

Credits

24 ways is the advent calendar for web
geeks. For twenty-four days each December
we publish a daily dose of web design and
development goodness to bring you all a
little Christmas cheer.

▪ 24 ways is brought to you by Perch CMS

▪ Produced by Drew McLellan, Brian Suda, Anna

Debenham and Owen Gregory.

▪ Designed by Paul Robert Lloyd.

▪ eBook published by edgeofmyseat.com and produced

by Rachel Andrew.

▪ Possible only with the help and dedication of our

authors.

2 24 ways 2009 edition

http://grabaperch.com/?ref=24w01
http://allinthehead.com/
http://suda.co.uk/
http://maban.co.uk/
http://maban.co.uk/
http://fullcreammilk.co.uk/
http://paulrobertlloyd.com/
http://edgeofmyseat.com
http://rachelandrew.co.uk/
http://24ways.org/authors/
http://24ways.org/authors/

2009

A year when books were winning (Five
Simple Steps published A Practical Guide to
Designing for the Web by Mark Boulton and
Designing with Web Standards by Jeffrey
Zeldman and Ethan Marcotte reached its
third edition) and the web was losing
(Yahoo! closed Geocities). Significant
progress was made with web fonts and
HTML5, and 24 ways delivered the
Christmas gifts again.

Working With RGBA Colour... 5

Breaking Out The Edges of The Browser15

Have a Field Day with HTML5 Forms30

What makes a website successful? It might not be what

you expect!...46

HTML5: Tool of Satan, or Yule of Santa?53

Front-End Code Reusability with CSS and JavaScript......60

Type-Inspired Interfaces ..73

2009

24 ways 2009 edition 3

The Construction of Instruction..82

Don't Lose Your :focus...92

A New Year's Resolution ...100

Incite A Riot ..109

Self-Testing Pages with JavaScript..116

Rock Solid HTML Emails..128

Going Nuts with CSS Transitions ...144

CSS Animations...155

Designing For The Switch ...163

The Web Is Your CMS...173

A Pet Project is For Life, Not Just for Christmas183

Spruce It Up ..195

Cleaner Code with CSS3 Selectors201

Make Out Like a Bandit..218

Real Fonts and Rendering: The New Elephant in the

Room ...228

Ignorance Is Bliss ..235

Make Your Mockup in Markup..242

4 24 ways 2009 edition

Drew McLellan 24ways.org/200901

1. Working With RGBA
Colour

When Tim and I were discussing the
redesign of this site last year, one of the
clear goals was to have a graphical style
without making the pages heavy with a lot
of images. When we launched, a lot of
people were surprised that the design
wasn’t built with PNGs. Instead we’d used
RGBA colour values, which is part of the
CSS3 specification.

WHAT IS RGBA COLOUR?

We’re all familiar with specifying colours in CSS using by

defining the mix of red, green and blue light required to

achieve our tone. This is fine and dandy, but whatever

values we specify have one thing in common — the

colours are all solid, flat, and well, a bit boring.

Working With RGBA Colour

24 ways 2009 edition 5

http://24ways.org/200901
http://madebyelephant.com/
http://www.w3.org/TR/css3-color/#rgba-color

Flat RGB colours

CSS3 introduces a couple of new ways to specify colours,

and one of those is RGBA. The A stands for Alpha, which

refers to the level of opacity of the colour, or to put it

another way, the amount of transparency. This means that

we can set not only the red, green and blue values, but

also control how much of what’s behind the colour shows

through. Like with layers in Photoshop.

DON’T WE HAVE OPACITY ALREADY?

The ability to set the opacity on a colour differs subtly

from setting the opacity on an element using the CSS

opacity property. Let’s look at an example.

Here we have an H1 with foreground and background

colours set against a page with a patterned background.

