photography playing

more of an integral role in the communication of content.

We won’t just be populating templates. We’ll be art

directing.

Photo credits:

▪ Portrait by Carsten Tolkmit

▪ Horse by Mike Pedroncelli

Art Directing with Looking Room

24 ways 2008 edition 67

http://flickr.com/photos/laenulfean/548688957/
http://flickr.com/photos/mikepedroncelli/114987037/

ABOUT THE AUTHOR

Mark Boulton is a graphic designer from near Cardiff in the UK.

He used to work as a Senior Designer for the BBC, before he

took leave of his senses and formed his own design consultancy,

Mark Boulton Design. He studied typography, enjoys watching

a good boxing match, and is partial to a really good cuppa.

68 24 ways 2008 edition

http://www.markboulton.co.uk/

Matt Riggott 24ways.org/200806

6. Using Google App
Engine as Your Own
Content Delivery
Network

Do you remember, years ago, when hosting
was expensive, domain names were the
province of the rich, and you hosted your
web pages on Geocities? It seems odd to me
now that there was a time when each and
every geek didn’t have his own top-level
domain and super hosting setup. But as the
parts became more and more affordable a
man could become an outcast if he didn’t
have his own slightly surreal-sounding TLD.

And so it will be in the future when people realise with

surprise there was a time before affordable content

delivery networks.

Using Google App Engine as Your Own Content Delivery
Network

24 ways 2008 edition 69

http://24ways.org/200806

A content delivery network, or CDN, is a system of

servers spread around the world, serving files from the

nearest physical location. Instead of waiting for a file to

find its way from a server farm in Silicon Valley 8,000

kilometres away, I can receive it from London, Dublin, or

Paris, cutting down the time I wait. The big names —

Google, Yahoo, Amazon, et al — use CDNs for their sites,

but they’ve always been far too expensive for us mere

mortals. Until now.

There’s a service out there ready for you to use as your

very own CDN. You have the company’s blessing, you

won’t need to write a line of code, and — best of all — it’s

free. The name? Google App Engine.

In this article you’ll find out how to set up a CDN on

Google App Engine. You’ll get the development software

running on your own computer, tell App Engine what files

to serve, upload them to a web site, and give everyone

round the world access to them.

CREATING YOUR FIRST GOOGLE APP ENGINE
PROJECT

Before we do anything else, you’ll need to download the

Google App Engine software development kit (SDK).

You’ll need Python 2.5 too — you won’t be writing any

Python code but the App Engine SDK will need it to run

on your computer. If you don’t have Python, App Engine

70 24 ways 2008 edition

http://appengine.google.com/
http://code.google.com/appengine/downloads.html
http://code.google.com/appengine/downloads.html

will install it for you (if you use Mac OS X 10.5 or a Linux-

based OS you’ll have Python; if you use Windows you

won’t).

Done that? Excellent, because that’s the hardest step. The

rest is plain sailing.

You’ll need to choose a unique ‘application id’ — nothing

more than a name — for your project. Make sure it

consists only of lowercase letters and numbers. For this

article I’ll use 24ways2008, but you can choose anything

you like.

On your computer, create a folder named after your

application id. This folder can be anywhere you want: your

desktop, your documents folder, or wherever you usually

keep your web files. Within your new folder, create a

folder called assets, and within that folder create three

folders called images, css, and javascript. These three

folders are the ones you’ll fill with files and serve from

your content delivery network. You can have other

folders too, if you like.

That will leave you with a folder structure like this:

24ways2008/

assets/

css/

images/

javascript/

Using Google App Engine as Your Own Content Delivery
Network

24 ways 2008 edition 71

Now you need to put a few files in these folders, so we can

later see our CDN in action. You can put anything you

want in these folders, but for this example we’ll include an

HTML file, a style sheet, an image, and a Javascript library.

In the top-level folder (the one I’ve called 24ways2008),

create a file called index.html. Fill this with any content

you want. In the assets/css folder, create a file named

core.css and throw in a couple of CSS rules for good

measure. In the assets/images directory save any image

that takes your fancy — I’ve used the silver badge from

the App Engine download page. Finally, to fill the

JavaScript folder, add in this jQuery library file. If you’ve

got the time and the inclination, you can build a page that

uses all these elements.

So now we should have a set of files and folders that look

something like this:

24ways2008/

assets/

index.html

css/

core.css

images/

appengine-silver-120x30.gif

javascript/

jquery-1.2.6.min.js

72 24 ways 2008 edition

http://code.google.com/appengine/images/appengine-silver-120x30.gif
http://code.google.com/appengine/images/appengine-silver-120x30.gif
http://code.google.com/p/jqueryjs/downloads/detail?name=jquery-1.2.6.min.js

Which leaves us with one last file to create. This is the

important one: it tells App Engine what to do with your

files. It’s named app.yaml, it sits at the top-level (inside the

folder I’ve named 24ways2008), and it needs to include

these lines:

application: 24ways2008

version: 1

runtime: python

api_version: 1

handlers:

- url: /

static_files: assets/index.html

upload: assets/index.html

- url: /

static_dir: assets

You need to make sure you change 24ways2008 on the first

line to whatever you chose as your application id, but

otherwise the content of your app.yaml file should be

identical. And with that, you’ve created your first App

Engine project. If you want it, you can download a zip file

containing my project.

Using Google App Engine as Your Own Content Delivery
Network

24 ways 2008 edition 73

http://24ways2008.appspot.com/project.zip
http://24ways2008.appspot.com/project.zip

TESTING YOUR PROJECT

As it stands, your project is ready to be uploaded to App

Engine. But we couldn’t call ourselves professionals if we

didn’t test it, could we? So, let’s put that downloaded SDK

to good use and run the project from your own computer.

One of the files you’ll find App Engine installed is named

dev_appserver.py, a Python script used to simulate App

Engine on your computer. You’ll find lots of information on

how to do this in the documentation on the development

web server, but it boils down to running the script like so

(the space and the dot at the end are important):

dev_appserver.py .

You’ll need to run this from the command-line: Mac users

can run the Terminal application, Linux users can run their

favourite shell, and Windows users will need to run it via

the Command Prompt (open the Start menu, choose

‘Run…’, type ‘cmd ‘, and click ‘OK’). Before you run the

script you’ll need to make sure you’re in the project folder

— in my case, as I saved it to my desktop I can go there by

typing

cd ~/Desktop/24ways2008

in my Mac’s Terminal app; if you’re using Windows you

can type

cd "C:\Documents and Settings\username\Desktop\

24ways2008"

74 24 ways 2008 edition

http://code.google.com/appengine/docs/thedevwebserver.html
http://code.google.com/appengine/docs/thedevwebserver.html

If that’s successful, you’ll see a few lines of output, the last

looking something like this:

INFO 2008-11-22 14:35:00,830 dev_appserver_main.py]

Running application 24ways2008 on port 8080:

http://localhost:8080

Now you can power up your favourite browser, point it to

http://localhost:8080/, and you’ll see the page you

saved as index.html. You’ll also find your CSS file at

http://localhost:8080/css/core.css. In fact, anything

you put inside the assets folder in the project will be

accessible from this domain. You’re running our own App

Engine web server!

Note that no-one else will be able to see your files:

localhost is a special domain that you can only see from

your computer — and once you stop the development

server (by pressing Control–C) you’ll not be able to see the

files in your browser until you start it again.

You might notice a new file has turned up in your project:

index.yaml. App Engine creates this file when you run the

development server, and it’s for internal App Engine use

only. If you delete it there are no ill effects, but it will

reappear when you next run the development server. If

you’re using version control (e.g. Subversion) there’s no

need to keep a copy in your repository.

Using Google App Engine as Your Own Content Delivery
Network

24 ways 2008 edition 75

http://localhost:8080/
http://localhost:8080/css/core.css

So you’ve tested your project and you’ve seen it working

on your own machine; now all you need to do is upload

your project and the world will be able to see your files

too.

UPLOADING YOUR PROJECT

If you don’t have a Google account, create one and then

sign in to App Engine. Tell Google about your new project

by clicking on the ‘Create an Application’ button. Enter

your application id, give the application a name, and agree

to the terms and conditions. That’s it. All we need do now

is upload the files.

Open your Mac OS X Terminal, Windows Command

Prompt, or Linux shell window again, move to the project

folder, and type (again, the space and the dot at the end

are important):

appcfg.py update .

Enter your email address and password when prompted,

and let App Engine do it’s thing. It’ll take no more than a

few seconds, but in that time App Engine will have done

the equivalent of logging in to an FTP server and copying

files across. It’s fairly understated, but you now have your

own project up and running. You can see mine at

http://24ways2008.appspot.com/, and everyone can see

76 24 ways 2008 edition

https://www.google.com/accounts/
http://appengine.google.com/
http://24ways2008.appspot.com/

yours at http://your-application-id.appspot.com/.

Your files are being served up over Google’s content

delivery network, at no cost to you!

BENEFITS OF USING GOOGLE APP ENGINE

The benefits of App Engine as a CDN are obvious: your

own server doesn’t suck up the bandwidth, while your

visitors will appreciate a faster site. But there are also less

obvious benefits.

First, once you’ve set up your site, updating it is an

absolute breeze. Each time you update a file (or a batch of

files) you need only run appcfg.py to see the changes

appear on your site. To paraphrase Joel Spolsky, a good

web site must be able to be updated in a single step. Many

designers and developers can’t make that claim, but with

App Engine, you can.

App Engine also allows multiple people to work on one

application. If you want a friend to be able to upload files

to your site you can let him do so without giving him

usernames and passwords — all he needs is his own

Google account. App Engine also gives you a log of all

actions taken by collaborators, so you can see who’s made

updates, and when.

Another bonus is the simple version control App Engine

offers. Do you remember the file named app.yaml you

created a while back? The second line looked like this:

Using Google App Engine as Your Own Content Delivery
Network

24 ways 2008 edition 77

http://www.joelonsoftware.com/articles/fog0000000043.html
http://googleappengine.blogspot.com/2008/10/new-admin-console-release.html
http://googleappengine.blogspot.com/2008/10/new-admin-console-release.html

version: 1

If you change the version number to 2 (or 3, or 4, etc), App

Engine will keep a copy of the last version you uploaded. If

anything goes wrong with your latest version, you can tell

App Engine to revert back to that last saved version. It’s

no proper version control system, but it could get you out

of a sticky situation.

One last thing to note: if you’re not happy using your-

application-id.appspot.com as your domain, App

Engine will quite happily use any domain you own.

THE WEAK POINTS OF GOOGLE APP ENGINE

In the right circumstances, App Engine can be a real boon.

I run my own site using the method I’ve discussed above,

and I’m very happy with it. But App Engine does have its

disadvantages, most notably those discussed by Aral

Balkan in his post ‘Why Google App Engine is broken and

what Google must do to fix it‘.

Aral found the biggest problems while using App Engine

as a web application platform; I wouldn’t recommend

using it as such either (at least for now) but for our

purposes as a CDN for static files, it’s much more worthy.

Still, App Engine has two shortcomings you should be

aware of.

78 24 ways 2008 edition

http://code.google.com/appengine/articles/domains.html
http://code.google.com/appengine/articles/domains.html
http://www.flother.com/
http://aralbalkan.com/1504
http://aralbalkan.com/1504

The first is that you can’t host a file larger than one

megabyte. If you want to use App Engine to host that

4.3MB download for your latest-and-greatest desktop

software, you’re out of luck. The only solution is to stick to

smaller files.

The second problem is the quota system. Google’s own

documentation says you’re allowed 650,000 requests a

day and 10,000 megabytes of bandwidth in and out

(20,000 megabytes in total), which should be plenty for

most sites. But people have seen sites shut down

temporarily for breaching quotas — in some cases after

inexplicable jumps in Google’s server CPU usage. Aral,

who’s seen it happen to his own sites, seemed genuinely

frustrated by this, and if you measure your hits in the

hundreds of thousands and don’t want to worry about

uptime, App Engine isn’t for you.

That said, for most of us, App Engine offers a fantastic

resource: the ability to host files on Google’s own content

delivery network, at no charge.

CONCLUSION

If you’ve come this far, you’ve seen how to create a Google

App Engine project and host your own files on Google’s

CDN. You’ve seen the great advantages App Engine offers

— an excellent content delivery network, the ability to

update your site with a single command, multiple authors,

Using Google App Engine as Your Own Content Delivery
Network

24 ways 2008 edition 79

http://code.google.com/appengine/articles/quotas.html
http://code.google.com/appengine/articles/quotas.html

simple version control, and the use of your own domain —

and you’ve come across some of its weaknesses — most

importantly the limit on file sizes and the quota system.

All that’s left to do is upload those applications — but not

before you’ve finished your Christmas shopping.

ABOUT THE AUTHOR

Matt Riggott is a web programmer and informatician living in

Edinburgh, Scotland. When in geek mode he enjoys using

Python and Django to help people do interesting things on the

web. He volunteers as a technical advisor for the Sandbag

Campaign and is available for freelance work.

80 24 ways 2008 edition

http://www.flother.com/
http://suda.co.uk/publications/informatician/
http://www.python.org/
http://www.djangoproject.com/
http://sandbag.org.uk/
http://sandbag.org.uk/

When trying to fit in with normal people he enjoys taking

photos, travelling, and following politics avidly.

Using Google App Engine as Your Own Content Delivery
Network

24 ways 2008 edition 81

http://www.flickr.com/photos/riggott/
http://www.flickr.com/photos/riggott/collections/72157600193200720/

Henriette Weber 24ways.org/200807

7. How To Create
Rockband'ism

There are mysteries happening in the world
of business these days. We want something
else by now. The business of business has to
become more than business. We want to be
able to identify ourselves with the brands we
purchase and we want them to do good
things. We want to feel cool because we buy
stuff, and we don’t just want a shopping
experience – we want an engagement with a
company we can relate to.

Let me get back to “feeling cool” – if we want to feel cool,

we might get the companies we buy from to support that.

That’s why I am on a mission to make companies into

rockbands.

Now when I say rockbands – I don’t mean the puke-y,

drunky, nasty stuff that some people would highlight is

also a part of rockbands. Therefore I have created my own

word “rockband’ism”. This word is the definition of a

82 24 ways 2008 edition

http://24ways.org/200807

childhood dream version of being in a rockband – the

feeling of being more respected and loved and cool, than a

cockroach or a suit on the floor of a company.

ROCKBAND’ISM

Rockband’ism is what we aspire to, to feel cool and happy.

So basically what I am arguing is that companies should

look upon themselves as rockbands. Because the world

has changed, so business needs to change as well.

I have listed a couple of things you could do today to

become a rockband, as a person or as a company.

1 – Give your support to companies that make a

difference to their surroundings – if you are buying

electronics look up what the electronic producers are

doing of good in the world (check out the Greenpeace

Guide to Greener Electronics).

2 – Implement good karma in your everyday life (and do

well by doing good). What you give out you get back at

some point in some shape – this can also be implemented

for business.

3 – WWRD? – “what would a rockband do”? or if you are

into Kenny Rogers – what would he do in any given

situation? This will also show yourself where your

business or personal integrity lies because you actually

act as a person or a rockband you admire.

How To Create Rockband'ism

24 ways 2008 edition 83

4 – Start leading instead of managing – If we can measure

stuff why should we manage it? Leadership is key here

instead of management. When you lead you tell people

how to reach the stars, when you manage you keep them

on the ground.

5 – Respect and confide in, that people are the best at

what they do. If they aren’t, they won’t be around for long.

If they are and you keep on buggin’ them, they won’t be

around for long either.

6 – Don’t be arrogant – Because audiences can’t stand it –

talk to people as a person not as a company.

7 – Focus on your return on involvement – know that you

get a return on, what you involve yourself in. No matter if

it’s bingo, communities, talks, ornithology or un-

conferences.

8 – Find out where you can make a difference and do it.

Don’t leave it up to everybody else to save the world.

9 – Find out what you can do to become an authentic,

trustworthy and remarkable company. Maybe you could

even think about this a lot and make these thoughts into

an actionplan.

10 – Last but not least – if you’re not happy – do

something else, become another type of rockband, maybe

a soloist of a sort, or an orchestra.

84 24 ways 2008 edition

NO MORE BUSINESS AS USUAL

This really isn’t time for more business as usual, our

environment (digital, natural, work or any other kind of

environment) is changing. You are going to have to change

too.

This article actually sprang from a talk I did at the Shift08

conference in Lisbon in October. In addition to this article

for 24 ways I have turned the talk into an eBook that you

can get on Toothless Tiger Press for free.

May you all have a sustainable and great Christmas full of

great moments with your loved ones. December is a

month for gratitude, enjoyment and love.

How To Create Rockband'ism

24 ways 2008 edition 85

http://www.toothlesstigerpress.com/rockbands

ABOUT THE AUTHOR

Henriette Weber is the founder of Toothless Tiger where she

thrives as a social business expert, specializing in marketing,

branding, online presence, social media and communities.

In addition, she works with web trend spotting, e-commerce

and online reputation management.

Her “formal” pitch is that “she helps companies use their online

presence and strategies as a marketing tool” – but basically her

hidden talent (and her real pitch) is “to stop companies from

looking like (complete) asses online”.

86 24 ways 2008 edition

http://www.toothlesstigerpress.com/rockbands

Jeremy Keith 24ways.org/200808

8. The IE6 Equation

It is the destiny of one browser to serve as
the nemesis of web developers everywhere.
At the birth of the Web Standards
movement, that role was played by Netscape
Navigator 4; an outdated browser that
refused to die. Its tenacious existence
hampered the adoption of modern
standards. Today that role is played by
Internet Explorer 6.

There’s a sensation that I’m sure you’re familiar with. It’s a

horrible mixture of dread and nervousness. It’s the feeling

you get when—after working on a design for a while in a

standards-compliant browser like Firefox, Safari or

Opera—you decide that you can no longer put off the

inevitable moment when you must check the site in IE6.

Fingers are crossed, prayers are muttered, but alas, to no

avail. The nemesis browser invariably screws something

up.

The IE6 Equation

24 ways 2008 edition 87

http://24ways.org/200808

What do you do next? If the differences in IE6 are minor,

you could just leave it be. After all, websites don’t need to

look exactly the same in all browsers. But if there are

major layout issues and a significant portion of your

audience is still using IE6, you’ll probably need to roll up

your sleeves and start fixing the problems.

A common approach is to quarantine IE6-specific CSS in a

separate stylesheet. This stylesheet can then be

referenced from the HTML document using conditional

comments like this:

<!--[if lt IE 7]>

<link rel="stylesheet" href="ie6.css" type="text/css"

media="screen" />

<![endif]-->

That stylesheet will only be served up to Internet

Explorer where the version number is less than 7.

You can put anything inside a conditional comment. You

could put a script element in there. So as well as serving

up browser-specific CSS, it’s possible to serve up browser-

specific JavaScript.

A few years back, before Microsoft released Internet

Explorer 7, JavaScript genius Dean Edwards wrote a

script called IE7. This amazing piece of code uses

JavaScript to make Internet Explorer 5 and 6 behave like a

standards-compliant browser. Dean used JavaScript to

bootstrap IE’s CSS support.

88 24 ways 2008 edition

http://dean.edwards.name/
http://dean.edwards.name/IE7/
http://dean.edwards.name/IE7/

Because the script is specifically targeted at Internet

Explorer, there’s no point in serving it up to other

browsers. Conditional comments to the rescue:

<!--[if lt IE 7]>

<script src="http://ie7-js.googlecode.com/svn/version/

2.0(beta3)/IE7.js" type="text/javascript"></script>

<![endif]-->

Standards-compliant browsers won’t fetch the script.

Users of IE6, on the hand, will pay a kind of bad browser

tax by having to download the JavaScript file.

So when should you develop an IE6-specific stylesheet

and when should you just use Dean’s JavaScript code?

This is the question that myself and my co-worker Natalie

Downe set out to answer one morning at Clearleft. We

realised that in order to answer that question you need to

first answer two other questions, “how much time does it

take to develop for IE6?” and “how much of your audience

is using IE6?”

Let’s say that t represents the total development time. Let

t6 represent the portion of that time you spend

developing for IE6. If your total audience is a , then a6 is

the portion of your audience using IE6. With some

algebraic help from our mathematically minded co-

worker Cennydd Bowles, Natalie and I came up with the

following equation to calculate the percentage likelihood

that you should be using Dean’s IE7 script:

The IE6 Equation

24 ways 2008 edition 89

http://natbat.net/
http://natbat.net/
http://www.cennydd.co.uk/

p = 50 [log (at6 / ta6) + 1]

Try plugging in your own numbers. If you spend a lot of

time developing for IE6 and only a small portion of your

audience is using that browser, you’ll get a very high

number out of the equation; you should probably use the

IE7 script. But if you only spend a little time developing

for IE6 and a significant portion of you audience are still

using that browser, you’ll get a very small value for p; you

might as well write an IE6-specific stylesheet.

Of course this equation is somewhat disingenuous. While

it’s entirely possible to research the percentage of your

audience still using IE6, it’s not so easy to figure out how

much of your development time will be spent developing

for that one browser. You can’t really know until you’ve

already done the development, by which time the

equation is irrelevant.

Instead of using the equation, you could try imposing a

limit on how long you will spend developing for IE6. Get

your site working in standards-compliant browsers first,

then give yourself a time limit to get it working in IE6. If

you can’t solve all the issues in that time limit, switch over

to using Dean’s script. You could even make the time limit

directly proportional to the percentage of your audience

90 24 ways 2008 edition

using IE6. If 20% of your audience is still using IE6 and

you’ve just spent five days getting the site working in

standards-compliant browsers, give yourself one day to

get it working in IE6. But if 50% of your audience is still

using IE6, be prepared to spend 2.5 days wrestling with

your nemesis.

All of these different methods for dealing with IE6

demonstrate that there’s no one single answer that works

for everyone. They also highlight a problem with the

current debate around dealing with IE6. There’s no

shortage of blog posts, articles and even entire websites

discussing when to drop support for IE6. But very few of

them take the time to define what they mean by “support.”

This isn’t a binary issue. There is no Boolean answer.

Instead, there’s a sliding scale of support:

▪ Block IE6 users from your site.

▪ Develop with web standards and don’t spend any

development time testing in IE6.

▪ Use the Dean Edwards IE7 script to bootstrap CSS

support in IE6.

▪ Write an IE6 stylesheet to address layout issues.

▪ Make your site look exactly the same in IE6 as in any

other browser.

Each end of that scale is extreme. I don’t think that

anybody should be actively blocking any browser but

neither do I think that users of an outdated browser

The IE6 Equation

24 ways 2008 edition 91

http://iedeathmarch.org/
http://jeffcroft.com/blog/2008/sep/30/when-can-we-stop-talking-about-supporting-browsers/

should get exactly the same experience as users of a more

modern browser. The real meanings of “supporting” or

“not supporting” IE6 lie somewhere in-between those

extremes.

Just as I think that semantics are important in markup,

they are equally important in our discussion of web

development. So let’s try to come up with some better

terms than using the catch-all verb “support.” If you say in

your client contract that you “support” IE6, define exactly

what that means. If you find yourself in a discussion about

“dropping support” for IE6, take the time to explain what

you think that entails.

The web developers at Yahoo! are on the right track with

their concept of graded browser support. I’m interested in

hearing more ideas of how to frame this discussion. If we

can all agree to use clear and precise language, we stand a

better chance of defeating our nemesis.

92 24 ways 2008 edition

http://developer.yahoo.com/yui/articles/gbs/

ABOUT THE AUTHOR

Jeremy Keith is an Irish web developer living in Brighton,

England where he works with the web consultancy firm

Clearleft. He wrote the books, DOM Scripting, Bulletproof Ajax,

and most recently HTML5 For Web Designers.

His latest project is Huffduffer, a service for creating podcasts

of found sounds. When he’s not making websites, Jeremy plays

bouzouki in the band Salter Cane. His loony bun is fine benny

lava.

The IE6 Equation

24 ways 2008 edition 93

http://adactio.com/
http://clearleft.com/
http://domscripting.com/
http://bulletproofajax.com/
http://html5forwebdesigners.com/
http://huffduffer.com/
http://saltercane.com/

Marcus Lillington 24ways.org/200809

9. Charm Clients, Win
Pitches

Over the years I have picked up a number of
sales techniques that have lead to us doing
pretty well in the pitches we go for. Of
course, up until now, these top secret
practices have remained firmly locked in the
company vault but now I am going to share
them with you. They are cunningly hidden
within the following paragraphs so I’m
afraid you’re going to have to read the whole
thing.

Ok, so where to start? I guess a good place would be

getting invited to pitch for work in the first place.

94 24 ways 2008 edition

http://24ways.org/200809

SHAMELESS SELF PROMOTION

What not to do

You’re as keen as mustard to ‘sell’ what you do, but you

have no idea as to the right approach. From personal

experience (sometimes bitter!), the following methods are

as useful as the proverbial chocolate teapot:

▪ Cold calling

▪ Advertising

▪ Bidding websites

▪ Sales people

▪ Networking events

Ok, I’m exaggerating; sometimes these things work. For

example, cold calling can work if you have a story – a

reason to call and introduce yourself other than “we do

web design and you have a website”. “We do web design

and we’ve just moved in next door to you” would be fine.

Advertising can work if your offering is highly specialist.

However, paying oodles of dollars a day to Google Ads to

appear under the search term ‘web design’ is probably not

the best use of your budget.

Specialising is, in fact, probably a good way to go. Though

it can feel counter intuitive in that you are not spreading

yourself as widely as you might, you will eventually

become an expert and therefore gain a reputation in your

Charm Clients, Win Pitches

24 ways 2008 edition 95

field. Specialism doesn’t necessarily have to be in a

particular skillset or technology, it could just as easily be

in a particular supply chain or across a market.

Target audience

‘Who to target?’ is the next question. If you’re starting out

then do tap-up your family and friends. Anything that

comes your way from them will almost certainly come

with a strong recommendation. Also, there’s nothing

wrong with calling clients you had dealings with in

previous employment (though beware of any contractual

terms that may prevent this). You are informing your

previous clients that your situation has changed; leave it

up to them to make any move towards working with you.

After all, you’re simply asking to be included on the list of

agencies invited to tender for any new work.

Look to target clients similar to those you have worked

with previously. Again, you have a story – hopefully a good

one!

So how do you reach these people?

▪ Mailing lists

▪ Forums

▪ Writing articles

▪ Conferences / Meetups

▪ Speaking opportunities

▪ Sharing Expertise

96 24 ways 2008 edition

In essence: blog, chat, talk, enthuse, show off (a little)…

share.

There are many ways you can do this. There’s the

traditional portfolio, almost obligatory blog (regularly

updated of course), podcast, ‘giveaways’ like Wordpress

templates, CSS galleries and testimonials. Testimonials

are your greatest friend. Always ask clients for quotes

(write them and ask for their permission to use) and even

better, film them talking about how great you are.

Finally, social networking sites can offer a way to reach

your target audiences. You do have to be careful here

though. You are looking to build a reputation by

contributing value. Do not self promote or spam!

WRITING PROPOSALS

Is it worth it?

Ok, so you have been invited to respond to a tender or

brief in the form of a proposal. Good proposals take time

to put together so you need to be sure that you are not

wasting your time. There are two fundamental questions

that you need to ask prior to getting started on your

proposal:

1. Can I deliver within the client’s timescales?

2. Does the client’s budget match my price?

Charm Clients, Win Pitches

24 ways 2008 edition 97

The timescales that clients set are often plucked from the

air and a little explanation about how long projects

usually take can be enough to change expectations with

regard to delivery. However, if a deadline is set in stone

ask yourself if you can realistically meet it. Agreeing to a

deadline that you know you cannot meet just to win a

project is a recipe for an unhappy client, no chance of

repeat business and no chance of any recommendations

to other potential clients.

Price is another thing altogether. So why do we need to

know?

The first reason, and most honest reason, is that we don’t

want to do a lot of unpaid pitch work when there is no

chance that our price will be accepted. Who would? But

this goes both ways – the client’s time is also being

wasted. It may only be the time to read the proposal and

reject it, but what if all the bids are too expensive? Then

the client needs to go through the whole process again.

The second reason why we need to know budgets relates

to what we would like to include in a proposal over what

we need to include. For example, take usability testing.

We always highly recommend that a client pays for at

least one round of usability testing because it will

definitely improve their new site – no question. But, not

98 24 ways 2008 edition

doing it doesn’t mean they’ll end up with an unusable

turkey. It’s just more likely that any usability issues will

crop up after launch.

I have found that the best way to discover a budget is to

simply provide a ballpark total, usually accompanied by a

list of ‘likely tasks for this type of project’, in an initial

email or telephone response. Expect a lot of people to

dismiss you out of hand. This is good. Don’t be tempted to

‘just go for it’ anyway because you like the client or work

is short – you will regret it.

Others will say that the ballpark is ok. This is not as good

as getting into a proper discussion about what priorities

they might have but it does mean that you are not wasting

your time and you do have a chance of winning the work.

The only real risk with this approach is that you

misinterpret the requirements and produce an inaccurate

ballpark.

Finally, there is a less confrontational approach that I

sometimes use that involves modular pricing. We break

down our pricing into quite detailed tasks for all proposals

but when I really do not have a clue about a client’s

budget, I will often separate pricing into ‘core’ items and

‘optional’ items. This has proved to be a very effective

method of presenting price.

Charm Clients, Win Pitches

24 ways 2008 edition 99

What to include

So, what should go into a proposal? It does depend on the

size of the piece of work. If it’s a quick update for an

existing client then they don’t want to read through all

your blurb about why they should choose to work with

you – a simple email will suffice.

But, for a potential new client I would look to include the

following:

▪ Your suitability

▪ Summary of tasks

▪ Timescales

▪ Project management methodology

▪ Pricing

▪ Testing methodology

▪ Hosting options

▪ Technologies

▪ Imagery

▪ References

▪ Financial information

▪ Biographies

However, probably the most important aspect of any

proposal is that you respond fully to the brief. In other

words, don’t ignore the bits that either don’t make sense

to you or you think irrelevant. If something is

questionable, cover it and explain why you don’t think it is

something that warrants inclusion in the project.

100 24 ways 2008 edition

Should you provide speculative designs? If the brief

doesn’t ask for any, then certainly not. If it does, then

speak to the client about why you don’t like to do

speculative designs. Explain that any designs included as

part of a proposal are created to impress the client and

not the website’s target audience. Producing good web

design is a partnership between client and agency. This

can often impress and promote you as a professional.

However, if they insist then you need to make a decision

because not delivering any mock-ups will mean that all

your other work will be a waste of time.

Walking away

As I have already mentioned, all of this takes a lot of work.

So, when should you be prepared to walk away from a

potential job? I have already covered unrealistic deadlines

and insufficient budget but there are a couple of other

reasons. Firstly, would this new client damage your

reputation, particularly within current sectors you are

working in? Secondly, can you work with this client? A

difficult client will almost certainly lead to a loss-making

project.

Charm Clients, Win Pitches

24 ways 2008 edition 101

PERFECT PITCH

Requirements

If the original brief didn’t spell out what is expected of you

at a presentation then make sure you ask beforehand. The

critical element is how much time you have. It seems that

panels are providing less and less time these days.

The usual formula is that you get an hour; half of which

should be a presentation of your ideas followed by 30

minutes of questions. This isn’t that much time,

particularly for a big project that covers all aspect of web

design and production. Don’t be afraid to ask for more

time, though it is very rare that you will be granted any.

Ask if there any areas that a) they particularly want you to

cover and b) if there are any areas of your proposal that

were weak.

Ask who will be attending. The main reason for this is to

see if the decision maker(s) will be present but it’s also

good to know if you’re presenting to 3 or 30 people.

Who should be there

Generally speaking, I think two is the ideal number.

Though I have done many presentations on my own, I

always feel having two people to bounce ideas around

with and have a bit of banter with, works well. You are not

102 24 ways 2008 edition

only trying to sell your ideas and expertise but also

yourselves. One of the main things in the panels minds will

be – “can I work with these people?”

Having more than two people at a presentation often

looks like you’re wheeling people out just to demonstrate

that they exist.

What makes a client want to hire you?

In a nutshell: Confidence, Personality, Enthusiasm.

You can impart confidence by being well prepared and

professional, providing examples and demonstrations and

talking about your processes. You may find project

management boring but pretty much every potential

client will want to feel reassured that you manage your

projects effectively.

As well as demonstrating that you know what you’re

talking about, it is important to encourage, and be part of,

discussion about the project. Be prepared to suggest and

challenge and be willing to say “I don’t know”.

Also, no-one likes a show-off so don’t over promote

yourself; encourage them to contact your existing clients.

Charm Clients, Win Pitches

24 ways 2008 edition 103

What makes a client like you?

Engaging with a potential client is tricky and it’s probably

the area where you need to be most on your toes and try

to gauge the reaction of the client. We recommend the

following:

▪ Encourage questions throughout

▪ Ask if you make sense – which encourages questions if

you’re not getting any

▪ Humour – though don’t keep trying to be funny if you’re

not getting any laughs!

▪ Be willing to go off track

▪ Read your audience

▪ Empathise with the process – chances are, most of the

people in front of you would rather be doing something

else

▪ Think about what you wear – this sounds daft but do

you want to be seen as either the ‘stiff in the suit’ or the

‘scruffy art student’? Chances are neither character would

get hired.

Differentiation

Sometimes, especially if you think you are an outsider, it’s

worth taking a few risks. I remember my colleague Paul

starting off a presentation once with the line (backed up

on screen) – “Headscape is not a usability consultancy”.

104 24 ways 2008 edition

This was in response to the clients request to engage a

usability consultancy. The thrust of Paul’s argument was

that we are a lot more than that.

This really worked. We were the outside choice but they

ended up hiring us. Basically, this differentiated us from

the crowd. It showed that we are prepared to take risks

and think, dare I say it, outside of the box.

Dealing with difficult characters

How you react to tricky questioning is likely to be what

determines whether you have a good or bad presentation.

Here are a few of those characters that so often turn up in

panels:

The techie – this is likely to be the situation where you

need to say “I don’t know”. Don’t bluff as you are likely to

dig yourself a great big embarrassment-filled hole.

Promise to follow up with more information and make

sure that you do so as quickly as possible after the pitch.

The ‘hard man’ MD – this the guy who thinks it is his duty

to throw ‘curve ball’ questions to see how you react. Focus

on your track record (big name clients will impress this

guy) and emphasise your processes.

Charm Clients, Win Pitches

24 ways 2008 edition 105

The ‘no clue’ client – you need to take control and be the

expert though you do need to explain the reasoning

behind any suggestions you make. This person will be

judging you on how much you are prepared to help them

deliver the project.

The price negotiator – be prepared to discuss price but

do not reduce your rate or the effort associated with your

proposal. Fall back on modular pricing and try to reduce

scope to come within budget. You may wish to offer a one-

off discount to win a new piece of work but don’t get into

detail at the pitch.

Don’t panic…

If you go into a presentation thinking ‘we must win this’

then, chances are, you won’t. Relax and be yourself. If

you’re not hitting it off with the panel then so be it. You

have to remember that quite often you will be making up

the numbers in a tendering process. This is massively

frustrating but, unfortunately, part of it. If it’s not going

well, concentrate on what you are offering and try to

demonstrate your professionalism rather than your

personality. Finally, be on your toes, watch people’s

reactions and pay attention to what they say and try to

react accordingly.

106 24 ways 2008 edition

So where are the secret techniques I hear you ask? Well,

using the words ‘secret’ and ‘technique’ was probably a bit

naughty. Most of this stuff is about being keen, using your

brain and believing in yourself and what you are selling

rather than following a strict set of rules.

ABOUT THE AUTHOR

Marcus Lillington is Business Development Director at

Headscape and Co-host of the Boagworld Podcast.

Marcus has over 10 years experience working in both new and

traditional media, including experience in commercial,

consulting and project management roles. With Paul Boag and

Chris Scott, he is one of three founders of Headscape.

Charm Clients, Win Pitches

24 ways 2008 edition 107

http://www.headscape.co.uk/
http://www.boagworld.com/
http://www.headscape.co.uk/

In his early career, Marcus was a professional musician, gaining

success around the world. He still claims it’s the only thing he’s

any good at.

108 24 ways 2008 edition

Elliot Jay Stocks 24ways.org/200810

10. A Christmas hCard
From Me To You

So apparently Christmas is coming. And
what is Christmas all about? Well, cleaning
out your address book, of course! What
better time to go through your contacts,
making sure everyone’s details are up date
and that you’ve deleted all those nasty
clients who never paid on time?

It’s also a good time to make sure your current clients and

colleagues have your most up-to-date details, so instead

of filling up their inboxes with e-cards, why not send them

something useful? Something like a… vCard! (See what I

did there?)

Just in case you’ve been working in a magical toy factory

in the upper reaches of Scandinavia for the last few years,

I’m going to tell you that now would also be the perfect

time to get into microformats. Using the hCard format,

we’ll build a very simple web page and markup our contact

A Christmas hCard From Me To You

24 ways 2008 edition 109

http://24ways.org/200810
http://microformats.org/

details in such a way that they’ll be understood by

microformats plugins, like Operator or Tails for Firefox, or

the cross-browser Microformats Bookmarklet.

Oh, and because Christmas is all about dressing up and

being silly, we’ll make the whole thing look nice and have a

bit of fun with some CSS3 progressive enhancement.

If you can’t wait to see what we end up with, you can

preview it here.

110 24 ways 2008 edition

https://addons.mozilla.org/en-US/firefox/addon/4106
https://addons.mozilla.org/en-US/firefox/addon/2240
http://leftlogic.com/lounge/articles/microformats_bookmarklet/
http://media.24ways.org/2008/10/index.html

STEP 1: CONTACT DETAILS

First, let’s decide what details we want to put on the page.

I’d put my full name, my email address, my phone number,

and my postal address, but I’d rather not get surprise

visits from strangers when I’m fannying about with my

baubles, so I’m going to use Father Christmas instead

(that’s Santa to you Yanks).

Father Christmas

fatherchristmas@elliotjaystocks.com

25 Laughingallthe Way

Snow Falls

Lapland

Finland

010 60 58 000

STEP 2: HCARD CREATOR

Now I’m not sure about you, but I rather like getting the

magical robot pixies to do the work for me, so head on

over to the hCard Creator and put those pixies to work!

Pop in your details and they’ll give you some nice

microformatted HTML in turn.

A Christmas hCard From Me To You

24 ways 2008 edition 111

http://microformats.org/code/hcard/creator

<div id="hcard-Father-Christmas" class="vcard">

<a class="url fn" href="http://elliotjaystocks.com/

fatherchristmas">Father Christmas

<a class="email"

href="mailto:fatherchristmas@elliotjaystocks.com">

fatherchristmas@elliotjaystocks.com

<div class="adr">

<div class="street-address">25 Laughingallthe Way</div>

Snow Falls

,

Lapland

,

FI-00101

Finland

</div>

<div class="tel">010 60 58 000</div>

<p style="font-size:smaller;">This <a

112 24 ways 2008 edition

href="http://microformats.org/wiki/hcard">hCard

created with the <a href="http://microformats.org/code/

hcard/creator">hCard creator.</p>

</div>

STEP 3: EDITING THE CODE

One of the great things about microformats is that you

can use pretty much whichever HTML tags you want, so

just because the hCard Creator Fairies say something

should be wrapped in a doesn’t mean you can’t

change it to a <blink>. Actually, no, don’t do that. That’s

not even excusable at Christmas.

I personally have a penchant for marking up each line of

an address inside a tag, where the parent url retains

the class of adr. As long as you keep the class names the

same, you’ll be fine.

<div id="hcard-Father-Christmas" class="vcard">

<h1><a class="url fn" href="http://elliotjaystocks.com/

fatherchristmas">Father Christmas </h1>

<a class="email"

href="mailto:fatherchristmas@elliotjaystocks.com?subject=Here,

have some Christmas

cheer!">fatherchristmas@elliotjaystocks.com

<ul class="adr">

<li class="street-address">25 Laughingallthe Way

<li class="locality">Snow Falls

<li class="region">Lapland

<li class="postal-code">FI-00101

<li class="country-name">Finland

A Christmas hCard From Me To You

24 ways 2008 edition 113

010 60 58 000

</div>

STEP 4: TESTING THE MICROFORMATS

With our microformats in place, now would be a good

time to test that they’re working before we start making

things look pretty. If you’re on Firefox, you can install the

Operator or Tails extensions, but if you’re on another

browser, just add the Microformats Bookmarklet.

Regardless of your choice, the results is the same: if

you’ve code microformatted content on a web page, one

of these bad boys should pick it up for you and allow you

to export the contact info. Give it a try and you should see

father Christmas appearing in your address book of

choice. Now you’ll never forget where to send those

Christmas lists!

114 24 ways 2008 edition

https://addons.mozilla.org/en-US/firefox/addon/4106
https://addons.mozilla.org/en-US/firefox/addon/2240
http://leftlogic.com/lounge/articles/microformats_bookmarklet/

STEP 5: SOME EXTRA MARKUP

One of the first things we’re going to do is put a photo of

Father Christmas on the hCard. We’ll be using CSS to

apply a background image to a div, so we’ll be needing an

extra div with a class name of “photo”. In turn, we’ll wrap

the text-based elements of our hCard inside a div

cunningly called “text”. Unfortunately, because of the float

technique we’ll be using, we’ll have to use one of those

nasty float-clearing techniques. I shall call this “christmas-

cheer”, since that is what its presence will inevitably bring,

of course.

Oh, and let’s add a bit of text to give the page context, too:

<p>Send your Christmas lists my way...</p>

<div id="hcard-Father-Christmas" class="vcard">

<div class="text">

<h1><a class="url fn"

href="http://elliotjaystocks.com/fatherchristmas">Father

Christmas </h1>

<a class="email"

href="mailto:fatherchristmas@elliotjaystocks.com?subject=Here,

have some Christmas

cheer!">fatherchristmas@elliotjaystocks.com

<ul class="adr">

<li class="street-address">25 Laughingallthe

Way

<li class="locality">Snow Falls

<li class="region">Lapland

<li class="postal-code">FI-00101

<li class="country-name">Finland

A Christmas hCard From Me To You

24 ways 2008 edition 115

010 60 58 000

</div>

<div class="photo"></div>

<br class="christmas-cheer" />

</div>

<div class="credits">

<p>A tutorial by Elliot Jay Stocks

for 24 Ways</p>

<p>Background: <a href="http://sxc.hu/photo/

1108741">stock.xchng | Father Christmas: <a

href="http://istockphoto.com/file_closeup/people/

4575943-active-santa.php?id=4575943">iStockPhoto</p>

</div>

STEP 6: SOME CHRISTMAS SPARKLE

So far, our hCard-housing web page is slightly less than

inspiring, isn’t it? It’s time to add a bit of CSS. There’s

nothing particularly radical going on here; just a simple

layout, some basic typographic treatment, and the

placement of the Father Christmas photo. I’d usually use a

more thorough CSS reset like the one found in the YUI or

Eric Meyer’s, but for this basic page, the simple * solution

will do.

Check out the step 6 demo to see our basic styles in place.

From this…

116 24 ways 2008 edition

http://media.24ways.org/2008/10/step06.html

… to this:

A Christmas hCard From Me To You

24 ways 2008 edition 117

STEP 7: FUN WITH IMAGERY

Now it’s time to introduce a repeating background image

to the <body> element. This will seamlessly repeat for as

wide as the browser window becomes.

But that’s fairly straightforward. How about having some

fun with the Father Christmas image? If you look at the

image file itself, you’ll see that it’s twice as wide as the

area we can see and contains a ‘hidden’ photo of our

rather camp St. Nick.

118 24 ways 2008 edition

As a light-hearted visual… er… ‘treat’ for users who move

their mouse over the image, we move the position of the

background image on the “photo” div. Check out the step

7 demo to see it working.

STEP 8: PROGRESSIVE ENHANCEMENT

Finally, this fun little project is a great opportunity for us

to mess around with some advanced CSS features (some

from the CSS3 spec) that we rarely get to use on client

projects. (Don’t forget: no Christmas pressies for clients

who want you to support IE6!)

Here are the rules we’re using to give some browsers a

superior viewing experience:

▪ @font-face allows us to use Jos Buivenga’s free font

‘Fertigo Pro’ on all text;

▪ text-shadow adds a little emphasis on the opening

paragraph;

▪ body > p:first-child causes only the first paragraph

to receive this treatment;

▪ border-radius created rounded corners on our main

div and the links within it;

▪ and webkit-transition allows us to gently fade in

between the default and hover states of those links.

A Christmas hCard From Me To You

24 ways 2008 edition 119

http://media.24ways.org/2008/10/step07.html

And with that, we’re done! You can see the results here.

It’s time to customise the page to your liking, upload it to

your site, and send out the URL. And do it quickly, because

I’m sure you’ve got some last-minute Christmas shopping

to finish off!

120 24 ways 2008 edition

http://media.24ways.org/2008/10/index.html

ABOUT THE AUTHOR

Elliot Jay Stocks is a designer, speaker, and author. He is also

the founder of typography magazine 8 Faces and, more

recently, the co-founder of Viewport Industries. He lives and

works in the countryside between Bristol and Bath, England.

Photo: Samantha Cliffe

A Christmas hCard From Me To You

24 ways 2008 edition 121

http://8faces.com/
http://viewportindustries.com/
http://samanthacliffe.com

Richard Rutter 24ways.org/200811

11. Easier Page States for
Wireframes

When designing wireframes for web sites
and web apps, it is often overlooked that the
same ‘page’ can look wildly different
depending on its context. A logged-in page
will look different from a logged-out page;
an administrator’s view may have different
buttons than a regular user’s view; a power
user’s profile will be more extensive than a
new user’s.

These different page states need designing at some point,

especially if the wireframes are to form a useful

communication medium between designer and developer.

Documenting the different permutations can be a time

consuming exercise involving either multiple pages in

one’s preferred box-and-arrow software, or a fully fledged

drawing containing all the possible combinations

annotated accordingly.

122 24 ways 2008 edition

http://24ways.org/200811

ENTER INTERACTIVE WIREFRAMES AND
POLYPAGE

Interactive wireframes built in HTML are a great design

and communication tool. They provide a clickable

prototype, running in the browser as would the final site.

As such they give a great feel for how the site will be to

use. Once you add in the possibilities of JavaScript and a

library such as jQuery, they become even more flexible

and powerful.

Polypage is a jQuery plugin which makes it really easy to

design multiple page states in HTML wireframes. There’s

no JavaScript knowledge required (other than cutting and

pasting in a few lines). The page views are created by

simply writing all the alternatives into your HTML page

and adding special class names to apply state and

conditional view logic to the various options.

When the page is loaded Polypage automatically detects

the page states defined by the class names and creates a

control bar enabling the user to toggle page states with

the click of a mouse or the clack of a keyboard.

Using cookies by way of the jQuery cookie plugin,

Polypage retains the view state throughout your

prototype. This means you could navigate through your

Easier Page States for Wireframes

24 ways 2008 edition 123

http://jquery.com/
http://plugins.jquery.com/project/Cookie

wireframes as if you were logged out; as if you were

logged in as an administrator; with notes on or off; or with

any other view or state you might require. The

possibilities are entirely up to you.

HOW DOES IT WORK?

Firstly you need to link to jQuery, the jQuery cookie

plugin and to Polypage. Something like this:

<script src="javascripts/jquery-1.2.6.min.js" type="text/

javascript"></script>

<script src="javascripts/cookie.jquery.js" type="text/

javascript"></script>

<script src="javascripts/polypage.jquery.js" type="text/

javascript"></script>

Then you need to initialise Polypage on page load using

something along these lines:

<script type="text/javascript">

$(document).ready(function() {

$.polypage.init();

});

</script>

Next you need to define the areas of your wireframe

which are particular to a given state or view. Do this by

applying classes beginning with pp_. Polypage will ignore

all other classes in the document.

124 24 ways 2008 edition

The pp_ prefix should be followed by a state name. This

can be any text string you like, bearing in mind it will

appear in the control bar. Typical page states might

include ‘logged_in’, ‘administrator’ or ‘group_owner’. A

complete class name would therefore look something like

pp_logged_in.

EXAMPLES

If a user is logged in, you might want to specify an option

for him or her to sign out. Using Polypage, this could be

put in the wireframe as follows:

 Sign out

Polypage will identify the pp_logged_in class on the link

and hide it (as the ‘Sign out’ link should only be shown

when the page is in the ‘logged in’ view). Polypage will

then automatically write a ‘logged in’ toggle to the control

bar, enabling you to show or hide the ‘Sign out’ link by

toggling the ‘logged in’ view. The same will apply to all

content marked with a pp_logged_in class.

States can also be negated by adding a not keyword to the

class name. For example you might want to provide a log

in link for users who are not signed in. Using Polypage,

you would insert the not keyword after the pp prefix as

follows:

 Login

Easier Page States for Wireframes

24 ways 2008 edition 125

Again Polypage identifies the pp prefix but this time sees

that the ‘Login’ link should not be shown when the ‘logged

in’ state is selected.

States can also be joined together to add some basic logic

to pages. The syntax follows natural language and uses

the or and and keywords in addition to the afore-

mentioned not. Some examples would be

pp_logged_in_and_admin, pp_admin_or_group_owner and

pp_logged_in_and_not_admin.

Finally, you can set default states for a page by passing an

array to the polypage.init() function like this:

$.polypage.init(['logged_in', 'admin']);

You can see a fully fledged example in this fictional social

network group page. The example page defaults to a

logged in state. You can see the logged out state by

toggling ‘logged in’ off in the Polypage control bar. There

are also views specified for a group member, a group admin,

a new group and notes.

WHERE CAN I GET HOLD OF IT?

You can download the current version from GitHub.

Polypage was originally developed by Clearleft and New

Bamboo, with particular contributions from Andy Kent

and Natalie Downe. It has been used in numerous real

projects, but it is still an early release so there is bound to

126 24 ways 2008 edition

http://media.24ways.org/2008/11/polypage-example.html
http://media.24ways.org/2008/11/polypage-example.html
http://github.com/andykent/polypage/
http://clearleft.com/
http://new-bamboo.co.uk/
http://new-bamboo.co.uk/
http://adkent.com/
http://natbat.net/

be room for improvement. We’re pleased to say that

Polypage is now an open source project so any feedback,

particularly by way of actual improvements, is extremely

welcome.

ABOUT THE AUTHOR

Richard Rutter is a user experience consultant and director of

Clearleft. In 2009 he cofounded the webfont service, Fontdeck.

He runs an ongoing project called The Elements of Typographic

Style Applied to the Web, where he extols the virtues of good

web typography. Richard occasionally blogs at Clagnut, where

he writes about design, accessibility and web standards issues,

as well as his passion for music and mountain biking.

Easier Page States for Wireframes

24 ways 2008 edition 127

http://clearleft.com/
http://fontdeck.com/
http://webtypography.net/
http://webtypography.net/
http://clagnut.com/

Kimberly Blessing 24ways.org/200812

12. Checking Out:
Progress Meters

It’s the holiday season, so you know what
that means: online shopping! When I
started developing Web sites back in the
90s, many of my first clients were small
local shops wanting to sell their goods
online, so I developed many a checkout
system. And because of slow dial-up speeds
back then, informing the user about where
they were in the checkout process was
pretty important.

Even though we’re (mostly) beyond the dial-up days,

informing users about where they are in a flow is still

important. In usability tests at the companies I’ve worked

at, I’ve seen time and time again how not adequately

informing the user about their state can cause real

frustration. This is especially true for two sets of users:

mobile users and users of assistive devices, in particular,

screen readers.

128 24 ways 2008 edition

http://24ways.org/200812

The progress meter is a very common design solution

used to indicate to the user’s state within a flow. On the

design side, much effort may go in to crafting a solution

that is as visually informative as possible. On the

development side, however, solutions range widely. I’ve

checked out the checkouts at a number of sites and here’s

what I’ve found when it comes to progress meters: they’re

sometimes inaccessible and often confusing or unhelpful

— all because of the way in which they’re coded. For those

who use assistive devices or text-only browsers, there

must be a better way to code the progress meter — and

there is.

(Note: All code samples are from live sites but have been

tweaked to hide the culprits’ identities.)

HOW NOT TO MAKE PROGRESS

A number of sites assemble their progress meters using

non- or semi-semantic markup and images with no

alternate text. On text-only browsers (like my mobile

phone) and to screen readers, this looks and reads like

chunks of content with no context given.

<div id="progress">

Shipping information

Payment information

Checking Out: Progress Meters

24 ways 2008 edition 129

<img src="icon_progress_arrow.gif" alt=""

class="progarrow">

Place your order

</div>

In the above example, the third state, “Place your order”, is

the current state. But a screen reader may not know that,

and my cell phone only displays "Shipping

informationPayment informationPlace your order".

Not good.

IS THIS PROGRESS?

Other sites present the entire progress meter as a

graphic, like the following:

Now, I have no problem with using a graphic to render a

very stylish progress meter (my sample above is probably

not the most stylish example, of course, but you

understand my point). What becomes important in this

case is the use of appropriate alternate text to describe

the image. Disappointingly, sites today have a wide range

of solutions, including using no alternate text. Check out

these code samples which call progress meter images.

130 24 ways 2008 edition

I think we can all agree that the above is bad, unless you

really don’t care whether or not users know where they

are in a flow.

<img src="checkout_step2.gif" alt="Shipping information

- Payment information - Place your order">

The alt text in the example above just copies all of the text

found in the graphic, but it doesn’t represent the status at

all. So for every page in the checkout, the user sees or

hears the same text. Sure, by the second or third page in

the flow, the user has figured out what’s going on, but she

or he had to think about it. I don’t think that’s good.

<img src="checkout_step2.gif" alt="Checkout: Payment

information">

The above probably has the best alternate text out of

these examples, because the user at least understands

that they’re in the Checkout process, on the Place your

order page. But going through the flow with alt text like

this, the user doesn’t know how many steps are in the

flow.

SEMANTIC PROGRESS

Of course, there are some sites that use an ordered list

when marking up the progress meter. Hooray!

Unfortunately, no text-only browser or screen reader

would be able to describe the user’s current state given

this markup.

Checking Out: Progress Meters

24 ways 2008 edition 131

<ol class="progressmeter">

<li class="one current">shipping information

<li class="two">payment information

<li class="three">place your order

Without CSS enabled, the above is rendered as follows:

PROGRESS AT LAST

We all know that semantic markup makes for the best

foundation, so we’ll start with the markup found above. In

order to make the state information accessible, let’s add

some additional text in paragraph and span elements.

<div class="progressmeter">

<p>There are three steps in this checkout process.</p>

<li class="one">Enter your shipping

information

<li class="two">Enter your payment

information

<li class="three">Review details and

place your order

</div>

132 24 ways 2008 edition

Add on some simple CSS to hide the paragraph and spans,

and arrange the list items on a single line with a

background image to represent the large number, and this

is what you’ll get:

There are three steps in this checkout process.

1. Enter your shipping information

2. Enter your payment information

3. Review details and place your order

To display and describe a state as active, add the class

“current” to one of the list items. Then change the hidden

content such that it better describes the state to the user.

<div class="progressmeter">

<p>There are three steps in this checkout process.</p>

<li class="one current">You are currently

entering your shipping information

<li class="two">In the next step, you will

enter your payment information

<li class="three">In the last step, you will

review the details and place your order

</div>

The end result is an attractive progress meter that gives

much greater semantic and contextual information.

There are three steps in this checkout process.

1. You are currently entering your shipping information

Checking Out: Progress Meters

24 ways 2008 edition 133

2. In the next step, you will enter your payment

information

3. In the last step, you will review the details and place

your order

For example, the above example renders in a text-only

browser as follows:

There are three steps in this checkout process.

1. You are currently entering your shipping

information

2. In the next step, you will enter your payment

information

3. In the last step, you will review the details and

place your order

And the screen reader I use for testing announces the

following:

There are three steps in this checkout process.
List of three items. You are currently entering
your shipping information. In the next step,
you will enter your payment information. In
the last step, you will review the details and
place your order. List end.

Here’s a sample code page that summarises this approach.

Happy frustration-free online shopping with this

improved progress meter!

134 24 ways 2008 edition

http://media.24ways.org/2008/12/progress_meter.html

ABOUT THE AUTHOR

Kimberly Blessing has been developing Web sites since 1994

and has been a professional standards evangelist since 2000.

She has worked for large companies like AOL and PayPal,

leading their transitions to Web standards. She has also

consulted for institutions large and small, helping them migrate

to Web standards. She is a member and former Group Lead of

the Web Standards Project and is active in other local, grass-

roots Web standards efforts. (Geez, can we say “Web

standards” any more in this bio?) An instructor in and a

graduate of Bryn Mawr College‘s Computer Science program,

Kimberly is also passionate about increasing the number of

women in technology.

Checking Out: Progress Meters

24 ways 2008 edition 135

http://www.kimberlyblessing.com/
http://www.webstandards.org/
http://www.brynmawr.edu/
http://cs.brynmawr.edu/

Kevin Yank 24ways.org/200813

13. The First Tool You
Reach For

Microsoft recently announced that Internet
Explorer 8 will be released in the first half of
2009. Compared to the standards support of
other major browsers, IE8 will not be
especially great, but it will finally catch up
with the state of the art in one specific area:
support for CSS tables. This milestone has
the potential to trigger an important change
in the way you approach web design.

To show you just how big a difference CSS tables can

make, think about how you might code a fluid, three-

column layout from scratch. Just to make your life more

difficult, give it one fixed-width column, with a

background colour that differs from the rest of the page.

Ready? Go!

Okay, since you’re the sort of discerning web designer

who reads 24ways, I’m going to assume you at least

considered doing this without using HTML tables for the

136 24 ways 2008 edition

http://24ways.org/200813
http://blogs.msdn.com/ie/archive/2008/11/19/ie8-what-s-after-beta-2.aspx

layout. If you’re especially hardcore, I imagine you began

thinking of CSS floats, negative margins, and faux

columns. If you did, colour me impressed!

Now admit it: you probably also gave an inward sigh about

the time it would take to figure out the math on the

negative margin overlaps, check for dropped floats in

Internet Explorer and generally wrestle each of the major

browsers into giving you what you want. If after all that

you simply gave up and used HTML tables, I can’t say I

blame you.

There are plenty of professional web designers out there

who still choose to use HTML tables as their main layout

tool. Sure, they may know that users with screen readers

get confused by inappropriate use of tables, but they have

a job to do, and they want tools that will make that job

easy, not difficult.

Now let me show you how to do it with CSS tables. First,

we have a div element for each of our columns, and we

wrap them all in another two divs:

<div class="container">

<div>

<div id="menu">

⋮
</div>

<div id="content">

⋮
</div>

The First Tool You Reach For

24 ways 2008 edition 137

http://www.alistapart.com/articles/fauxcolumns/
http://www.alistapart.com/articles/fauxcolumns/
http://giveupandusetables.com/

<div id="sidebar">

⋮
</div>

</div>

</div>

Don’t sweat the “div clutter” in this code. Unlike tables,

divs have no semantic meaning, and can therefore be

used liberally (within reason) to provide hooks for the

styles you want to apply to your page.

Using CSS, we can set the outer div to display as a table

with collapsed borders (i.e. adjacent cells share a border)

and a fixed layout (i.e. cell widths unaffected by their

contents):

.container {

display: table;

border-collapse: collapse;

table-layout: fixed;

}

With another two rules, we set the middle div to display

as a table row, and each of the inner divs to display as

table cells:

.container > div {

display: table-row;

}

.container > div > div {

display: table-cell;

}

138 24 ways 2008 edition

Finally, we can set the widths of the cells (and of the table

itself) directly:

.container {

width: 100%;

}

#menu {

width: 200px;

}

#content {

width: auto;

}

#sidebar {

width: 25%;

}

And, just like that, we have a rock solid three-column

layout, ready to be styled to your own taste, like in this

example:

The First Tool You Reach For

24 ways 2008 edition 139

http://media.24ways.org/2008/13/24ways-example.html
http://media.24ways.org/2008/13/24ways-example.html

This example will render perfectly in reasonably up-to-

date versions of Firefox, Safari and Opera, as well as the

current beta release of Internet Explorer 8.

CSS tables aren’t only useful for multi-column page

layout; they can come in handy in most any situation that

calls for elements to be displayed side-by-side on the

page. Consider this simple login form layout:

140 24 ways 2008 edition

The incantation required to achieve this layout using CSS

floats may be old hat to you by now, but try to teach it to a

beginner, and watch his eyes widen in horror at the hoops

you have to jump through (not to mention the

assumptions you have to build into your design about the

length of the form labels).

Here’s how to do it with CSS tables:

<form action="/login" method="post">

<div>

<div>

<label for="username">Username:</label>

<input type="text"

name="username" id="username"/>

</div>

<div>

<label for="userpass">Password:</label>

<input type="password"

name="userpass" id="userpass"/>

</div>

<div class="submit">

<label for="login"></label>

<input type="submit"

name="login" id="login" value="Login"/>

</div>

</div>

</form>

This time, we’re using a mixture of divs and spans as

semantically transparent styling hooks. Let’s look at the

CSS code.

The First Tool You Reach For

24 ways 2008 edition 141

First, we set up the outer div to display as a table, the

inner divs to display as table rows, and the labels and

spans as table cells (with right-aligned text):

form > div {

display: table;

}

form > div > div {

display: table-row;

}

form label,

form span {

display: table-cell;

text-align: right;

}

We want the first column of the table to be wide enough

to accommodate our labels, but no wider. With CSS float

techniques, we had to guess at what that width was likely

to be, and adjust it whenever we changed our form labels.

With CSS tables, we can simply set the width of the first

column to something very small (1em), and then use the

white-space property to force the column to the required

width:

form label {

white-space: nowrap;

width: 1em;

}

142 24 ways 2008 edition

To polish off the layout, we’ll make our text and password

fields occupy the full width of the table cells that contain

them:

input[type=text],

input[type=password] {

width: 100%;

}

The rest is margins, padding and borders to get the

desired look. Check out the finished example.

As the first tool you reach for when approaching any

layout task, CSS tables make a lot more sense to your

average designer than the cryptic incantations called for

by CSS floats. When IE8 is released and all major

browsers support CSS tables, we can begin to gradually

deploy CSS table-based layouts on sites that are more and

more mainstream.

In our new book, Everything You Know About CSS Is Wrong!,

Rachel Andrew and I explore in much greater detail how

CSS tables work as a page layout tool in the real world.

CSS tables have their quirks just like floats do, but they

don’t tend to affect common layout tasks, and the

workarounds tend to be less fiddly too. Check it out, and

get ready for the next big step forward in web design with

CSS.

The First Tool You Reach For

24 ways 2008 edition 143

http://media.24ways.org/2008/13/24ways-example2.html
http://www.sitepoint.com/books/csswrong1/

ABOUT THE AUTHOR

Kevin Yank is the Technical Director of SitePoint, a respected

publisher for web professionals. An accomplished speaker and

writer, he has written books about PHP, JavaScript, and CSS,

and a weekly newsletter with nearly 400,000 subscribers. He

lives in Melbourne.

144 24 ways 2008 edition

http://www.sitepoint.com/
http://www.sitepoint.com/newsletter/

Tim Van Damme 24ways.org/200814

14. Rocking Restrictions

I love my job. I live my job. For every project
I do, I try to make it look special. I’ll be
honest: I have a fetish for comments like “I
never saw anything like that!” or, “I wish I
thought of that!”. I know, I have an ego-
problem. (Eleven I’s already)

But sometimes, you run out of inspiration. Happens to

everybody, and everybody hates it. “I’m the worst

designer in the world.” “Everything I designed before this

was just pure luck!” No it wasn’t.

Countless articles about finding inspiration have already

been written. Great, but they’re not the magic potion

you’d expect them to be when you need it. Here’s a list of

small tips that can have immediate effect when applying

them/using them. Main theme: Liberate yourself from the

designers’ block by restricting yourself.

Rocking Restrictions

24 ways 2008 edition 145

http://24ways.org/200814
http://madebyelephant.com

DO’S

Grids

If you aren’t already using grids, you’re doing something

wrong. Not only are they a great help for aligning your

design, they also restrict you to certain widths and

heights. (For more information about grids, I suggest you

read Mark Boulton’s series on designing grid systems. Oh,

he’s also publishing a book I think.)

So what’s the link between grids and restrictions? Instead

of having the option to style a piece of layout with a width

of 1 to 960 pixels, you have to choose from values like 60

pixels, 140, 220, 300, …

Start small

Having a hard time finding a style for the layout, why don’t

you start with one small object? No, not that small object,

I meant a piece of a form, or a link, or try styling your

headers (h1 – h6).

Let’s take a submit button of a form: it’s small, but needs

much attention. People will click it. People will hover it.

Maybe sometimes it’s disabled? Also: a button needs to

look like a button, so typically it requires more styling

then a regular link. Once you’ve got the button, move on,

following the button’s style.

146 24 ways 2008 edition

http://www.markboulton.co.uk/journal/comments/five_simple_steps_to_designing_grid_systems_part_1/
http://www.fivesimplesteps.co.uk/

Color palettes

There are lots of resources on the web for finding

inspiration for color palettes. Some of the most famous

are COLOURlovers, wear palettes and Adobe’s Kuler.

Browse through them (or create your own from a picture),

pick a color palette you like and which works with the

subject you’re handling, and stick with it. 4-5 colors,

maybe with some tonal variations, but that’s it.

Fonts

There aren’t many fonts available for the web (Richard

Rutter has a great article on this subject), but you’d be

surprised how long they go. A simple text-transform:

uppercase; or font-style: italic; can change a dull

looking font into something entirely fresh.

Play around with the fonts you want to use and the

variations you’ll be using, and make a list. Pick five

combinations of fonts and their variations, and stick with

them throughout the layout.

Single-task

Most of us use multiple monitors. They’re great to

increase productivity, but make it harder to focus on a

single task. Here’s what you do: try using only your

smallest monitor. Maybe it’s the one from your laptop,

maybe it’s an old 1024×768 you found in the attic. Having

Rocking Restrictions

24 ways 2008 edition 147

http://www.colourlovers.com/
http://blog.wearpalettes.com/
http://kuler.adobe.com/
http://24ways.org/2006/photographic-palettes
http://24ways.org/2006/photographic-palettes
http://24ways.org/2007/increase-your-font-stacks-with-font-matrix

Photoshop (or Fireworks or…) taking over your entire

workspace blocks out all the other distractions on your

screen, and works quite liberating.

Mute everything…

…but not entirely. I noticed I was way more focused when

I set NetNewsWire to refresh it’s feeds only once every

two hours. After two hours, I need a break anyway.

Turning off Twitterrific was a mistake, as it’s my window

to the world, and it’s the place where the people I like to

call colleagues live. You can’t exactly ask them to bring

you a cup of coffee when they go to the vending machine,

but they do keep you fresh, and it stops you from going

human-shy. Instead I changed the settings to not play a

notification sound when new Tweets arrive so it doesn’t

disturb me when I’m zoning.

DON’TS

CSS galleries

Don’t start browsing all kinds of CSS galleries. Either

you’ll feel bad, or you just start using elements in a way

you can’t call “inspired” anymore. Instead gather your own

collection of inspiration. Example: I use LittleSnapper in

148 24 ways 2008 edition

http://danbenjamin.com/articles/2008/03/offices-and-the-zone
http://www.realmacsoftware.com/littlesnapper/

which I dump everything I find inspiring. This goes from a

smart layout idea, to a failed picture someone posted on

Flickr. Everything is inspiring.

Panicking

Don’t panic. It’s the worst thing you could do. Instead, get

away from the computer, and go to bed early. A good night

of sleep combined with a hot/cold shower can give you a

totally new perspective on a design. Got a deadline by

tomorrow? Well, you should’ve started earlier. Got a good

excuse to start on this design this late? Tell your client it

was either that or a bad design.

120-hour work-week

Don’t work all day long, including evenings and early

mornings. Write off that first hour, you don’t really think

you’ll get anything productive done before 9AM?! I don’t

even think you should work on one and the same design

all day long. If you’re stuck, try working in blocks of 1 or 2

hours on a certain design. Mixing projects isn’t for

everyone, but it might just do the trick for you.

SUMMARY

▪ Use grids, not only for layout purposes.

▪ Pick a specific element to start with.

▪ Use a colour palette.

Rocking Restrictions

24 ways 2008 edition 149

http://elliotjaystocks.com/blog/archive/2008/write-off-that-first-hour/

▪ Limit the amount of fonts and variations you’ll use.

▪ Search for the smallest monitor around, and restrict

yourself to that one.

▪ Reduce the amount of noise.

▪ Don’t start looking on the internet for inspiration. Build

your own little inspirarchive.

▪ Work in blocks.

ABOUT THE AUTHOR

Tim Van Damme is a freelance interface designer at Made by

Elephant. Not afraid to push the limits, friend of all things living,

blabbermouth, honest chap, passionate about the web, always

in the mood for a chat, blogger at Maxvoltar, boyfriend of

Gwenny, Belgian, Twitter addict.

150 24 ways 2008 edition

http://madebyelephant.com/
http://madebyelephant.com/
http://maxvoltar.com/
http://twitter.com/maxvoltar

Jason Santa Maria 24ways.org/200815

15. Making Modular
Layout Systems

For all of the advantages the web has with
distribution of content, I’ve always
lamented the handiness of the WYSIWYG
design tools from the print publishing
world. When I set out to redesign my
personal website, I wanted to have some of
the same abilities that those tools have,
laying out pages how I saw fit, and that
meant a flexible system for dealing with
imagery.

Building on some of the CSS that Eric Meyer employed a

few years back on the A List Apart design, I created a set

of classes to use together to achieve the variety I was

after. Employing multiple classes isn’t a new technique,

but most examples aren’t coming at this from strictly

editorial and visual perspectives; I wanted to have options

to vary my layouts depending on content.

Making Modular Layout Systems

24 ways 2008 edition 151

http://24ways.org/200815
http://jasonsantamaria.com/
http://jasonsantamaria.com/
http://meyerweb.com/
http://alistapart.com/

If you want to skip ahead, you can view the example first.

LAYING THE FOUNDATION

We need to be able to map out our page so that we have

predictable canvas, and then create a system of image

sizes that work with it. For the sake of this article, let’s use

a simple uniform 7-column grid, consisting of seven

100px-wide columns and 10px of space between each

column, though you can use any measurements you want

as long as they remain constant.

All of our images will have a width that references the grid

column widths (in our example, 100px, 210px, 320px,

430px, 540px, 650px, or 760px), but the height can be as

large as needed.

Once we know our images will all have one of those

widths, we can setup our CSS to deal with the variations

in layout. In the most basic form, we’re going to be dealing

with three classes: one each that represent an identifier, a

size, and a placement for our elements.

This is really a process of abstracting the important

qualities of what you would do with a given image in a

layout into separate classes, allowing you to quickly

customize their appearance by combining the appropriate

classes. Rather than trying to serve up a one-size-fits-all

152 24 ways 2008 edition

http://media.24ways.org/2008/15/layout-eg.html
http://media.24ways.org/2008/15/layout-eg.html?grid

approach to styling, we give each class only one or two

attributes and rely on the combination of classes to get us

there.

Identifier

This specifies what kind of element we have: usually

either an image (pic) or some piece of text (caption).

Size

Since we know how our grid is constructed and the

potential widths of our images, we can knock out a space

equal to the width of any number of columns. In our

example, that value can be one, two, three, four, five, six,

or seven.

Placement

This tells the element where to go. In our example we can

use a class of left or right, which sets the appropriate

floating rule.

Additions

I created a few additions that be tacked on after the

“placement” in the class stack: solo, for a bit more space

beneath images without captions, frame for images that

need a border, and inset for an element that appears

Making Modular Layout Systems

24 ways 2008 edition 153

inside of a block of text. Outset images are my default, but

you could easily switch the default concept to use inset

images and create a class of outset to pull them out of the

content columns.

THE CSS

/* I D E N T I F I E R */

.pic p, .caption {

font-size: 11px;

line-height: 16px;

font-family: Verdana, Arial, sans-serif;

color: #666;

margin: 4px 0 10px;

}

/* P L A C E M E N T */

.left {float: left; margin-right: 20px;}

.right {float: right; margin-left: 20px;}

.right.inset {margin: 0 120px 0 20px;} /* img floated

right within text */

.left.inset {margin-left: 230px;} /* img floated left

within text */

/* S I Z E */

.one {width: 100px;}

.two {width: 210px;}

.three {width: 320px;}

.four {width: 430px;}

.five {width: 540px;}

.six {width: 650px;}

.seven {width: 760px;}

.eight {width: 870px;}

154 24 ways 2008 edition

/* A D D I T I O N S */

.frame {border: 1px solid #999;}

.solo img {margin-bottom: 20px;}

In Use

You can already see how powerful this approach can be. If

you want an image and a caption on the left to stretch

over half of the page, you would use:

<div class="pic four left">

<p>Caption goes here.</p>

</div>

Or, for that same image with a border and no caption:

You just tack on the classes that contain the qualities you

need. And because we’ve kept each class so simple, we can

apply these same stylings to other elements too:

<p class="caption two left">Caption goes here.</p>

Caveats

Obviously there are some potential semantic hang-ups

with these methods. While classes like pic and caption

stem the tide a bit, others like left and right are tougher

to justify. This is something that you have to decide for

yourself; I’m fine with the occasional four or left class

Making Modular Layout Systems

24 ways 2008 edition 155

because I think there’s a good tradeoff. Just as a fully

semantic solution to this problem would likely be

imperfect, this solution is imperfect from the other side of

the semantic fence. Additionally, IE6 doesn’t understand

the chain of classes within a CSS selector (like

.right.inset). If you need to support IE6, you may have

to write a few more CSS rules to accommodate any

discrepancies.

Opportunities

This is clearly a simple example, but starting with a

modular foundation like this leaves the door open for

opportunity. We’ve created a highly flexible and human-

readable system for layout manipulation. Obviously, this

is something that would need to be tailored to the spacing

and sizes of your site, but the systematic approach is very

powerful, especially for editorial websites whose articles

might have lots of images of varying sizes. It may not get

us fully to the flexibility of WYSIWYG print layouts, but

methods like this point us in a direction of designs that

can adapt to the needs of the content.

View the example: without grid and with grid.

156 24 ways 2008 edition

http://media.24ways.org/2008/15/layout-eg.html
http://media.24ways.org/2008/15/layout-eg.html?grid

ABOUT THE AUTHOR

Jason Santa Maria is a graphic designer from sunny Brooklyn,

NY. He currently works as Creative Director for Happy Cog

Studios, a web design consultancy, and A List Apart, an online

magazine for people who make websites. He maintains a

personal site where discussion of design, film, and sock

monkeys can often be observed. His work has garnered him

awards and pleasantries ranging from firm handshakes to

forceful handshakes with a little hitting. Ever the design

obsessif, Jason is known to take drunken arguments to fisticuffs

over such frivolities as kerning and white space.

Making Modular Layout Systems

24 ways 2008 edition 157

http://www.happycog.com
http://www.happycog.com
http://www.alistapart.com
http://www.jasonsantamaria.com

Meri Williams 24ways.org/200816

16. What Your Turkey
Can Teach You About
Project Management

The problem with project management is
that everyone thinks it’s boring. Well, that’s
not really the problem. The problem is that
everyone thinks it’s boring but it’s still
really important. Project management is
what lets you deliver your art – whether that
be design or development.

In the same way, a Christmas dinner cooked by a brilliant

chef with no organizational skills is disastrous – courses

arrive in the wrong order, some things are cold whilst

others are raw and generally it’s a trip to the ER waiting to

happen. Continuing the Christmas dinner theme, here are

my top tips for successful projects, wrapped up in a nice

little festive analogy. Enjoy!

158 24 ways 2008 edition

http://24ways.org/200816

TIP 1: KNOW WHAT YOU’RE AIMING FOR

(Turkey? Ham? Both??)

The underlying cause for the failure of so many projects is

mismatched expectations. Christmas dinner cannot be a

success if you serve glazed ham and your guests view

turkey as the essential Christmas dinner ingredient. It

doesn’t matter how delicious and well executed your

glazed ham is, it’s still fundamentally just not turkey. You

might win one or two adventurous souls over, but the rest

will go home disappointed.

Add to the mix the fact that most web design projects are

nowhere near as emotive as Christmas dinner (trust me, a

ham vs turkey debate will rage much longer than a fixed vs

fluid debate in normal human circles) and the problem is

compounded. In particular, as technologists, we forget

that our ability to precisely imagine the outcome of a

project, be it a website, a piece of software, or similar, is

much more keenly developed than the average customer

of such projects.

So what’s the solution? Get very clear, from the very

beginning, on exactly what the project is about. What are

you trying to achieve? How will you measure success? Is

the presence of turkey a critical success factor?

What Your Turkey Can Teach You About Project Management

24 ways 2008 edition 159

Summarize all this information in some form of document

(in PM-speak, it’s called a Project Initiation Document

typically). Ideally, get the people who are the real decision

makers to sign their agreement to that summary in their

own blood. Well, you get the picture, I suppose actual

blood is not strictly necessary, but a bit of gothic music to

set the tone can be useful!

TIP 2: PLAN AT THE RIGHT LEVEL OF DETAIL

Hugely detailed and useless Gantt charts are a personal

bugbear of mine. For any project, you should plan at the

appropriate level of detail (and in an appropriate format)

for the project itself. In our Christmas dinner example, it

may be perfectly fine to have a list of tasks for the

preparation work, but for the intricate interplay of oven

availability and cooking times, something more complex is

usually due. Having cooked roast dinners for fourteen in a

student house where only the top oven and two of the

rings on the hob actually worked, I can attest to the need

for sequence diagrams in some of these situations!

The mistake many small teams make is to end up with a

project plan that is really the amalgamation of their

individual todo lists. What is needed is a project plan that

will:

1. reflect reality

2. be easy to update

160 24 ways 2008 edition

3. help to track progress (i.e. are we on track or not?)

A good approach is to break your project into stages (each

representing something tangible) and then into

deliverables (again, something tangible for each

milestone, else you’ll never know if you’ve hit it or not!).

My personal rule of thumb is that the level of granularity

needed on most projects is 2-3 days – i.e. we should never

be more than two to three days from a definitive

milestone which will either be complete or not. The added

advantage of this approach is that if find yourself off

track, you can only be two to three days off track… much

easier to make up than if you went weeks or even months

working hard but not actually delivering what was

needed!

In our Christmas dinner example, there are a number of

critical milestones – a tick list of questions. Do we have all

the ingredients? Check. Has the turkey been basted?

Check. On the actual day, the sequencing and timing will

mean more specific questions: It’s 12pm. Are the Brussels

sprouts cooked to death yet? Check. (Allowing for the

extra hour of boiling to go from soft and green to mushy

and brown… Yeuch!)

What Your Turkey Can Teach You About Project Management

24 ways 2008 edition 161

TIP 3: ACTIVELY MANAGE RISKS AND ISSUES

A risk is something that could go wrong. An issue is

something that has already gone wrong. Risks and issues

are where project management superstars are born.

Anyone can manage things when everything is going

according to plan; it’s what you do when Cousin Jim

refuses to eat anything but strawberry jam sandwiches

that sorts the men from the boys.

The key with a Christmas dinner, as with any project, is to

have contingency plans for the most likely and most

damaging risks. These depend on your own particular

situation, but some examples might be:

162 24 ways 2008 edition

RISK CONTINGENCY PLAN

Cousin Jim is a picky eater. Have strawberry jam

and sliced white bread

on hand to placate.

Prime organic turkey might not be

available at Waitrose on

Christmas eve.

Shop in advance!

You live somewhere remote that

seems to lose power around

Christmas on a disturbingly

regular basis.

(number of options here

depending on how far

you want to go…)

Buy a backup generator.

Invent a new cooking

method using only

candles.

Stock up on “Christmas

dinner in a tin”.

Your mother in law is likely to be

annoying.

Bottle of sherry at the

ready (whether it’s for

you or her, you can

decide!).

The point of planning in advance is so that most of your

issues don’t blindside you – you can spring into action

with the contingency plan immediately. This leaves you

with plenty of ingenuity and ability to cope in reserve for

those truly unexpected events.

What Your Turkey Can Teach You About Project Management

24 ways 2008 edition 163

Back in your regular projects, you should have a risk

management plan (developed at the beginning of the

project and regularly reviewed) as well as an issue list,

tracking open, in progress and closed issues. Importantly,

your issue list should be separate from any kind of bug list

– issues are at a project level, bugs are at a technical level.

TIP 4: HAVE A PROJECT BOARD

A project board consists of the overall sponsor of your

project (often, but not always, the guy with the cheque

book) and typically a business expert and a technical

expert to help advise the sponsor. The project board is the

entity that is meant to make the big, critical decisions. As a

project manager, your role is to prepare a

recommendation, but leave the actual decision up to the

board.

Admittedly this is where our Christmas dinner analogy

has to stretch the most, but if you imagine that instead of

just cooking for your family you are the caterer preparing

a Christmas feast for a company. In this case, you

obviously want to please the diners who will be eating the

food, but key decisions are likely to be taken by whoever

is organizing the event. They, in turn, will involve the boss

if there are really big decisions that would affect the

project drastically – for instance, having to move it to

January, or it exceeding the set budget by a significant

amount.

164 24 ways 2008 edition

Most projects suffer from not having a project board to

consult for these major decisions, or from having the

wrong people selected. The first ailment is eased by

ensuring that you have a functioning project board, with

whom you either meet regularly to update on status, or

where there is a special process for convening the board if

they are needed. The second problem is a little more

subtle. Key questions to ask yourself are:

▪ Who is funding this project?

▪ Who has the authority to stop the project if it was the

right thing to do?

▪ Who are the right business and technical advisors?

▪ Who are the folks who don’t look like they are powerful

on the org chart, but in fact might scupper this project?

(e.g. administrators, tech support, personal assistants…)

TIP 5: FINISH UNEQUIVOCABLY AND WELL

No one is ever uncertain as to when Christmas dinner

ends. Once the flaming pudding has been consumed and

the cheese tray picked at, the end of the dinner is

heralded by groaning and everyone collapsing in their

chairs. Different households have different rituals, so you

might only open your presents after Christmas dinner

(unlikely if you have small children!), or you might round

off the afternoon watching the Queen’s speech (in

Britland, certainly) or if you live in warmer climes you

What Your Turkey Can Teach You About Project Management

24 ways 2008 edition 165

might round off Christmas dinner with a swim (which was

our tradition in Cape Town – after 30 mins of food settling

so you didn’t get cramp, of course!).

The problem with projects is that they are one time

efforts and so nowhere near as ritualized. Unless you have

been incredibly lucky, you’ve probably worked on a

project where you thought you were finished but seemed

unable to lose your “zombie customers” – those folks who

just didn’t realise it was over and kept coming back with

more and more requests. You might even have fallen prey

to this yourself, believing that the website going live was

the end of the project and not realising that a number of

things still needed to be wrapped up.

The essence of this final tip is to inject some of that end-

of-Christmas finality ritual into your projects. Find your

own ritual for closing down projects – more than just

sending the customer the invoice and archiving the files.

Consider things like documentation, support structure

handover and training to make sure that those zombies

are going to the right people (hopefully not you!).

So, to summarise:

1. Make sure you start your projects well – with an

agreed (written) vision of what you’re trying to achieve.

166 24 ways 2008 edition

2. Plan your projects at the right level of detail and in an

appropriate format – never be more than a few days away

from knowing for sure whether you’re on track or not.

3. Plan for likely and important risks and make sure you

track and resolve those you actually encounter.

4. Institute a project board, made up of the people with

the real power over your project.

5. Create rituals for closing projects well – don’t leave

anyone in doubt that the project has been delivered, or of

who they should go to for further help.

What Your Turkey Can Teach You About Project Management

24 ways 2008 edition 167

ABOUT THE AUTHOR

Meri Williams is a geek, a manager and a manager of geeks.

She’s led teams ranging in size from 30 to 300, mostly with folks

spread across the world. After starting her career as a

developer, she moved on to project and then product

management before moving into engineering and operations

management.

168 24 ways 2008 edition

A published author and speaker, she sponsors scholarships to

encourage more young women into STEM careers in her

hometown of Stellenbosch, South Africa. You can follow her on

Twitter at @Geek_Manager or read her blog at

blog.geekmanager.co.uk

What Your Turkey Can Teach You About Project Management

24 ways 2008 edition 169

http://twitter.com/Geek_Manager
http://blog.geekmanager.co.uk

Jon Tan 24ways.org/200817

17. A Festive Type Folly

‘Tis the season to be jolly, so the carol
singers tell us. At 24 ways, we’re keeping
alive another British tradition that includes
the odd faux-Greco-Roman building dotted
around the British countryside, Tower
Bridge built in 1894, and your Dad’s
Christmas jumper with the dancing reindeer
motif. ‘Tis the season of the folly!

170 24 ways 2008 edition

http://24ways.org/200817
http://en.wikipedia.org/wiki/Folly

24 Ways to impress your
friends

The example is not an image, just text. You may wish to

see a screenshot in Safari to compare with your own

operating system and browser rendering.

Like all follies this is an embellishment — a bit of web

typography fun. It’s similar to the masthead text at my

place, but it’s also a hyperlink. Unlike the architectural

follies of the past, no child labour was used to fund or

build it, just some HTML flavoured with CSS, and a heavy

dose of Times New Roman. Why Times New Roman, you

ask? Well, after a few wasted hours experimenting with

heaps of typefaces, seeking an elusive consistency of

positioning and rendering across platforms, it proved to

be the most consistent. Who’d‘a thought? To make things

more interesting, I wanted to use a traditional scale and

make the whole thing elastic by using relative lengths that

would react to a person’s font size. So, to the meat of this

festive frippery:

There are three things we rely on to create this

indulgence:

1. Descendant selectors

24 Ways to impress your friends

24 ways 2008 edition 171

http://24ways.org/2008/a-festive-type-folly
http://24ways.org/2008/a-festive-type-folly
http://media.24ways.org/2008/17/safari-sample.gif
http://jontangerine.com
http://jontangerine.com
http://en.wikipedia.org/wiki/Times_Roman
http://www.webtypography.net/Harmony_and_Counterpoint/Size/3.1.1/

2. Absolute positioning

3. Inheritance

HTML & Descendant Selectors

The markup for the folly might seem complex at first

glance. To semantics pedants and purists it may seem

outrageous. If that’s you, read on at your peril! Here it is

with lots of whitespace:

<div id="type">

<h1>

2

4

w

a

y

s

to

i

m

pre

s

s

your

friends

172 24 ways 2008 edition

</h1>

</div>

Why so much markup? Well, we want to individually style

many of the glyphs. By nesting the elements, we can pick

out the bits we need as descendant selectors.

To retain a smidgen of semantics, the text is wrapped in

<h1> and <a> elements. The two phrases, “24 ways” and

“to impress your friends” are wrapped in and

 tags, respectively. Within those loving arms,

their descendant s cascade invisibly, making a right

mess of our source, but ready to be picked out in our CSS

rules.

So, to select the “2” from the example we can simply write,

#type h1 em{ }. Of course, that selects everything within

the tags, but as we drill down the document tree,

selecting other glyphs, any property / value styles can be

reset or changed as required.

24 Ways to impress your friends

24 ways 2008 edition 173

http://www.w3.org/TR/CSS21/selector.html#descendant-selectors

PIXELS VERSUS EMS

Before we get stuck into the CSS, I should say that the

goal here is to have everything expressed in relative “em”

lengths. However, when I’m starting out, I use pixels for all

values, and only convert them to ems after I’ve finished. It

saves re-calculating the em length for every change I

make as the folly evolves, but still makes the final result

elastic, without relying on browser zoom.

To skip ahead, see the complete CSS.

Absolutely Positioned Glyphs

If a parent element has position: relative, or

position: absolute applied to it, all children of that

parent can be positioned absolutely relative to it. (See

Dave Shea’s excellent introduction to this.) That’s exactly

how the folly is achieved. As the parent, #type also has a

font-size of 16px set, a width and height, and some basic

style with a background and border:

#type{

font-size: 16px;

text-align: left;

background: #e8e9de;

border: 0.375em solid #fff;

width: 22.5em;

height: 13.125em;

position: relative;

}

174 24 ways 2008 edition

http://www.w3.org/TR/CSS21/syndata.html#length-units
http://www.w3.org/TR/CSS21/syndata.html#length-units
http://media.24ways.org/2008/17/festive-type-folly.css
http://www.mezzoblue.com/archives/2004/03/04/positioning_/

The h1 is also given a default style with a font-size of

132px in ems relative to the parent font-size of 16px:

#type h1{

font-family: "Times New Roman", serif;

font-size: 8.25em; /* 132px */

line-height: 1em;

font-weight: 400;

margin: 0;

padding: 0;

}

To get the em value, we divide the required size in pixels by

the actual parent font-size in pixels

132 ÷ 16 = 8.25

We also give the descendants of the h1 some default

properties. The line height, style and weight are

normalised, they are positioned absolutely relative to

#type, and a border and padding is applied:

#type h1 em,

#type h1 strong,

#type h1 span{

line-height: 1em;

font-style: normal;

font-weight: 400;

position: absolute;

padding: 0.1em;

border: 1px solid transparent;

}

24 Ways to impress your friends

24 ways 2008 edition 175

The padding ensures that some browsers don’t forget

about parts of a glyph that are drawn outside of their

invisible container. When this happens, IE will trim the

glyph, cutting off parts of descenders, for example. The

border is there to make sure the glyphs have layout.

Without this, positioning can be problematic. IE6 will not

respect the transparent border colour — it uses the actual

text colour — but in all other respects renders the

example. You can hack around it, but it seemed

unnecessary for this example.

Once these defaults are established, the rest is trial and

error. As a quick example, the numeral “2” is first to be

positioned:

#type h1 a em{

font-size: 0.727em; /* (2) 96px */

left: 0.667em;

top: 0;

}

Every element of the folly is positioned in exactly the

same way as you can see in the complete CSS. When

converting pixels to ems, the font-size is set first. Then,

because we know what that is, we calculate the

equivalent x- and y-position accordingly.

176 24 ways 2008 edition

http://media.24ways.org/2008/17/festive-type-folly.css

Inheritance

CSS inheritance gave me a headache a long time ago when

I first encountered it. After the penny dropped I came to

experience something disturbingly close to affection for

this characteristic. What it basically means is that children

inherit the characteristics of their parents. For example:

1. We gave #type a font-size of 16px.

2. For #type h1 we changed it by setting font-size:

8.25em;. Than means that #type h1 now has a computed

font-size of 8.25 × 16px = 132px.

3. Now, all children of #type h1 in the document tree will

inherit a font-size of 132px unless we explicitly change it

as we did for #type h1 a em.

The “2” in the example — selected with #type h1 a em— is

set at 96px with left and top positioning calculated

relatively to that. So, the left position of 0.667em is 0.667

× 96 = 64px, approximately (three decimal points in em

lengths don’t always give exact pixel equivalents).

One way to look at inheritance is as a cascade of

dependancy: In our example, the computed font size of

any given element depends on that of the parent, and the

absolute x- and y-position depends on the computed font

size of the element itself.

24 Ways to impress your friends

24 ways 2008 edition 177

http://www.w3.org/TR/CSS21/cascade.html#inheritance

LINK COLOURS

The same descendant selectors we use to set and position

the type are also used to apply the colour by combining

them with pseudo-selectors like :focus and :hover.

Because the descendant selectors are available to us, we

can pretty much pick out any glyph we like. First, we need

to disable the underline:

#type h1 a:link,

#type h1 a:visited{

text-decoration: none;

}

In our example, the “24” has a unique default state

(colour):

#type h1 a:link em,

#type h1 a:visited em{

color: #624;

}

The rest of the “Ways” text has a different colour, which it

shares with the large “s” in “impress”:

#type h1 a:link em span span,

#type h1 a:visited em span span,

#type h1 a:link strong span span span span,

#type h1 a:visited strong span span span span{

color: #b32720;

}

178 24 ways 2008 edition

“24” changes on :focus, :hover and :active. Critically

though, the whole of the “24 Ways” text, and the large “s”

in “impress” all have the same style in this instance:

#type h1 a:focus em,

#type h1 a:hover em,

#type h1 a:active em,

#type h1 a:focus em span span,

#type h1 a:hover em span span,

#type h1 a:active em span span,

#type h1 a:focus strong span span span span,

#type h1 a:hover strong span span span span,

#type h1 a:active strong span span span span{

color: #804;

}

If a descendant selector has a :link and :visited state

set as a pseudo element, it needs to also have the

corresponding :focus, :hover and :active states set.

A FINAL NOTE ABOUT WEB TYPOGRAPHY

From grids to basic leading to web fonts, and even

absolute positioning, there’s a wealth of things we can do

to treat type on the Web with love and respect. However,

experiments like this can highlight the vagaries of

rasterisation and rendering that limit our ability to

achieve truly subtle and refined results. At the operating

system level, the differences in type rendering are

extreme, and even between sequential iterations in

Windows — from Standard to ClearType — they can be

24 Ways to impress your friends

24 ways 2008 edition 179

http://www.subtraction.com/2004/12/31/grid-computi
http://www.webtypography.net/Rhythm_and_Proportion/Vertical_Motion/2.2.1/
http://jontangerine.com/log/2008/10/font-face-in-ie-making-web-fonts-work
http://jontangerine.com/log/2008/11/display-type-and-the-raster-wars
http://jontangerine.com/log/2008/11/display-type-and-the-raster-wars

daunting. Add to that huge variations in screen quality,

and even the paper we print our type onto has many

potential variations. Compare our example in Safari 3.2.1

/ OS X 10.5.5 (left) and IE7 / Win XP (right). Both

rendered on a 23” Apple Cinema HD (LCD):

Browser developers continue to make great strides.

However, those of us who set type on the Web need more

consistency and quality if we want to avoid technologies

like Flash and evolve web typography. Although web

typography is inevitably — and mistakenly — compared

unfavourably to print, it has the potential to achieve the

same refinement in a different way. Perhaps one day, the

glyphs of our favourite faces, so carefully crafted, kerned

and hinted for the screen, will be rendered with the same

precision with which they were drawn by type designers

and styled by web designers. That would be my wish for

the new year. Happy holidays!

180 24 ways 2008 edition

http://my.opera.com/ODIN/blog/opera-10-alpha-web-fonts-acid3

ABOUT THE AUTHOR

Jon Tan is a designer and typographer who co-founded the web

fonts service, Fontdeck. He’s a partner in Fictive Kin, where he

works with friends making things like Brooklyn Beta and

Mapalong.

His addiction to web typography has led him to share snippets

of type news via @t8y. He also writes for publications like

Typographica and 8 Faces, speaks at international events like

An Event Apart, and works with such organisations as the BBC.

Jon is based in Mild Bunch HQ, the co-working studio he

started in Bristol, UK. He can often be found wrestling with his

two sons, losing, then celebrating the fact as @jontangerine on

Twitter.

24 Ways to impress your friends

24 ways 2008 edition 181

http://jontangerine.com/
http://fontdeck.com/
http://fictivekin.com/
http://brooklynbeta.org/
http://mapalong.com/
http://twitter.com/t8y
http://typographica.org/
http://8faces.com/
http://aneventapart.com/speakers/jon-tan
http://mildbunch.org/
http://twitter.com/jontangerine

John Allsopp 24ways.org/200818

18. Shiny Happy Buttons

Since Mac OS X burst onto our screens,
glossy, glassy, shiny buttons have been
almost de rigeur, and have essentially, along
with reflections and rounded corners,
become a cliché of Web 2.0 “design”. But if
you can’t beat ‘em you’d better join ‘em. So,
in this little contribution to our advent
calendar, we’re going to take a plain old
boring HTML button, and 2.0 it up the
wazoo.

But, here’s the catch. We’ll use no images, either in our

HTML or our CSS. No sliding doors, no image replacement

techniques. Just straight up, CSS, CSS3 and a bit of

experimental CSS. And, it will be compatible with pretty

much any browser (though with some progressive

enhancement for those who keep up with the latest

browsers).

THE HTML

We’ll start with our HTML.

182 24 ways 2008 edition

http://24ways.org/200818

<button type="submit">This is a shiny button</button>

OK, so it’s not shiny yet – but boy will it ever be.

Before styling, that’s going to look like this.

Ironically, depending on the operating system and

browser you are using, it may well be a shiny button

already, but that’s not the point. We want to make it shiny

2.0. Our mission is to make it look something like this

If you want to follow along at home keep in mind that

depending on which browser you are using you may see

fewer of the CSS effects we’ve added to create the button.

As of writing, only in Safari are all the effects we’ll apply

supported.

Taking a look at our finished product, here’s what we’ve

done to it:

1. We’ve given the button some padding and a width.

2. We’ve changed the text color, and given the text a

drop shadow.

3. We’ve given the button a border.

4. We’ve given the button some rounded corners.

5. We’ve given the button a drop shadow.

6. We’ve given the button a gradient background.

Shiny Happy Buttons

24 ways 2008 edition 183

http://media.24ways.org/2008/18/button.html

and remember, all without using any images.

STYLING THE BUTTON

So, let’s get to work.

First, we’ll add given the element some padding and a

width:

button {

padding: .5em;

width: 15em;

}

Next, we’ll add the text color, and the drop shadow:

color: #ffffff;

text-shadow: 1px 1px 1px #000;

A note on text-shadow

If you’ve not seen text-shadows before well, here’s the

quick back-story. Text shadow was introduced in CSS2,

but only supported in Safari (version 1!) some years later.

It was removed from CSS2.1, but returned in CSS3 (in the

text module). It’s now supported in Safari, Opera and

Firefox (3.1). Internet Explorer has a shadow filter, but the

syntax is completely different.

184 24 ways 2008 edition

http://www.w3.org/TR/2003/CR-css3-text-20030514/#text-shadows

So, how do text-shadows work? The three length values

specify respectively a horizontal offset, a vertical offset

and a blur (the greater the number the more blurred the

shadow will be), and finally a color value for the shadow.

Rounding the corners

Now we’ll add a border, and round the corners of the

element:

border: solid thin #882d13;

-webkit-border-radius: .7em;

-moz-border-radius: .7em;

border-radius: .7em;

Here, we’ve used the same property in three slightly

different forms. We add the browser specific prefix for

Webkit and Mozilla browsers, because right now, both of

these browsers only support border radius as an

experimental property. We also add the standard

property name, for browsers that do support the property

fully in the future.

The benefit of the browser specific prefix is that if a

browser only partly supports a given property, we can

easily avoid using the property with that browser simply

by not adding the browser specific prefix. At present, as

you might guess, border-radius is supported in Safari and

Firefox, but in each the relevant prefix is required.

Shiny Happy Buttons

24 ways 2008 edition 185

border-radius takes a length value, such as pixels. (It can

also take two length values, but that’s for another

Christmas.) In this case, as with padding, I’ve used ems,

which means that as the user scales the size of text up and

down, the radius will scale as well. You can test the

difference by making the radius have a value of say 5px,

and then zooming up and down the text size.

We’re well and truly on the way now. All we need to do is

add a shadow to the button, and then a gradient

background.

In CSS3 there’s the box-shadow property, currently only

supported in Safari 3. It’s very similar to text-shadow –

you specify a horizontal and vertical offset, a blur value

and a color.

-webkit-box-shadow: 2px 2px 3px #999;

box-shadow: 2px 2px 2px #bbb;

Once more, we require the “experimental” -webkit-

prefix, as Safari’s support for this property is still

considered by its developers to be less than perfect.

Gradient Background

So, all we have left now is to add our shiny gradient effect.

Now of course, people have been doing this kind of thing

with images for a long time. But if we can avoid them all

the better. Smaller pages, faster downloads, and more

186 24 ways 2008 edition

scalable designs that adapt better to the user’s font size

preference. But how can we add a gradient background

without an image?

Here we’ll look at the only property that is not as yet part

of the CSS standard – Apple’s gradient function for use

anywhere you can use images with CSS (in this case

backgrounds). In essence, this takes SVG gradients, and

makes them available via CSS syntax.

Here’s what the property and its value looks like:

background-image: -webkit-gradient(linear, left top,

left bottom, from(#e9ede8), to(#ce401c),color-stop(0.4,

#8c1b0b));

Zooming in on the gradient function, it has this basic form:

-webkit-gradient(type, point, point, from(color),

to(color),color-stop(where, color));

Which might look complicated, but is less so than at first

glance.

The name of the function is gradient (and in this case,

because it is an experimental property, we use the -

webkit- prefix).

Shiny Happy Buttons

24 ways 2008 edition 187

You might not have seen CSS functions before, but there

are others, including the attr() function, used with

generated content. A function returns a value that can be

used as a property value – here we are using it as a

background image.

Next we specify the type of the gradient. Here we have a

linear gradient, and there are also radial gradients.

After that, we specify the start and end points of the

gradient – in our case the top and bottom of the element,

in a vertical line.

We then specify the start and end colors – and finally one

stop color, located at 40% of the way down the element.

Together, this creates a gradient that smoothly transitions

from the start color in the top, vertically to the stop color,

then smoothly transitions to the end color.

There’s one last thing. What color will the background of

our button be if the browser doesn’t support gradients? It

will be white (or possibly some default color for buttons).

Which may make the text difficult or impossible to read.

So, we’ll add a background color as well (see why the

validator is always warning you when a color but not a

background color is specified for an element?).

If we put it all together, here’s what we have:

188 24 ways 2008 edition

button {

width: 15em;

padding: .5em;

color: #ffffff;

text-shadow: 1px 1px 1px #000;

border: solid thin #882d13;

-webkit-border-radius: .7em;

-moz-border-radius: .7em;

border-radius: .7em;

-webkit-box-shadow: 2px 2px 3px #999;

box-shadow: 2px 2px 2px #bbb;

background-color: #ce401c;

background-image: -webkit-gradient(linear, left top,

left bottom, from(#e9ede8), to(#ce401c),color-stop(0.4,

#8c1b0b));

}

Which looks like this in various browsers:

In Safari (3)

In Firefox 3.1 (3.0 supports border-radius but not text-

shadow)

Shiny Happy Buttons

24 ways 2008 edition 189

In Opera 10

and of course in Internet Explorer (version 8 shown here)

But it looks different in different browsers

Yes, it does look different in different browsers, but we all

know the answer to the question “do web sites need to

look the same in every browser?“.

Even if you really think sites should look the same in every

browser, hopefully this little tutorial has whet your

appetite for what CSS3 and experimental CSS that’s

already supported in widely used browsers (and we

haven’t even touched on animations and similar effects!).

I hope you’ve enjoyed out little CSSMas present, and look

forward to seeing your shiny buttons everywhere on the

web.

190 24 ways 2008 edition

http://dowebsitesneedtolookexactlythesameineverybrowser.com/
http://dowebsitesneedtolookexactlythesameineverybrowser.com/

Oh, and there’s just a bit of homework – your job is to use

the :hover selector, and make a gradient in the hover

state.

ABOUT THE AUTHOR

John Allsopp is a founder of Westciv, an Australian web

software development and training company, which provides

some of the best CSS resources and tutorials on the web.

Westciv’s software and training are used in dozens of countries

around the World. The head developer of the leading cross

platform CSS editor, Style Master, John has written on web

development issues for numerous web and print publications

and was one of the earliest members of the Web Standards

Project.

Shiny Happy Buttons

24 ways 2008 edition 191

http://www.westciv.com/
http://webstandards.org/
http://webstandards.org/

Brian Suda 24ways.org/200819

19. Moo'y Christmas

A note

from

the editors: Moo has changed their API since this article

was written.

As the web matures, it is less and less just
about the virtual world. It is becoming
entangled with our world and it is harder to
tell what is virtual and what is real. There
are several companies who are blurring this
line and make the virtual just an extension
of the physical. Moo is one such company.

Moo offers simple print on demand services. You can print

business cards, moo mini cards, stickers, postcards and

more. They give you the ability to upload your images,

customize them, then have them sent to your door. Many

companies allow this sort of digital to physical interaction,

but Moo has taken it one step further and has built an API.

PRINTABLE STOCKING STUFFERS

The Moo API consists of a simple XML file that is sent to

their servers. It describes all the information needed to

dynamically assemble and print your object. This is very

192 24 ways 2008 edition

http://24ways.org/200819
http://moo.com/
http://www.moo.com/api/

helpful, not just for when you want to print your own

stickers, but when you want to offer them to your

customers, friends, organization or community with no

hassle. Moo handles the check-out and shipping, all you

need to do is what you do best, create!

Now using an API sounds complicated, but it is actually

very easy. I am going to walk you through the options so

you can easily be printing in no time.

Before you can begin sending data to the Moo API, you

need to register and get an API key. This is important,

because it allows Moo to track usage and to credit you. To

register, visit http://www.moo.com/api/ and click

“Request an API key”.

In the following examples, I will use {YOUR API KEY HERE}

as a place holder, replace that with your API key and

everything will work fine.

First thing you need to do is to create an XML file to

describe the check-out basket. Open any text-editor and

start with some XML basics. Don’t worry, this is pretty

simple and Moo gives you a few tools to check your XML

for errors before you order.

<?xml version="1.0" encoding="UTF-8"?>

<moo xsi:noNamespaceSchemaLocation="http://www.moo.com/

xsd/api_0.7.xsd" xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance">

<request>

Moo'y Christmas

24 ways 2008 edition 193

http://www.moo.com/api/

<version>0.7</version>

<api_key>{YOUR API KEY HERE}</api_key>

<call>build</call>

<return_to>http://www.example.com/

return.html</return_to>

<fail_to>http://www.example.com/fail.html</fail_to>

</request>

<payload>

...

</payload>

</moo>

Much like HTML’s <head> and <body>, Moo has created

<request> and <payload> elements all wrapped in a <moo>

element.

The <request> element contains a few pieces of

information that is the same across all the API calls. The

<version> element describes which version of the API is

being used. This is more important for Moo than for you,

so just stick with “0.7” for now.

The <api_key> allows Moo to track sales, referrers and

credit your account.

The <call> element can only take “build” so that is pretty

straight forward. The <return_to> and <fail_to>

elements are URLs. These are optional and are the URLs

the customer is redirected to if there is an error, or when

the check out process is complete. This allows for some

194 24 ways 2008 edition

basic branding and a custom “thank you” page which is

under your control. That’s it for the <request> element,

pretty easy so far!

Next up is the <payload> element. What goes inside here

describes what is to be printed. There are two possible

elements, we can put <chooser> or we can put <products>

directly inside <payload>. They work in a similar ways, but

they drop the customer into different parts of the Moo

checkout process.

If you specify <products> then you send the customer

straight to the Moo payment process. If you specify

<chooser> then you send the customer one-step earlier

where they are allowed to pick and choose some images,

remove the ones they don’t like, adjust the crop, etc. The

example here will use <chooser> but with a little bit of

homework you can easily adjust to <products> if you

desire.

...

<chooser>

<product_type>sticker</product_type>

<images>

<url>http://example.com/images/christmas1.jpg</url>

</images>

</chooser>

...

Moo'y Christmas

24 ways 2008 edition 195

http://www.moo.com/api/documentation.php#stage1_1
http://www.moo.com/api/documentation.php#stage1_1

Inside the <chooser> element, we can see there are two

basic piece of information. The type of product we want

to print, and the images that are to be printed. The

<product_type> element can take one of five options and

is required! The possibilities are: minicard, notecard,

sticker, postcard or greetingcard. We’ll now look at two of

these more closely.

MOO STICKERS

In the Moo sticker books you get 90 small squarish

stickers in a small little booklet.

The simplest XML you could send would be something like

the following payload:

196 24 ways 2008 edition

...

<payload>

<chooser>

<product_type>sticker</product_type>

<images>

<url>http://example.com/image1.jpg</url>

</images>

<images>

<url>http://example.com/image2.jpg</url>

</images>

<images>

<url>http://example.com/image3.jpg</url>

</images>

</chooser>

</payload>

...

This creates a sticker book with only 3 unique images, but

30 copies of each image. The Sticker books always print

90 stickers in multiples of the images you uploaded. That

example only has 3 <images> elements, but you can easily

duplicate the XML and send up to 90. The <url> should be

the full path to your image and the image needs to be a

minimum of 300 pixels by 300 pixels.

You can add more XML to describe cropping, but the

simplest option is to either, let your customers choose or

to pre-crop all your images square so there are no issues.

The full XML you would post to the Moo API to print

sticker books would look like this:

Moo'y Christmas

24 ways 2008 edition 197

<?xml version="1.0" encoding="UTF-8"?>

<moo xsi:noNamespaceSchemaLocation="http://www.moo.com/

xsd/api_0.7.xsd" xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance">

<request>

<version>0.7</version>

<api_key>{YOUR API KEY HERE}</api_key>

<call>build</call>

<return_to>http://www.example.com/

return.html</return_to>

<fail_to>http://www.example.com/fail.html</fail_to>

</request>

<payload>

<chooser>

<product_type>sticker</product_type>

<images>

<url>http://example.com/image1.jpg</url>

</images>

<images>

<url>http://example.com/image2.jpg</url>

</images>

<images>

<url>http://example.com/image3.jpg</url>

</images>

</chooser>

</payload>

</moo>

MINI-CARDS

The mini-cards are the small cute business cards in 14×35

dimensions and come in packs of 100.

198 24 ways 2008 edition

Since the mini-cards are print on demand, this allows you

to have 100 unique images on the back of the cards.

Just like the stickers example, we need the same XML

setup. The <moo> element and <request> elements will be

the same as before. The part you will focus on is the

<payload> section.

Since you are sending along specific information, we can’t

use the <chooser> option any more. Switch this to

<products> which has a child of <product>, which in turn

has a <product_type> and <designs>. This might seem like

a lot of work, but once you have it set up you won’t need

to change it.

Moo'y Christmas

24 ways 2008 edition 199

...

<payload>

<products>

<product>

<product_type>minicard</product_type>

<designs>

...

</designs>

</product>

</products>

</payload>

...

So now that we have the basic framework, we can talk

about the information specific to minicards. Inside the

<designs> element, you will have one <design> for each

card. Much like before, this contains a way to describe the

image. Note that this time the element is called 

</design>

...

So far, we have managed to build a pack of 100 Moo mini-

cards with the same image on the front. If you wanted 100

different images, you just need to replicate this snippit, 99

more times.

That describes the front design, but the flip-side of your

mini-cards can contain 6 lines of text, which is

customizable in a variety of colors, fonts and styles.

The API allows you to create different text on the back of

each mini-card, something the web interface doesn’t

implement. To describe the text on the mini-card we need

to add a <text_collection> element inside the <design>

element. If you skip this element, the back of your mini-

card will just be blank, but that’s not very festive!

Inside the <text_collection> element, we need to

describe the type of text we want to format, so we add a

<minicard> element, which in turn contains all the lines of

text. Each of Moo’s printed products take different

numbers of lines of text, so if you are not planning on

making mini-cards, be sure to consult the documentation.

For mini-cards, we can have 6 distinct lines, each with

their own style and layout. Each line is represented by an

element <text_line> which has several optional children.

The <id> tells which line of the 6 to print the text one. The

Moo'y Christmas

24 ways 2008 edition 201

<string> is the text you want to print and it must be

shorter than 38 characters. The <bold> element is false by

default, but if you want your text bolded, then add this

and set it to true.

The <align> element is also optional. By default it is set to

align left. You can also set this to right or center if you

desirer. The element takes one of 3 types, modern,

traditional or typewriter. The default is modern. Finally,

you can set the <colour>, yes that’s color with a ‘u’, Moo is

a British company, so they get to make the rules. When

you start a print on demand company, you can spell it

however you want. The <colour> element takes a 6

character hex value with a leading #.

<design>

...

<text_collection>

<minicard>

<text_line>

<id>(1-6)</id>

<string>String, I must be less than 38

chars!</string>

<bold>true</bold>

<align>left</align>

modern

<colour>#ff0000</colour>

</text_line>

</minicard>

</text_collection>

</design>

202 24 ways 2008 edition

If you combine all of this into a mini-card request you’d

get this example:

<?xml version="1.0" encoding="UTF-8"?>

<moo xsi:noNamespaceSchemaLocation="http://www.moo.com/

xsd/api_0.7.xsd" xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance">

<request>

<version>0.7</version>

<api_key>{YOUR API KEY HERE}</api_key>

<call>build</call>

<return_to>http://www.example.com/

return.html</return_to>

<fail_to>http://www.example.com/fail.html</fail_to>

</request>

<payload>

<products>

<product>

<product_type>minicard</product_type>

<designs>

<design>



<text_collection>

<minicard>

<text_line>

<id>1</id>

<string>String, I must be less than 38

chars!</string>

<bold>true</bold>

<align>left</align>

Moo'y Christmas

24 ways 2008 edition 203

modern

<colour>#ff0000</colour>

</text_line>

</minicard>

</text_collection>

</design>

</designs>

</product>

</products>

</payload>

</moo>

Now you know how to construct the XML that describes

what to print. Next, you need to know how to send it to

Moo to make it happen!

POSTING TO THE API

So your XML is file ready to go. First thing we need to do is

check it to make sure it’s valid. Moo has created a simple

validator where you paste in your XML, and it alerts you

to problems.

When you have a fully valid XML file, you’ll want to send

that to the Moo API. There are a few ways to do this, but

the simplest is with an HTML form.

This is the sample code for an HTML form with a big “Buy

My Stickers” button. Once you know that it is working,

you can use all your existing HTML knowledge to style it

up any way you like.

204 24 ways 2008 edition

http://www.moo.com/api/validator.php
http://www.moo.com/api/validator.php

<form method="POST" action="http://www.moo.com/api/

api.php">

<input type="hidden" name="xml" value="<?xml

version="1.0" encoding="UTF-8"?> <moo

xsi:noNamespaceSchemaLocation="http://www.moo.com/xsd/

api_0.7.xsd" xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance"> <request>....</request>

<payload>...</payload> </moo> ">

<input type="submit" name="submit" value="Buy My

Stickers"/>

</form>

This is just a basic <form> element that submits to the

Moo API, http://www.moo.com/api/api.php, when

someone clicks the button. There is a hidden input called

“xml” which contains the value the XML file we created

previously.

For those of you who need to “view source” to fully

understand what’s happening can see a working version

and peek under the hood.

Using the API has advantages over uploading the images

directly yourself. The images and text that you send via

the API can be dynamic. Some companies, like Dopplr,

have taken user profiles and dynamic data that changes

every minute to generate customer stickers of places that

you’ve travelled to or mini-cards with a world map of all

the cities you have visited. Every single customer has

different travel plans and therefore different sets of

Moo'y Christmas

24 ways 2008 edition 205

http://suda.co.uk/projects/microformats/moo/
http://dopplr.com/

stickers and mini-card maps. The API allows for the

utmost current information to be printed, on demand, in

real-time.

GO FORTH AND MOO’LTIPLY

See, making an API call wasn’t that hard was it? You are

now 90% of the way to creating anything with the Moo

API. With a bit of reading, you can learn that extra 10%

and print any Moo product. Be on the lookout in 2009 for

the official release of the 1.0 API with improvements and

some extras that were not available when this article was

written.

This article is released under the creative-commons

attribution share-a-like license. That means you are free

to re-distribute it, mash it up, translate it and otherwise

re-using it ways the author never considered, in return he

only asks you mention his name.

This work by Brian Suda is licensed under a Creative

Commons Attribution-Share Alike 3.0 Unported License.

206 24 ways 2008 edition

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

ABOUT THE AUTHOR

Brian Suda is a master informatician working to make the web a

better place little by little everyday. Since discovering the

Internet in the mid-90s, Brian Suda has spent a good portion of

each day connected to it. His own little patch of Internet is

http://suda.co.uk, where many of his past projects and crazy

ideas can be found.

Photo: Jeremy Keith

Moo'y Christmas

24 ways 2008 edition 207

http://suda.co.uk
http://www.flickr.com/photos/adactio/2829352818/

Gavin Bell 24ways.org/200820

20. Ghosts On The
Internet

By rights the internet should be full of
poltergeists, poor rootless things looking for
their real homes. Many events on the
internet are not properly associated with
their correct timeframe. I don’t mean a
server set to the wrong time, though that
happens too. Much of the content published
on the internet is separated from any proper
reference to its publication time. What does
publication even mean? Let me tell you a
story…

“It is 2019 and this is Kathy Clees reporting on
the story of the moment, the shock purchase of
Microsoft by Apple Inc. A Internet Explorer
security scare story from 2008 was responsible,
yes from 11 years ago, accidently promoted by
an analyst, who neglected to check the date of
their sources.”

208 24 ways 2008 edition

http://24ways.org/200820

If you think this is fanciful nonsense, then cast your mind

back to September 2008, this story in Wired or The Times

(UK) about a huge United Airlines stock tumble. A Florida

newspaper had a automated popular story section. A

random reader looking at a story about United’s 2002

Bankruptcy proceedings caused this story to get picked

up by Google’s later visit to the South Florida Sun

Sentinel’s news home page.

The story was undated, Google’s news engine apparently

gave it a 2008 date, an analyst picked it up and pushed it

to Bloomberg and within minutes the United stock was

tumbling. Their stock price dropped from $12 to $3, then

recovered to $11 over the day. An eight percent fall in

share price over a mis-configured date

Completing this out of order Christmas Carol, lets look at

what is current practice and how dates are managed, we

might even get to clank some chains. Publication date

used to be inseparable from publication, the two things

where stamped on the same piece of paper. How can we

determine when things have been published, now?

DETERMINING PUBLICATION DATES

Time as defined by http://www.w3.org/TR/NOTE-

datetime extends ISO 8601, mandating the use of a year

value. This is pretty well defined, we can even get very

Ghosts On The Internet

24 ways 2008 edition 209

http://blog.wired.com/27bstroke6/2008/09/six-year-old-st.html
http://technology.timesonline.co.uk/tol/news/tech_and_web/article4742147.ece
http://technology.timesonline.co.uk/tol/news/tech_and_web/article4742147.ece
http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime

accurate timings down to milliseconds, Ruby and other

languages can even handle Calendar reformation. So

accuracy is not the issue.

One problem is that there are many dates which could be

interpreted as the publication date. Publication can mean

any of date written or created; date placed on server; last

modified date; or the current date from the web server.

Created and modified have parallels with file systems, but

the large number of database driven websites means that

this no longer holds much meaning, as there are no longer

any files.

Checking web server HEAD may also not correspond, it

might give the creation time for the HTML file you are

viewing or it might give the last modified time for a file

from disk. It is too unreliable and lacking in context to be

of real value. So if the web server will not help, then how

can we get the right timeframe for our content?

We are left with URLs and the actual page content.

210 24 ways 2008 edition

http://www.ruby-doc.org/core/classes/DateTime.html

Looking at Flickr, this picture (by Douglas County History

Research Center) has four date values which can be

associated with it. It was taken around 1900, scanned in

1992 and placed on Flickr on July 29th, 2008 and

replaced later that day. Which dates should be

represented here?

This is hard question to answer, but currently the date of

upload to Flickr is the best represented in terms of the

date URL, /photos/douglascountyhistory/archives/

date-posted/2008/07/29/, plus some Dublin Core RDF

for the year. Flickr uses 2008 as the value for this image.

Not accurate, but a reasonable compromise for the

millions of other images on their site.

Ghosts On The Internet

24 ways 2008 edition 211

http://www.flickr.com/photos/douglascountyhistory/2714248706/in/datetaken/
http://www.flickr.com/photos/douglascountyhistory/2714248706/in/datetaken/
http://dublincore.org/

Flickr represents location much better than it represents

time. For the most part this is fine, but once you go back in

time to the 1800s then the maps of the world start to

change a lot and you need to reference both time and

place.

The Google timeline search offers another interesting

window on the world, showing results organised by

decade for any search term. Being able to jump to a

specific occurrence of a term makes it easier to get

primary results rather than later reporting.

The 1918 “Spanish flu” results jump out in this timeline.

Any major news event will have multiple analysis articles

after the event, finding the original reporting of hurricane

Katrina is harder now. Many publishers are putting older

content online, e.g. Harpers or Nature or The Times, often

these use good date based URLs, sometimes they are

unhelpful database references. If this content is available

for free, then how much better would it be to provide

good metadata on date of publication.

212 24 ways 2008 edition

http://www.google.com/experimental/#RefinementBarTopViewTabs
http://www.google.com/views?hl=en&client=safari&rls=en-gb&q=influenza+view:timeline&btnG=Search&sa=N&ct=timeline
http://www.google.com/views?hl=en&client=safari&rls=en-gb&q=influenza+view:timeline&btnG=Search&sa=N&ct=timeline
http://harpers.org/archive/1963/01/0075693

DATE BASED URLS

A quick word on date based URLs, they can be brilliant at

capturing first published date. However they can be hard

to interpret. Is /03/04 a date in March or April, what

about 08/03/04? Obviously 2008/03/04 is easier to

understand, it is probably March 4th. Including a proper

timestamp in the page content avoid this kind of

guesswork.

Many sites represent the date as a plain text string; a few

hook an HTML class of date around it, a very few provide

an actual timestamp. Associating the date with the

individual content makes it harder to get the date wrong.

Movable Type and TypePad are a notable exceptions, they

will embed Dublin Core RDF to represent each posting

e.g. dc:date="2008-12-18T02:57:28-08:00". WordPress

doesn’t support date markup out of the box, though there

is a patch and a howto for hAtom available.

In terms of newspapers, the BBC use <meta

name="OriginalPublicationDate" content="2008/12/18

18:52:05" /> along with opaque URLs such as

http://news.bbc.co.uk/1/hi/technology/7787335.stm.

The Guardian use nice clear URLs

http://www.guardian.co.uk/business/2008/dec/18/

car-industry-recession but have no marked up date on

the page.

Ghosts On The Internet

24 ways 2008 edition 213

http://trac.wordpress.org/ticket/2105
http://fberriman.com/2006/08/07/implementing-hatom-the-entries-code/
http://microformats.org/wiki/hatom

The New York Times are similar to the Guardian with nice

URLs, http://www.nytimes.com/2008/12/19/business/

19markets.html, but again no timestamps. All of these

papers have all the data available, but it is not marked up

in a useful manner.

SYNDICATION FORMATS

Syndication formats are better at supporting dates, RSS

uses RFC 822 for dates, just like email so dates such as

Wed, 17 Dec 2008 12:52:40 GMT are valid, with all the

white space issues that entails.

The Atom syndication format uses the much clearer

http://tools.ietf.org/html/rfc3339 with timestamps

of the form 1996-12-19T16:39:57-08:00. Both

syndication formats encourage the use of last modified.

This is understandable, but a pity as published date is a

very useful value. The Atom syndication format supports

“published” and mandates “updated” as timestamps, see

the Atom RFC 4287 for more detail.

MARKING UP DATES

However the aim of this short article is to encourage you

to use microformats or RDF to encode dates. A good

example of this is Twitter, they use hAtom for each

individual entry, http://twitter.com/zzgavin/status/

214 24 ways 2008 edition

http://cyber.law.harvard.edu/rss/rss.html
http://tools.ietf.org/html/rfc822
http://tools.ietf.org/html/rfc4287
http://microformats.org/
http://www.w3.org/RDF/

1065835819 contains the following markup, which

represents a human and a machine readable version of

the time of that tweet.

<span class="published"

title="2008-12-18T22:01:27+00:00">about 3 hours

ago

The spec for datetime is still draft at the minute and there

is still ongoing conversation around the right format and

semantics for representing date and time in

microformats, see the datetime design pattern for details.

The hAtom example page shows the minimal changes

required to implement hAtom on well formed blog post

content and for other less well behaved content. You have

the information already in your content publication

systems, this is not some additional onerous content

entry task, simply some template formatting.

I started to see this as a serious issue after reading

Stewart Brand’s Clock of the Long Now about five years

ago. Brand’s book explores the issues of short term

thinking that permeate our society, thinking beyond the

end of the financial year is a stretch for many people. The

Long Now has a world view of a 10,000 year timeframe,

see http://longnow.org/ for much more information.

Freebase from Long Now Board member Danny Hillis,

supports dates quite well – see the entry for A Christmas

Carol.

Ghosts On The Internet

24 ways 2008 edition 215

http://microformats.org/wiki/datetime-design-pattern
http://microformats.org/wiki/hatom-examples
http://www.edge.org/3rd_culture/brand/
http://www.amazon.com/dp/0465007805
http://longnow.org/
http://www.freebase.com/view/en/a_christmas_carol
http://www.freebase.com/view/en/a_christmas_carol

IN CONCLUSION

I feel we should be making it easier for people searching

for our content in the future. We’ve moved through

tagging content and on to geo-tagging content. Now it is

time to get the timestamps right on our content. How do I

know when something happened and how can I find other

things that happened at the same time is a fair question.

This should be something I can satisfy simply and easily.

There are a range of tools available to us in either hAtom

or RDF to specify time accurately alongside the content,

so what is stopping you?

Thinking of the long term it is hard for us to know now

what will be of relevance for future generations, so we

should aim to raise the floor for publishing tools so that all

content has the right timeframe associated with it. We are

moving from publishing words and pictures on the

internet to being able to associate publication with an

individual via XFN and OpenID. We can associate place

quite well too, the last piece of useful metadata is

timeframe.

216 24 ways 2008 edition

http://microformats.org/wiki/hatom
http://www.w3.org/RDF/
http://microformats.org/wiki/xfn
http://openid.net/

ABOUT THE AUTHOR

Gavin Bell designs web applications and social software for the

Nature Publishing Group. Large scale web applications covering

identity, on-demand media and social software have been the

main focus of his work. Since the early 90s he has worked in

academia, advertising, publishing and developed multimedia

software.

He is the author of a forthcoming book entitled Building Social

Web Applications for O’Reilly Media Inc. He lives in London

with his wife and two sons. He keeps track of the world on take

one onion, you can keep track of him on twitter and

gavinbell.com were he generally avoids the third person.

Photo: James Duncan Davidson

Ghosts On The Internet

24 ways 2008 edition 217

http://oreilly.com/catalog/9780596518752/
http://oreilly.com/catalog/9780596518752/
http://takeoneonion.org/
http://takeoneonion.org/
http://twitter.com/zzgavin
http://gavinbell.com
http://duncandavidson.com/

Ben Ward 24ways.org/200821

21. Geotag Everywhere
with Fire Eagle

A note

from

the editors: Since this article was written Yahoo! has

retired the Fire Eagle service.

Location, they say, is everywhere. Everyone
has one, all of the time. But on the web, it’s
taken until this year to see the emergence of
location in the applications we use and
build.

The possibilities are broad. Increasingly, mobile phones

provide SDKs to approximate your location wherever you

are, browser extensions such as Loki and Mozilla’s Geode

provide browser-level APIs to establish your location

from the proximity of wireless networks to your laptop.

Yahoo’s Brickhouse group launched Fire Eagle, an

ambitious location broker enabling people to take their

location from any of these devices or sources, and provide

it to a plethora of web services. It enables you to take the

location information that only your iPhone knows about

and use it anywhere on the web.

218 24 ways 2008 edition

http://24ways.org/200821
http://loki.com/
http://labs.mozilla.com/2008/10/introducing-geode/
http://fireeagle.com

That said, this is still a time of location as an emerging

technology. Fire Eagle stores your location on the web

(protected by application-specific access controls), but to

try and give an idea of how useful and powerful your

location can be — regardless of the services you use now

— today’s 24ways is going to build a bookmarklet to call

up your location on demand, in any web application.

LOCATION SUPPORT ON THE WEB

Over the past year, the number of applications

implementing location features has increased

dramatically. Plazes and Brightkite are both full featured

social networks based around where you are, whilst

Pownce rolled in Fire Eagle support to allow geotagging of

all the content you post to their microblogging service.

Dipity’s beautiful timeline shows for you moving from

place to place and Six Apart’s activity stream for Movable

Type started exposing your movements.

The number of services that hook into Fire Eagle will

increase as location awareness spreads through the

developer community, but you can use your location on

other sites indirectly too.

Consider Flickr. Now world renowned for their incredible

mapping and places features, geotagging on Flickr started

out as a grassroots extension of regular tagging. That

same technique can be used to start rolling geotagging in

Geotag Everywhere with Fire Eagle

24 ways 2008 edition 219

http://plazes.com
http://brightkite.com
http://pownce.com
http://www.dipity.com
http://movabletype.com/
http://movabletype.com/
http://flickr.com
http://flickr.com/map
http://flickr.com/places/Germany/Bavaria/Munich

any publishing platform you come across, for any kind of

content. Machine-tags (geo:lat= and geo:lon=) and the

adr and geo microformats can be used to enhance

anything you write with location information.

A CRASH COURSE IN AVIAN INFLAMMABILITY

Fire Eagle is a location store. A broker between services

and devices which provide location and those which

consume it. It’s a switchboard that controls which pieces

of your location different applications can see and use,

and keeps hidden anything you want kept private. A blog

widget that displays your current location in public can be

restricted to display just your current city, whilst a service

that provides you with a list of the nearest ATMs will

operate better with a precise street address.

Even if your iPhone tells Fire Eagle exactly where you are,

consuming applications only see what you want them to

see. That’s important for users to realise that they’re in

control, but also important for application developers to

remember that you cannot rely on having super-accurate

information available all the time. You need to build location

aware applications which degrade gracefully, because users

will provide fuzzier information — either through choice,

or through less accurate sources.

220 24 ways 2008 edition

http://microformats.org/wiki/adr
http://microformats.org/wiki/geo
http://microformats.org/
http://fireeagle.yahoo.net/gallery/app/gdgk7LHH3J2jp2Dtt2Ht
http://fireeagle.yahoo.net/gallery/app/gdgk7LHH3J2jp2Dtt2Ht
http://atms.iamnear.net/

Application specific permissions are controlled through

an OAuth API. Each application has a unique key, used to

request a second, user-specific key that permits access to

that user’s information. You store that user key and it

remains valid until such a time as the user revokes your

application’s access. Unlike with passwords, these keys

are unique per application, so revoking the access rights

of one application doesn’t break all the others.

BUILDING YOUR FIRST FIRE EAGLE APP;
GEOMARKLET

Fire Eagle’s developer documentation can take you

through examples of writing simple applications using

server side technologies (PHP, Python). Here, we’re going

to write a client-side bookmarklet to make your location

available in every site you use. It’s designed to fast-track

the experience of having location available everywhere on

web, and show you how that can be really handy.

Hopefully, this will set you thinking about how location

can enhance the new applications you build in 2009.

An oddity of bookmarklets

Bookmarklets (or ‘favlets’, for those of an MSIE

persuasion) are a strange environment to program in.

Critically, you have no persistent storage available. As

such, using token-auth APIs in a static environment

Geotag Everywhere with Fire Eagle

24 ways 2008 edition 221

http://oauth.org
http://fireeagle.yahoo.net/developer
http://fireeagle.yahoo.net/developer/documentation/php_walkthru
http://fireeagle.yahoo.net/developer/documentation/python_walkthru

requires you to build you application in a slightly strange

way; authing yourself in advance and then hardcoding the

keys into your script.

Get started

Before you do anything else, go to http://fireeagle.com

and log in, get set up if you need to and by all means take a

look around. Take a look at the mobile updaters section of

the application gallery and perhaps pick out an app that

will update Fire Eagle from your phone or laptop.

Once that’s done, you need to register for an application

key in the developer section. Head straight to /developer/

create and complete the form. Since you’re building a

standalone application, choose ‘Auth for desktop

applications’ (rather than web applications), and select

that you’ll be ‘accessing location’, not updating.

At the end of this process, you’ll have two application

keys, a ‘Consumer Key’ and a ‘Consumer Secret’, which

look like these:

Consumer Key

luKrM9U1pMnu

Consumer Secret

ZZl9YXXoJX5KLiKyVrMZffNEaBnxnd6M

222 24 ways 2008 edition

http://fireeagle.com
http://fireeagle.yahoo.net/gallery/onthego
https://fireeagle.yahoo.net/developer/create
https://fireeagle.yahoo.net/developer/create

These keys combined allow your application to make

requests to Fire Eagle.

Next up, you need to auth yourself; granting your new

application permission to use your location. Because

bookmarklets don’t have local storage, you can’t integrate

the auth process into the bookmarklet itself — it would

have no way of storing the returned key. Instead, I’ve put

together a simple web frontend through which you can

auth with your application.

Head to Auth me, Amadeus!, enter the application keys

you just generated and hit ‘Authorize with Fire Eagle’.

You’ll be taken to the Fire Eagle website, just as in regular

Fire Eagle applications, and after granting access to your

app, be redirected back to Amadeus which will provide

you your user tokens. These tokens are used in

subsequent requests to read your location.

And, skip to the end…

The process of building the bookmarklet, making requests

to Fire Eagle, rendering it to the page and so forth follows,

but if you’re the impatient type, you might like to try this

out right now. Take your four API keys from above, and

drag the following link to your Bookmarks Toolbar; it

contains all the code described below. Before you can use

it, you need to edit in your own API keys. Open your

Geotag Everywhere with Fire Eagle

24 ways 2008 edition 223

http://amadeus.benapps.net

browser’s bookmark editor and where you find text like

‘YOUR_CONSUMER_KEY_HERE’, swap in the

corresponding key you just generated.

Get Location

Bookmarklet Basics

To start on the bookmarklet code, set out a basic

JavaScript module-pattern structure:

var Geomarklet = function() {

return ({

callback: function(json) {},

run: function() {}

});

};

Geomarklet.run();

Next we’ll add the keys obtained in the setup step, and

also some basic Fire Eagle support objects:

var Geomarklet = function() {

var Keys = {

consumer_key: 'IuKrJUHU1pMnu',

consumer_secret:

'ZZl9YXXoJX5KLiKyVEERTfNEaBnxnd6M',

user_token: 'xxxxxxxxxxxx',

user_secret: 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx'

};

var LocationDetail = {

EXACT: 0,

POSTAL: 1,

224 24 ways 2008 edition

javascript:var%20Geomarklet%20=%20function()%20{var%20Keys%20=%20{consumer_key:'YOUR_CONSUMER_KEY_HERE',consumer_secret:'YOUR_CONSUMER_SECRET_HERE',user_token:'YOUR_USER_TOKEN_HERE',user_secret:'YOUR_USER_SECRET_HERE'};var%20LocationDetail%20=%20{EXACT:%200,POSTAL:%201,NEIGHBORHOOD:%202,CITY:%203,REGION:%204,STATE:%205,COUNTRY:%206};var%20index_offset%20=%200;var%20renderers%20=%20{geotag:%20function(user)%20{if(LocationDetail.EXACT%20!==%20index_offset)%20{return%20false;}else%20{var%20coords%20=%20user.location_hierarchy[LocationDetail.EXACT].geometry.coordinates;return%20%22geo:lat=%22%20+%20coords[0]%20+%20%22,%20geo:lon=%22%20+%20coords[1];}},city:%20function(user)%20{if(LocationDetail.CITY%20%3C%20index_offset)%20{return%20false;}else%20{return%20user.location_hierarchy[LocationDetail.CITY%20-%20index_offset].name;}},html:%20function(user)%20{var%20geostring%20=%20%27%27;var%20adrstring%20=%20%27%27;var%20adr%20=%20[];adr.push(%27%3Cp%20class=%22adr%22>%27);if(LocationDetail.CITY%20>=%20index_offset)%20{adr.push(%27n%20%3Cspan%20class=%22locality%22>%27+%20user.location_hierarchy[LocationDetail.CITY-index_offset].normal_name+%20%27%3C/span>,%27);}if(LocationDetail.REGION%20>=%20index_offset)%20{adr.push(%27n%20%3Cspan%20class=%22region%22>%27+%20user.location_hierarchy[LocationDetail.REGION-index_offset].normal_name+%20%27%3C/span>,%27);}if(LocationDetail.STATE%20>=%20index_offset)%20{adr.push(%27n%20%3Cspan%20class=%22region%22>%27+%20user.location_hierarchy[LocationDetail.STATE-index_offset].normal_name+%20%27%3C/span>,%27);}if(LocationDetail.COUNTRY%20>=%20index_offset)%20{adr.push(%27n%20%3Cspan%20class=%22country-name%22>%27+%20user.location_hierarchy[LocationDetail.COUNTRY-index_offset].normal_name+%20%27%3C/span>%27);}if(LocationDetail.POSTAL%20>=%20index_offset)%20{adr.push(%27n%20%3Cspan%20class=%22postal-code%22>%27+%20user.location_hierarchy[LocationDetail.POSTAL-index_offset].normal_name+%20%27%3C/span>,%27);}adr.push(%27n%3C/p>n%27);adrstring%20=%20adr.join(%27%27);if(LocationDetail.EXACT%20===%20index_offset)%20{var%20coords%20=%20user.location_hierarchy[LocationDetail.EXACT].geometry.coordinates;geostring%20=%20%27%3Cp%20class=%22geo%22>%27+%27n%20%3Cspan%20class=%22latitude%22>%27+%20coords[0]+%20%27%3C/span>;%27+%20%27n%20%3Cspan%20class=%22longitude%22>%27+%20coords[1]+%20%27%3C/span>n%3C/p>n%27;}return%20(adrstring%20+%20geostring);}};function%20insert_prerequisites()%20{var%20style%20=%20document.createElement(%27link%27);style.href%20=%20%27http://geomarklet.benapps.net/24ways/geomarklet.css%27;style.rel%20=%20%27stylesheet%27;style.type%20=%20%27text/css%27;var%20sha1%20=%20document.createElement(%27script%27);sha1.src%20=%20%27http://pajhome.org.uk/crypt/md5/sha1.js%27;sha1.type%20=%20%27text/javascript%27;var%20oauth%20=%20document.createElement(%27script%27);oauth.src%20=%20%27http://oauth.googlecode.com/svn/code/javascript/oauth.js%27;oauth.type%20=%20%27text/javascript%27;var%20oauthext%20=%20document.createElement(%27script%27);oauthext.src%20=%20%27http://github.com/ayman/fireeagle-javascript-lib/raw/master/lib/oauthext.js%27;oauthext.type%20=%20%27text/javascript%27;var%20fireeagle%20=%20document.createElement(%27script%27);fireeagle.src%20=%20%27http://github.com/ayman/fireeagle-javascript-lib/raw/master/lib/fe.js%27;fireeagle.type%20=%20%27text/javascript%27;var%20head%20=%20document.getElementsByTagName(%27head%27)[0];head.appendChild(style);head.appendChild(sha1);head.appendChild(oauth);head.appendChild(oauthext);head.appendChild(fireeagle);}function%20draw_selector(data)%20{var%20overlay%20=%20document.createElement(%27div%27);overlay.className%20=%20%27dialog%27;overlay.id%20=%20%27net-benapps-geomarklet%27;var%20intro%20=%20document.createElement(%27h1%27);intro.appendChild(document.createTextNode(%27Select%20&%20copy%20your%20location:%27));renders_list%20=%20document.createElement(%27ul%27);for(r%20in%20renderers)%20{var%20sample%20=%20renderers[r](data.user);if(false%20!==%20sample)%20{var%20li%20=%20document.createElement(%27li%27);var%20pre%20=%20document.createElement(%27pre%27);var%20code%20=%20document.createElement(%27code%27);code.appendChild(document.createTextNode(sample));pre.appendChild(code);li.appendChild(pre);renders_list.appendChild(li);}}var%20close_button%20=%20document.createElement(%27button%27);close_button.appendChild(document.createTextNode(%27Close%27));close_button.onclick%20=%20function()%20{overlay.style.display%20=%20%27none%27;};overlay.appendChild(intro);overlay.appendChild(renders_list);overlay.appendChild(close_button);document.body.appendChild(overlay);}return%20{callback:%20function(json)%20{if(json.rsp%20&&%20%27fail%27%20==%20json.rsp.stat)%20{alert(%27Error%20%27%20+%20json.rsp.code%20+%20%22:%20%22%20+%20json.rsp.message);}else%20{index_offset%20=%20json.user.location_hierarchy[0].level;draw_selector(json);}},run:%20function()%20{insert_prerequisites();setTimeout(function()%20{var%20fe%20=%20new%20FireEagle(Keys.consumer_key,Keys.consumer_secret,Keys.user_token,Keys.user_secret);var%20script%20=%20document.createElement(%27script%27);script.type%20=%20%27text/javascript%27;script.src%20=%20fe.getUserUrl(FireEagle.RESPONSE_FORMAT.json,%20%27Geomarklet.callback%27);document.body.appendChild(script);},2000);}};}();Geomarklet.run();

NEIGHBORHOOD: 2,

CITY: 3,

REGION: 4,

STATE: 5,

COUNTRY: 6

};

var index_offset;

return ({

callback: function(json) {},

run: function() {}

});

};

Geomarklet.run();

The Location Hierarchy

A successful Fire Eagle query returns an object called the

‘location hierarchy’. Depending on the level of detail

shared, the index of a particular piece of information in

the array will vary. The LocationDetail object maps the

array indices of each level in the hierarchy to something

comprehensible, whilst the index_offset variable is an

adjustment based on the detail of the result returned.

The location hierarchy object looks like this, providing a

granular breakdown of a location, in human consumable

and machine-friendly forms.

"user": {

"location_hierarchy": [{

"level": 0,

"level_name": "exact",

Geotag Everywhere with Fire Eagle

24 ways 2008 edition 225

"name": "707 19th St, San Francisco, CA",

"normal_name": "94123",

"geometry": {

"type": "Point",

"coordinates": [- 0.2347530752, 67.232323]

},

"label": null,

"best_guess": true,

"id": ,

"located_at": "2008-12-18T00:49:58-08:00",

"query": "q=707%2019th%20Street,%20Sf"

},

{

"level": 1,

"level_name": "postal",

"name": "San Francisco, CA 94114",

"normal_name": "12345",

"woeid": ,

"place_id": "",

"geometry": {

"type": "Polygon",

"coordinates": [],

"bbox": []

},

"label": null,

"best_guess": false,

"id": 59358791,

"located_at": "2008-12-18T00:49:58-08:00"

},

{

"level": 2,

"level_name": "neighborhood",

"name": "The Mission, San Francisco, CA",

"normal_name": "The Mission",

226 24 ways 2008 edition

"woeid": 23512048,

"place_id": "Y12JWsKbApmnSQpbQg",

"geometry": {

"type": "Polygon",

"coordinates": [],

"bbox": []

},

"label": null,

"best_guess": false,

"id": 59358801,

"located_at": "2008-12-18T00:49:58-08:00"

},

}

In this case the first object has a level of 0, so the

index_offset is also 0.

Prerequisites

To query Fire Eagle we call in some existing libraries to

handle the OAuth layer and the Fire Eagle API call. Your

bookmarklet will need to add the following scripts into

the page:

▪ The SHA1 encryption algorithm

▪ The OAuth wrapper

▪ An extension for the OAuth wrapper

▪ The Fire Eagle wrapper itself

When the bookmarklet is first run, we’ll insert these

scripts into the document. We’re also inserting a

stylesheet to dress up the UI that will be generated.

Geotag Everywhere with Fire Eagle

24 ways 2008 edition 227

http://pajhome.org.uk/crypt/md5/sha1.js
http://oauth.googlecode.com/svn/code/javascript/oauth.js
http://github.com/ayman/fireeagle-javascript-lib/raw/master/lib/oauthext.js
http://github.com/ayman/fireeagle-javascript-lib/raw/master/lib/fe.js

If you want to follow along any of the more mundane

parts of the bookmarklet, you can download the full

source code.

Rendering

This bookmarklet can be extended to support any

formatting of your location you like, but for sake of

example I’m going to build three common formatters that

you’ll find useful for common location scenarios: Sites

which already ask for your location; and in publishing

systems that accept tags or HTML mark-up.

All the rendering functions are items in a renderers

object, so they can be iterated through easily, making it

trivial to add new formatting functions as your find new

use cases (just add another function to the object).

var renderers = {

geotag: function(user) {

if(LocationDetail.EXACT !== index_offset) {

return false;

}

else {

var coords =

user.location_hierarchy[LocationDetail.EXACT].geometry.coordinates;

return "geo:lat=" + coords[0] + ", geo:lon=" +

coords[1];

}

},

228 24 ways 2008 edition

http://geomarklet.benapps.net/24ways/geomarklet_24ways.zip
http://geomarklet.benapps.net/24ways/geomarklet_24ways.zip

city: function(user) {

if(LocationDetail.CITY < index_offset) {

return false;

}

else {

return user.location_hierarchy[LocationDetail.CITY -

index_offset].name;

}

}

You should always fail gracefully, and in line with catering

to users who choose not to share their location precisely,

always check that the location has been returned at the

level you require. Geotags are expected to be precise, so if

an exact location is unavailable, returning false will tell

the rendering aspect of the bookmarklet to ignore the

function altogether.

These first two are quite simple, geotag returns

geo:lat=-0.2347530752, geo:lon=67.232323 and city

returns San Francisco, CA.

This final renderer creates a chunk of HTML using the adr

and geo microformats, using all available aspects of the

location hierarchy, and can be used to geotag any content

you write on your blog or in comments:

html: function(user) {

var geostring = '';

var adrstring = '';

var adr = [];

adr.push('<p class="adr">');

Geotag Everywhere with Fire Eagle

24 ways 2008 edition 229

// city

if(LocationDetail.CITY >= index_offset) {

adr.push(

'\n '

+

user.location_hierarchy[LocationDetail.CITY-index_offset].normal_name

+ ','

);

}

// county

if(LocationDetail.REGION >= index_offset) {

adr.push(

'\n '

+

user.location_hierarchy[LocationDetail.REGION-index_offset].normal_name

+ ','

);

}

// locality

if(LocationDetail.STATE >= index_offset) {

adr.push(

'\n '

+

user.location_hierarchy[LocationDetail.STATE-index_offset].normal_name

+ ','

);

}

// country

if(LocationDetail.COUNTRY >= index_offset) {

adr.push(

'\n '

+

user.location_hierarchy[LocationDetail.COUNTRY-index_offset].normal_name

+ ''

230 24 ways 2008 edition

);

}

// postal

if(LocationDetail.POSTAL >= index_offset) {

adr.push(

'\n '

+

user.location_hierarchy[LocationDetail.POSTAL-index_offset].normal_name

+ ','

);

}

adr.push('\n</p>\n');

adrstring = adr.join('');

if(LocationDetail.EXACT === index_offset) {

var coords =

user.location_hierarchy[LocationDetail.EXACT].geometry.coordinates;

geostring = '<p class="geo">'

+'\n '

+ coords[0]

+ ';'

+ '\n '

+ coords[1]

+ '\n</p>\n';

}

return (adrstring + geostring);

}

Here we check the availability of every level of location

and build it into the adr and geo patterns as appropriate.

Just as for the geotag function, if there’s no exact location

the geo markup won’t be returned.

Geotag Everywhere with Fire Eagle

24 ways 2008 edition 231

Finally, there’s a rendering method which creates a

container for all this data, renders all the applicable

location formats and then displays them in the page for a

user to copy and paste. You can throw this together with

DOM methods and some simple styling, or roll in some

components from YUI or JQuery to handle drawing full

featured overlays.

You can see this simple implementation for rendering in

the full source code.

Make the call

With a framework in place to render Fire Eagle’s location

hierarchy, the only thing that remains is to actually

request your location. Having already authed through

Amadeus earlier, that’s as simple as instantiating the Fire

Eagle JavaScript wrapper and making a single function

call. It’s a big deal that whilst a lot of new technologies like

OAuth add some complexity and require new knowledge

to work with, APIs like Fire Eagle are really very simple

indeed.

return {

run: function() {

insert_prerequisites();

setTimeout(

function() {

var fe = new FireEagle(

Keys.consumer_key,

232 24 ways 2008 edition

http://geomarklet.benapps.net/24ways/geomarklet_24ways.zip

Keys.consumer_secret,

Keys.user_token,

Keys.user_secret

);

var script = document.createElement('script');

script.type = 'text/javascript';

script.src = fe.getUserUrl(

FireEagle.RESPONSE_FORMAT.json,

'Geomarklet.callback'

);

document.body.appendChild(script);

},

2000

);

},

callback: function(json) {

if(json.rsp && 'fail' == json.rsp.stat) {

alert('Error ' + json.rsp.code + ": " +

json.rsp.message);

}

else {

index_offset =

json.user.location_hierarchy[0].level;

draw_selector(json);

}

}

};

We first insert the prerequisite scripts required for the

Fire Eagle request to function, and to prevent trying to

instantiate the FireEagle object before it’s been loaded

over the wire, the remaining instantiation and request is

wrapped inside a setTimeout delay.

Geotag Everywhere with Fire Eagle

24 ways 2008 edition 233

We then create the request URL, referencing the

Geomarklet.callback callback function and then append

the script to the document body — allowing a cross-

domain request.

The callback itself is quite simple. Check for the presence

and value of rsp.status to test for errors, and display

them as required. If the request is successful set the

index_offset — to adjust for the granularity of the

location hierarchy — and then pass the object to the

renderer.

The result? When Geomarklet.run() is called, your

location from Fire Eagle is read, and each renderer

displayed on the page in an easily copy and pasteable

form, ready to be used however you need.

DEPLOY

The final step is to convert this code into a long string for

use as a bookmarklet. Easiest for Mac users is the

JavaScript bundle in TextMate — choose Bundles:

JavaScript: Copy as Bookmarklet to Clipboard . Then create a

new ‘Get Location’ bookmark in your browser of choice

and paste in.

Those without TextMate can shrink their code down into

a single line by first running their code through the JSLint

tool (to ensure the code is free from errors and has all the

234 24 ways 2008 edition

http://jslint.com/

required semi-colons) and then use a find-and-replace

tool to remove line breaks from your code (or even run

your code through JSMin to shrink it down).

With the bookmarklet created and added to your

bookmarks bar, you can now call up your location on any

page at all. Get a feel for a web where your location is just

another reliable part of the browsing experience.

WHERE NEXT?

So, the Geomarklet you’ve been guided through is a pretty

simple premise and pretty simple output. But from this

base you can start to extend: Add code that will insert

each of the location renderings directly into form fields,

perhaps, or how about site-specific handlers to add your

location tags into the correct form field in Wordpress or

Tumblr? Paste in your current location to Google Maps?

Or Flickr?

Geomarklet gives you a base to start experimenting with

location on your own pages and the sites you browse

daily.

The introduction of consumer accessible geo to the web is

an adventure of discovery; not so much discovering new

locations, but discovering location itself.

Geotag Everywhere with Fire Eagle

24 ways 2008 edition 235

http://fmarcia.info/jsmin/test.html

ABOUT THE AUTHOR

Ben Ward is a Front End Engineer at YDN — the Yahoo

Developer Network. Until recently, he had worked in Yahoo’s

Brickhouse group, where he wrangled HTML, CSS and

JavaScript for fun things like Fire Eagle.

By night he put his efforts into the microformats.org

community, working as an admininstrator and getting pedantic

about semantics. He regularly speaks at conferences on

microformats, is a credited specification author and active

editor.

When not trying to make the internet better he’s slowly but

surely settling into his new life in San Francisco, embracing an

eclectic cultural combination of imported cheese, fine wines

and Rock Band 2.

236 24 ways 2008 edition

http://developer.yahoo.com
http://fireeagle.com/
http://microformats.org/

His blog is at http://ben-ward.co.uk.

Photo: Nathan Ward

Geotag Everywhere with Fire Eagle

24 ways 2008 edition 237

http://ben-ward.co.uk/

Dan Rubin 24ways.org/200822

22. Absolute Columns

CSS layouts have come quite a long way
since the dark ages of web publishing, with
all sorts of creative applications of floats,
negative margins, and even background
images employed in order to give us that
most basic building block, the column. As
the title implies, we are indeed going to be
discussing columns today—more to the
point, a handy little application of absolute
positioning that may be exactly what you’ve
been looking for…

CARE FOR A NIGHTCAP?

If you’ve been developing for the web for long enough,

you may be familiar with this little children’s fable, passed

down from wizened Shaolin monks sitting atop the great

Mt. Geocities: “Once upon a time, multiple columns of the

same height could be easily created using TABLES.” Now,

though we’re all comfortably seated on the standards

train (and let’s be honest: even if you like to think you’ve

fallen off, if you’ve given up using tables for layout, rest

238 24 ways 2008 edition

http://24ways.org/200822

assured your sleeper car is still reserved), this

particular—and as page layout goes, quite basic—trick is

still a thorn in our CSSides compared to the ease of

achieving the same effect using said Tables of Evil™.

SEE, THE ORANGE JUICE MASKS THE FLAVOR…

Creative solutions such as Dan Cederholm’s Faux

Columns do a good job of making it appear as though

adjacent columns maintain equal height as content

expands, using a background image to fill the space that

the columns cannot.

Now, the Holy Grail of CSS columns behaving exactly how

they would as table cells—or more to the point, as

columns—still eludes us (cough CSS3 Multi-column layout

module cough), but sometimes you just need, for example,

a secondary column (say, a sidebar) to match the height of

a primary column, without involving the creation of

images. This is where a little absolute positioning can save

you time, while possibly giving your layout a little more

flexibility.

SHAKEN, NOT STIRRED

You’re probably familiar by now with the concept of

Making the Absolute, Relative as set forth long ago by

Doug Bowman, but let’s quickly review just in case: an

Absolute Columns

24 ways 2008 edition 239

http://simplebits.com/
http://www.alistapart.com/articles/fauxcolumns/
http://www.alistapart.com/articles/fauxcolumns/
http://www.w3.org/TR/css3-multicol/
http://www.w3.org/TR/css3-multicol/
http://stopdesign.com/articles/absolute/
http://stopdesign.com/

element set to position:absolute will position itself

relative to its nearest ancestor set to position:relative,

rather than the browser window (see Figure 1).

Figure 1.

However, what you may not know is that we can anchor

more than two sides of an absolutely positioned element.

Yes, that’s right, all four sides (top, right, bottom, left) can

be set, though in this example we’re only going to require

the services of three sides (see Figure 2 for the end

result).

240 24 ways 2008 edition

Figure 2.

TRUST ME, THIS WILL MAKE YOU FEEL BETTER

Our requirements are essentially the same as the

standard “absolute-relative” trick—a container <div> set

to position:relative, and our sidebar <div> set to

position:absolute — plus another <div> that will serve

as our main content column. We’ll also add a few other

common layout elements (wrapper, header, and footer) so

our example markup looks more like a real layout and less

like a test case:

<div id="wrapper">

<div id="header">

<h2>#header</h2>

</div>

Absolute Columns

24 ways 2008 edition 241

http://media.24ways.org/2008/22/2008-absolute-columns-example1.html

<div id="container">

<div id="column-left">

<h2>#left</h2>

<p>Lorem ipsum dolor sit amet…</p>

</div>

<div id="column-right">

<h2>#right</h2>

</div>

</div>

<div id="footer">

<h2>#footer</h2>

</div>

</div>

In this example, our main column (#column-left) is only

being given a width to fit within the context of the layout,

and is otherwise untouched (though we’re using pixels

here, this trick will of course work with fluid layouts as

well), and our right keeping our styles nice and minimal:

#container {

position: relative;

}

#column-left {

width: 480px;

}

#column-right {

position: absolute;

top: 10px;

right: 10px;

bottom: 10px;

width: 250px;

}

242 24 ways 2008 edition

The trick is a simple one: the #container <div> will

expand vertically to fit the content within #column-left.

By telling our sidebar <div> (#column-right) to attach

itself not only to the top and right edges of #container,

but also to the bottom, it too will expand and contract to

match the height of the left column (duplicate the “lorem

ipsum” paragraph a few times to see it in action).

Figure 3.

ON THE ROCKS

“But wait!” I hear you exclaim, “when the right column has

more content than the left column, it doesn’t expand! My

text runneth over!” Sure enough, that’s exactly what

happens, and what’s more, it’s supposed to: Absolutely

Absolute Columns

24 ways 2008 edition 243

http://media.24ways.org/2008/22/2008-absolute-columns-example2.html
http://media.24ways.org/2008/22/2008-absolute-columns-example2.html

positioned elements do exactly what you tell them to do,

and unfortunately aren’t very good at thinking outside the

box (get it? sigh…).

However, this needn’t get your spirits down, because

there’s an easy way to address the issue: by adding

overflow:auto to #column-right, a scrollbar will

automatically appear if and when needed:

#column-right {

position: absolute;

top: 10px;

right: 10px;

bottom: 10px;

width: 250px;

overflow: auto;

}

While this may limit the trick’s usefulness to situations

where the primary column will almost always have more

content than the secondary column—or where the

secondary column’s content can scroll with wild

abandon—a little prior planning will make it easy to

incorporate into your designs.

DRIVING US TO DRINK

It just wouldn’t be right to have a friendly, festive holiday

tutorial without inviting IE6, though in this particular

instance there will be no shaming that old browser into

admitting it has a problem, nor an intervention and

244 24 ways 2008 edition

http://media.24ways.org/2008/22/2008-absolute-columns-example3.html

subsequent 12-step program. That’s right my friends, this

tutorial has abstained from IE6-abuse now for 30 days,

thanks to the wizard Dean Edwards and his amazingly

talented IE7 Javascript library.

Simply drop the Conditional Comment and <script>

element into the <head> of your document, along with one

tiny CSS hack that only IE6 (and below) will ever see, and

that browser will be back on the straight and narrow:

<!--[if lt IE 7]>

<script src="http://ie7-js.googlecode.com/svn/version/

2.0(beta3)/IE7.js" type="text/javascript"></script>

<style type="text/css" media="screen">

#container {

zoom:1; /* helps fix IE6 by initiating hasLayout */

}

</style>

<![endif]-->

EGGNOG IS SUPPOSED TO BE SPIKED, RIGHT?

Of course, this is one simple example of what can be a

much more powerful technique, depending on your needs

and creativity. Just don’t go coding up your wildest

fantasies until you’ve had a chance to sleep off the

Christmas turkey and whatever tasty liquids you happen

to imbibe along the way…

Absolute Columns

24 ways 2008 edition 245

http://dean.edwards.name/
http://dean.edwards.name/weblog/2008/01/ie7-2/
http://media.24ways.org/2008/22/2008-absolute-columns-example3.html

ABOUT THE AUTHOR

Dan Rubin is a highly accomplished user interface designer and

usability consultant, with over ten years of experience as a

leader in the fields of web standards and usability, specifically

focusing on the use of (X)HTML and CSS to streamline

development and improve accessibility.

His passion for all things creative and artistic isn’t a solely

selfish endeavor either—you’ll frequently find him waxing

educational about a cappella jazz and barbershop harmony,

interface design, usability, web standards, typography, and

graphic design in general.

In addition to his contributions to sites including Blogger, the

CSS Zen Garden, Yahoo! Small Business and Microsoft’s

ASP.net portal, Dan is a contributing author of Cascading Style

Sheets: Separating Content from Presentation (2nd Edition,

246 24 ways 2008 edition

friends of ED, 2003), technical reviewer for Beginning CSS Web

Development (Apress, 2006), The Art & Science of CSS

(SitePoint, 2007) and Sexy Web Design (SitePoint, 2009),

coauthor of Pro CSS Techniques (Apress, 2006), and Web

Standards Creativity (friends of ED, 2007), writes about web

standards, design and life in general on his blog,

SuperfluousBanter.org, and spends his professional time on a

variety of online and offline projects for Sidebar Creative,

Webgraph and Black Seagull, and consults on design, user

interaction and online publishing for Garcia Media.

Absolute Columns

24 ways 2008 edition 247

http://www.amazon.com/exec/obidos/ASIN/159059732X/superfluous-20
http://www.amazon.com/exec/obidos/ASIN/1590598032/superfluous-20
http://www.amazon.com/exec/obidos/ASIN/1590598032/superfluous-20
http://SuperfluousBanter.org
http://sidebarcreative.com/
http://webgraph.com/
http://blackseagull.com/
http://garciamedia.com/

Andrew Clarke 24ways.org/200823

23. Contract Killer

When times get tough, it can often feel like
there are no good people left in the world,
only people who haven’t yet turned bad.
These bad people will go back on their word,
welch on a deal, put themselves first. You
owe it to yourself to stay on top. You owe it
to yourself to ensure that no matter how bad
things get, you’ll come away clean. You owe
it yourself and your business not to be the
guy lying bleeding in an alley with a slug in
your gut.

But you’re a professional, right? Nothing bad is going to

happen to you.

You’re a good guy. You do good work for good people.

Think again chump.

Maybe you’re a gun for hire, a one man army with your

back to the wall and nothing standing between you and

the line at a soup kitchen but your wits. Maybe you work

for the agency, or like me you run one of your own. Either

248 24 ways 2008 edition

http://24ways.org/200823

way, when times get tough and people get nasty, you’ll

need more than a killer smile to save you. You’ll need a

killer contract too.

It was exactly ten years ago today that I first opened my

doors for business. In that time I’ve thumbed through

enough contracts to fill a filing cabinet. I’ve signed more

contracts than I can remember, many so complicated that

I should have hired a lawyer (or detective) to make sense

of their complicated jargon and solve their cross-

reference puzzles. These documents had not been written

to be understood on first reading but to spin me around

enough times so as to give the other player the upper-

hand.

If signing a contract I didn’t fully understand made me a

stupid son-of-a-bitch, not asking my customers to sign

one just makes me plain dumb. I’ve not always been so

careful about asking my customers to sign contracts with

me as I am now. Somehow in the past I felt that insisting

on a contract went against the friendly, trusting

relationship that I like to build with my customers. Most

of the time the game went my way. On rare the occasions

when a fight broke out, I ended up bruised and bloodied. I

learned that asking my customers to sign a contract

matters to both sides, but what also matters to me is that

these contracts should be more meaningful,

understandable and less complicated than any of those

that I have ever autographed.

Contract Killer

24 ways 2008 edition 249

WRITING A KILLER CONTRACT

If you are writing a contract between you and your

customers it doesn’t have to conform to the seemingly

standard format of jargon and complicated legalese. You

can be creative. A killer contract will clarify what is

expected of both sides and it can also help you to

communicate your approach to doing business. It will

back-up your brand values and help you to build a great

relationship between you and your customers. In other

words, a creative contract can be a killer contract.

Your killer contract should cover:

▪ A simple overview of who is hiring who, what they are

being hired to do, when and for how much

▪ What both parties agree to do and what their

respective responsibilities are

▪ The specifics of the deal and what is or isn’t included in

the scope

▪ What happens when people change their minds (as

they almost always do)

▪ A simple overview of liabilities and other legal matters

▪ You might even include a few jokes

To help you along, I will illustrate those bullet points by

pointing both barrels at the contract that I wrote and have

been using at Stiffs & Nonsense for the past year. My

contract has been worth its weight in lead and you are

250 24 ways 2008 edition

http://24ways.org/examples/contract-killer/contract-sample.txt
http://www.stuffandnonsense.co.uk

welcome to take all or any part of it to use for yourself. It’s

packing a creative-commons attribution share-a-like

license. That means you are free to re-distribute it,

translate it and otherwise re-use it in ways I never

considered. In return I only ask you mention my name and

link back to this article. As I am only an amateur detective,

you should have it examined thoroughly by your own,

trusted legal people if you use it.

NB: The specific details of this killer contract work for me

and my customers. That doesn’t mean that they will work

for you and yours. The ways that I handle design revisions,

testing, copyright ownership and other specifics are not

the main focus of this article. That you handle each of

them carefully when you write your own killer contract is.

KISS ME, DEADLY

Setting a tone and laying foundations for agreement

The first few paragraphs of a killer contract are the most

important. Just like a well thought-out web page, these

first few words should be simple, concise and include the

key points in your contract. As this is the part of the

contract that people absorb most easily, it is important

that you make it count. Start by setting the overall tone

and explaining how your killer contract is structured and

why it is different.

Contract Killer

24 ways 2008 edition 251

We will always do our best to fulfill your needs
and meet your goals, but sometimes it is best
to have a few simple things written down so
that we both know what is what, who should do
what and what happens if stuff goes wrong. In
this contract you won’t find complicated legal
terms or large passages of unreadable text. We
have no desire to trick you into signing
something that you might later regret. We do
want what’s best for the safety of both parties,
now and in the future.

In shortIn short

You ([customer name])([customer name]) are hiring us ([company([company
name])name]) located at [address][address] to [design and[design and
develop a web site]develop a web site] for the estimated total price
of [total][total] as outlined in our previous
correspondence. Of course it’s a little more
complicated, but we’ll get to that.

THE BIG KILL

What both parties agree to do

Have you ever done work on a project in good faith for a

junior member of a customer’s team, only to find out later

that their spending hadn’t been authorized? To make

damn sure that does not happen to you, you should ask

252 24 ways 2008 edition

your customer to confirm that not only are they

authorized to enter into your contract but that they will

fulfill all of their obligations to help you meet yours. This

will help you to avoid any gunfire if, as deadline day

approaches, you have fulfilled your side of the bargain but

your customer has not come up with the goods.

Contract Killer

24 ways 2008 edition 253

As our customer, you have the power and
ability to enter into this contract on behalf of
your company or organization. You agree to
provide us with everything that we need to
complete the project including text, images
and other information as and when we need it,
and in the format that we ask for. You agree to
review our work, provide feedback and sign-off
approval in a timely manner too. Deadlines
work two ways and you will also be bound by
any dates that we set together. You also agree
to stick to the payment schedule set out at the
end of this contract.

We have the experience and ability to perform
the services you need from us and we will carry
them out in a professional and timely manner.
Along the way we will endeavor to meet all the
deadlines set but we can’t be responsible for a
missed launch date or a deadline if you have
been late in supplying materials or have not
approved or signed off our work on-time at any
stage. On top of this we will also maintain the
confidentiality of any information that you give
us.

254 24 ways 2008 edition

MY GUN IS QUICK

Getting down to the nitty gritty

What appear at first to be a straight-forward projects can

sometimes turn long and complicated and unless you play

it straight from the beginning your relationship with your

customer can suffer under the strain. Customers do, and

should have the opportunity to, change their minds and

give you new assignments. After-all, projects should be

flexible and few customers know from the get-go exactly

what they want to see. If you handle this well from the

beginning you will help to keep yourself and your

customers from becoming frustrated. You will also help

yourself to dodge bullets in the event of a fire-fight.

Contract Killer

24 ways 2008 edition 255

We will create designs for the look-and-feel,
layout and functionality of your web site. This
contract includes one main design plus the
opportunity for you to make up to two rounds
of revisions. If you’re not happy with the
designs at this stage, you will pay us in full for
all of the work that we have produced until that
point and you may either cancel this contract
or continue to commission us to make further
design revisions at the daily rate set out in our
original estimate.

We know from plenty of experience that fixed-
price contracts are rarely beneficial to you, as
they often limit you to your first idea about
how something should look, or how it might
work. We don’t want to limit either your
options or your opportunities to change your
mind.

The estimate/quotation prices at the beginning
of this document are based on the number of
days that we estimate we’ll need to accomplish
everything that you have told us you want to
achieve. If you do want to change your mind,
add extra pages or templates or even add new
functionality, that won’t be a problem. You will
be charged the daily rate set out in the estimate

256 24 ways 2008 edition

we gave you. Along the way we might ask you
to put requests in writing so we can keep track
of changes.

As I like to push my luck when it comes to CSS, it never

hurts to head off the potential issue of progressive

enrichment right from the start. You should do this too.

But don’t forget that when it comes to technical matters

your customers may have different expectations or

understanding, so be clear about what you will and won’t

do.

Contract Killer

24 ways 2008 edition 257

If the project includes XHTML or HTML markup
and CSS templates, we will develop these using
valid XHTML 1.0 Strict markup and CSS2.1 + 3
for styling. We will test all our markup and CSS
in current versions of all major browsers
including those made by Apple, Microsoft,
Mozilla and Opera. We will also test to ensure
that pages will display visually in a ‘similar’,
albeit not necessarily an identical way, in
Microsoft Internet Explorer 6 for Windows as
this browser is now past it’s sell-by date.

We will not test these templates in old or
abandoned browsers, for example Microsoft
Internet Explorer 5 or 5.5 for Windows or Mac,
previous versions of Apple’s Safari, Mozilla
Firefox or Opera unless otherwise specified. If
you need to show the same or similar visual
design to visitors using these older browsers,
we will charge you at the daily rate set out in
our original estimate for any necessary
additional code and its testing.

THE TWISTED THING

It is not unheard of for customers to pass off stolen goods

as their own. If this happens, make sure that you are not

the one left holding the baby. You should also make it

258 24 ways 2008 edition

clear who owns the work that you make as customers

often believe that because they pay for your time, that

they own everything that you produce.

Copyrights

You guarantee to us that any elements of text,
graphics, photos, designs, trademarks, or other
artwork that you provide us for inclusion in the
web site are either owned by your good selfs, or
that you have permission to use them. When
we receive your final payment, copyright is
automatically assigned as follows:

You own the graphics and other visual
elements that we create for you for this project.
We will give you a copy of all files and you
should store them really safely as we are not
required to keep them or provide any native
source files that we used in making them.

You also own text content, photographs and
other data you provided, unless someone else
owns them. We own the XHTML markup, CSS
and other code and we license it to you for use
on only this project.

Contract Killer

24 ways 2008 edition 259

VENGEANCE IS MINE!

The fine print

Unless your work is pro-bono, you should make sure that

your customers keep you in shoe leather. It is important

that your customers know from the outset that they must

pay you on time if they want to stay on good terms.

We are sure you understand how important it is
as a small business that you pay the invoices
that we send you promptly. As we’re also sure
you’ll want to stay friends, you agree to stick
tight to the following payment schedule.

[Payment schedule][Payment schedule]

No killer contract would be complete without you making

sure that you are watching your own back. Before you ask

your customers to sign, make it clear-cut what your

obligations are and what will happen if any part of your

killer contract finds itself laying face down in the dirt.

260 24 ways 2008 edition

We can’t guarantee that the functions
contained in any web page templates or in a
completed web site will always be error-free
and so we can’t be liable to you or any third
party for damages, including lost profits, lost
savings or other incidental, consequential or
special damages arising out of the operation of
or inability to operate this web site and any
other web pages, even if you have advised us of
the possibilities of such damages.

Just like a parking ticket, you cannot transfer
this contract to anyone else without our
permission. This contract stays in place and
need not be renewed. If any provision of this
agreement shall be unlawful, void, or for any
reason unenforceable, then that provision shall
be deemed severable from this agreement and
shall not affect the validity and enforceability
of any remaining provisions.

Phew.

Although the language is simple, the
intentions are serious and this contract is a
legal document under exclusive jurisdiction of
[English][English] courts. Oh and don’t forget those
men with big dogs.

Contract Killer

24 ways 2008 edition 261

SURVIVAL… ZERO!

Take it from me, packing a killer contract will help to keep

you safe when times get tough, but you must still keep

your wits about you and stay on the right side of the law.

Don’t be a turkey this Christmas.

Be a contract killer.

Update, May 2010: For a follow-on to this article see

Contract Killer: The Next Hit

262 24 ways 2008 edition

http://stuffandnonsense.co.uk/projects/contract-killer/

ABOUT THE AUTHOR

Andrew Clarke runs Stuff and Nonsense, a tiny web design

company where they make fashionably flexible websites.

Andrew’s the author of Transcending CSS and Hardboiled Web

Design and hosts the popular weekly podcast Unfinished

Business where he discusses the business side of web, design

and creative industries with his guests. He tweets as

@malarkey.

Contract Killer

24 ways 2008 edition 263

http://stuffandnonsense.co.uk/
http://unfinished.bz/
http://unfinished.bz/
http://twitter.com/malarkey

Jeffrey Zeldman 24ways.org/200824

24. Recession Tips For
Web Designers

For web designers, there are four keys to
surviving bad economic times: do good
work, charge a fair price, lower your
overhead, and be sure you are
communicating with your client. As a reader
of 24 ways, you already do good work, so
let’s focus on the rest.

I know something about surviving bad times, having

started my agency, Happy Cog, at the dawn of the dot-

com bust. Of course, the recession we’re in now may end

up making the dot-com bust look like the years of bling

and gravy. But the bust was rough enough at the time.

Bad times are hard on overweight companies and over-

leveraged start-ups, but can be kind to freelancers and

small agencies. Clients who once had money to burn and

big agencies to help them burn it suddenly consider the

quality of work more important than the marquee value

264 24 ways 2008 edition

http://24ways.org/200824
http://www.happycog.com/

of the business card. Fancy offices and ten people at every

meeting are out. A close relationship with an individual or

small team that listens is in.

THIN IS IN

If you were good in client meetings when you were an

employee, print business cards and pick a name for your

new agency. Once some cash rolls in, see an accountant.

If the one-person entrepreneur model isn’t you, it’s no

problem. Form a virtual agency with colleagues who

complement your creative, technical, and business skills.

Athletics is a Brooklyn-based multi-disciplinary “art and

design collective.” Talk about low overhead: they don’t

have a president, a payroll, or a pension plan. But that

hasn’t stopped clients like adidas, Nike, MTV, HBO,

Disney, DKNY, and Sundance Channel from knocking on

their (virtual) doors.

Running a traditional business is like securing a political

position in Chicago: it costs a fortune. That’s why bad

times crush so many companies. But you are a creature of

the internets. You don’t need an office to do great work. I

ran Happy Cog out of my apartment for far longer than

anyone realized. My clients, when they learned my secret,

didn’t care.

Recession Tips For Web Designers

24 ways 2008 edition 265

http://athleticsnyc.com/

Keep it lean: if you can budget your incoming freelance

money, you don’t have to pay yourself a traditional salary.

Removing the overhead associated with payroll means

more of the budget stays in your pocket, enabling you to

price your projects competitively, while still within

industry norms. (Underpricing is uncool, and clients who

knowingly choose below-market-rate vendors tend not to

treat those vendors with respect.)

GETTING GIGS

Web design is a people business. If things are slow, email

former clients. If you just lost your job, email former

agency clients with whom you worked closely to inform

them of your freelance business and find out how they’re

doing. Best practice: focus the email on wishing them a

happy holiday and asking how they’re doing. Let your

email signature file tell them you’re now the president of

Your Name Design. Leading with the fact that you just lost

your job may earn sympathy (or commiseration: the client

may have lost her job, too) but it’s not exactly a sure-fire

project getter.

The qualities that help you land a web design project are

the same in good times or bad. Have a story to tell about

the kind of services you offer, and the business benefits

they provide. (If you design with web standards, you

already have one great story line. What are the others?)

266 24 ways 2008 edition

Don’t be shy about sharing your story, but don’t make it

the focus of the meeting. The client is the focus. Before

you meet her, learn as much as you can about her users,

her business, and her competitors. At the very least, read

her site’s About pages, and spend some quality time with

Google.

Most importantly, go to the meeting knowing how much

you don’t know. Arrive curious, and armed with questions.

Maintain eye contact and keep your ears open. If a point

you raise causes two people to nod at each other, follow

up on that point, don’t just keep grinding through your

Keynote presentation.

If you pay attention and think on your feet, it tells the

potential client that they can expect you to listen and be

flexible. (Clients are like unhappy spouses: they’re dying

for someone to finally listen.) If you stick to a prepared

presentation, it might send the message that you are

inflexible or nervous or both. “Nervous” is an especially

bad signal to send. It indicates that you are either

dishonest or inexperienced. Neither quality invites a

client to sign on. Web design is a people business for the

client, too: they should feel that their interactions with

you will be pleasant and illuminating. And that you’ll

listen. Did I mention that?

Recession Tips For Web Designers

24 ways 2008 edition 267

GIVE IT TIME

Securing clients takes longer and requires more effort in a

recession. If two emails used to land you a gig, it will now

take four, plus an in-person meeting, plus a couple of

follow-up calls. This level of salesmanship is painful to

geeks and designers, who would rather spend four hours

kerning type or debugging a style sheet than five minutes

talking business on the telephone. I know. I’m the same

way. But we must overcome our natural shyness and

inwardness if we intend not to fish our next meal out of a

neighbor’s garbage can.

As a bonus, once the recession ends, your hard-won

account management skills will help you take your

business to the next level. By the time jobs are plentiful

again, you may not want to work for anyone but yourself.

You’ll be a captain of our industry. And talented people

will be emailing to ask you for a job.

268 24 ways 2008 edition

ABOUT THE AUTHOR

Jeffrey Zeldman is the founder and executive creative director

of Happy Cog™, an agency of web design specialists, and the co-

founder (with Eric Meyer) of An Event Apart.

In 1995, the former art director and copywriter launched one of

the first personal sites (Jeffrey Zeldman Presents) and began

publishing web design tutorials. In 1998 he co-founded (and for

several years led) The Web Standards Project, a grassroots

coalition that brought standards to our browsers. That same

year, he launched A List Apart “for people who make websites.”

Recession Tips For Web Designers

24 ways 2008 edition 269

http://www.happycog.com/
http://www.zeldman.com/
http://www.webstandards.org/
http://www.alistapart.com/

Jeffrey has written many articles and two books, notably the

foundational web standards text Designing With Web Standards,

now in its third edition.

Photo: John Morrison

270 24 ways 2008 edition

http://www.zeldman.com/dwws/
http://www.flickr.com/photos/localcelebrity/

	Credits
	2008
	Easing The Path from Design to Development
	Layout
	Text size and content volume
	Interactions with and without JavaScript
	Logged in and logged out states
	Fonts
	Messaging
	Form fields
	Practical tips for handing files over
	In conclusion
	About the author

	Geometric Background Patterns
	Other geometric pattern examples
	Example 1
	Example 2
	Example 3

	About the author

	User Styling
	See something
	Tools

	Change Something
	Make Something Better
	Specific Techniques
	Important!
	Star Selector
	Swapping Images

	User styling without Stylish
	Opera & Omniweb:
	Safari
	What now?

	About the author

	Sitewide Search On A Shoe String
	Starting with a working HTML form
	Adding the BOSS magic
	Enhancing the search form
	Using the script
	Where to go from here
	About the author

	Art Directing with Looking Room
	Using photographic composition techniques to start to art direct on the template-driven web.
	Basic Framing
	Subject, Space, and Movement
	How Looking Room applies to the web
	A little bit of Art Direction
	Photo credits:

	About the author

	Using Google App Engine as Your Own Content Delivery Network
	Creating your first Google App Engine project
	Testing your project
	Uploading your project
	Benefits of using Google App Engine
	The weak points of Google App Engine
	Conclusion
	About the author

	How To Create Rockband'ism
	Rockband’ism
	No more business as usual
	About the author

	The IE6 Equation
	About the author

	Charm Clients, Win Pitches
	Shameless self promotion
	What not to do
	Target audience

	Writing proposals
	Is it worth it?
	What to include
	Walking away

	Perfect pitch
	Requirements
	Who should be there
	What makes a client want to hire you?
	What makes a client like you?
	Differentiation
	Dealing with difficult characters
	Don’t panic…

	About the author

	A Christmas hCard From Me To You
	Step 1: Contact Details
	Step 2: hCard Creator
	Step 3: Editing The Code
	Step 4: Testing The Microformats
	Step 5: Some Extra Markup
	Step 6: Some Christmas Sparkle
	Step 7: Fun With imagery
	Step 8: Progressive Enhancement
	About the author

	Easier Page States for Wireframes
	Enter interactive wireframes and Polypage
	How does it work?
	Examples
	Where can I get hold of it?
	About the author

	Checking Out: Progress Meters
	How not to make progress
	Is this progress?
	Semantic progress
	Progress at last
	About the author

	The First Tool You Reach For
	About the author

	Rocking Restrictions
	Do’s
	Grids
	Start small
	Color palettes
	Fonts
	Single-task
	Mute everything…

	Don’ts
	CSS galleries
	Panicking
	120-hour work-week

	Summary
	About the author

	Making Modular Layout Systems
	Laying the Foundation
	Identifier
	Size
	Placement
	Additions

	The CSS
	In Use
	Caveats
	Opportunities

	About the author

	What Your Turkey Can Teach You About Project Management
	Tip 1: Know What You’re Aiming For
	(Turkey? Ham? Both??)

	Tip 2: Plan at the Right Level of Detail
	Tip 3: Actively Manage Risks and Issues
	Tip 4: Have a Project Board
	Tip 5: Finish Unequivocably and Well
	So, to summarise:

	About the author

	A Festive Type Folly
	24 Ways to impress your friends
	HTML & Descendant Selectors
	Pixels Versus Ems
	Absolutely Positioned Glyphs
	Inheritance

	Link Colours
	A Final Note About Web Typography
	About the author

	Shiny Happy Buttons
	The HTML
	Styling the button
	A note on text-shadow
	Rounding the corners
	Gradient Background
	But it looks different in different browsers

	About the author

	Moo'y Christmas
	Printable stocking stuffers
	Moo Stickers
	Mini-cards
	Posting to the API
	Go forth and Moo’ltiply
	About the author

	Ghosts On The Internet
	Determining publication dates
	Date based URLs
	Syndication formats
	Marking up dates
	In conclusion
	About the author

	Geotag Everywhere with Fire Eagle
	Location Support on the Web
	A crash course in avian inflammability
	Building your first Fire Eagle app; Geomarklet
	An oddity of bookmarklets
	Get started
	And, skip to the end…
	Bookmarklet Basics
	The Location Hierarchy
	Prerequisites
	Rendering
	Make the call

	Deploy
	Where next?
	About the author

	Absolute Columns
	Care for a nightcap?
	See, the orange juice masks the flavor…
	Shaken, not stirred
	Trust me, this will make you feel better
	On the rocks
	Driving us to drink
	Eggnog is supposed to be spiked, right?
	About the author

	Contract Killer
	Writing a killer contract
	Your killer contract should cover:

	Kiss Me, Deadly
	Setting a tone and laying foundations for agreement

	The Big Kill
	What both parties agree to do

	My Gun Is Quick
	Getting down to the nitty gritty

	The Twisted Thing
	Copyrights

	Vengeance Is Mine!
	The fine print

	Survival… Zero!
	About the author

	Recession Tips For Web Designers
	Thin is in
	Getting gigs
	Give it time
	About the author