Heading with no transparency applied

6 24 ways 2009 edition

h1 {

color: rgb(0, 0, 0);

background-color: rgb(255, 255, 255);

}

By setting the CSS opacity property, we can adjust the

transparency of the entire element and its contents:

Heading with 50% opacity on the element

h1 {

color: rgb(0, 0, 0);

background-color: rgb(255, 255, 255);

opacity: 0.5;

}

RGBA colour gives us something different – the ability to

control the opacity of the individual colours rather than

the entire element. So we can set the opacity on just the

background:

50% opacity on just the background colour

Working With RGBA Colour

24 ways 2009 edition 7

h1 {

color: rgb(0, 0, 0);

background-color: rgba(255, 255, 255, 0.5);

}

Or leave the background solid and change the opacity on

just the text:

50% opacity on just the foreground colour

h1 {

color: rgba(0, 0, 0, 0.5);

background-color: rgb(255, 255, 255);

}

THE HOW-TO

You’ll notice that above I’ve been using the rgb() syntax

for specifying colours. This is a bit less common than the

usual hex codes (like #FFF) but it makes sense when

starting to use RGBA. As there’s no way to specify opacity

with hex codes, we use rgba() like so:

color: rgba(255, 255, 255, 0.5);

8 24 ways 2009 edition

Just like rgb() the first three values are red, green and

blue. You can specify these 0-255 or 0%-100%. The fourth

value is the opacity level from 0 (completely transparent)

to 1 (completely opaque).

You can use this anywhere you’d normally set a colour in

CSS — so it’s good for foregrounds and background,

borders, outlines and so on. All the transparency effects

on this site’s current design are achieved this way.

SUPPORTING ALL BROWSERS

Like a lot of the features we’ll be looking at in this year’s

24 ways, RGBA colour is supported by a lot of the newest

browsers, but not the rest. Firefox, Safari, Chrome and

Opera browsers all support RGBA, but Internet Explorer

does not.

Fortunately, due to the robust design of CSS as a

language, we can specify RGBA colours for browsers that

support it and an alternative for browsers that do not.

Falling back to solid colour

The simplest technique is to allow the browser to fall back

to using a solid colour when opacity isn’t available. The

CSS parsing rules specify that any unrecognised value

Working With RGBA Colour

24 ways 2009 edition 9

should be ignored. We can make use of this because a

browser without RGBA support will treat a colour value

specified with rgba() as unrecognised and discard it.

So if we specify the colour first using rgb() for all

browsers, we can then overwrite it with an rgba() colour

for browsers that understand RGBA.

h1 {

color: rgb(127, 127, 127);

color: rgba(0, 0, 0, 0.5);

}

Falling back to a PNG

In cases where you’re using transparency on a

background-color (although not on borders or text) it’s

possible to fall back to using a PNG with alpha channel to

get the same effect. This is less flexible than using CSS as

you’ll need to create a new PNG for each level of

transparency required, but it can be a useful solution.

Using the same principal as before, we can specify the

background in a style that all browsers will understand,

and then overwrite it in a way that browsers without

RGBA support will ignore.

h1 {

background: transparent url(black50.png);

background: rgba(0, 0, 0, 0.5) none;

}

10 24 ways 2009 edition

It’s important to note that this works because we’re using

the background shorthand property, enabling us to set

both the background colour and background image in a

single declaration. It’s this that enables us to rely on the

browser ignoring the second declaration when it

encounters the unknown rgba() value.

NEXT STEPS

The really great thing about RGBA colour is that it gives

us the ability to create far more graphically rich designs

without the need to use images. Not only does that make

for faster and lighter pages, but sites which are easier and

quicker to build and maintain. CSS values can also be

changed in response to user interaction or even

manipulated with JavaScript in a way that’s just not so

easy using images.

Opacity can be changed on :hover or manipulated with
JavaScript

div {

color: rgba(255, 255, 255, 0.8);

background-color: rgba(142, 213, 87, 0.3);

}

div:hover {

Working With RGBA Colour

24 ways 2009 edition 11

color: rgba(255, 255, 255, 1);

background-color: rgba(142, 213, 87, 0.6);

}

Clever use of transparency in border colours can help

ease the transition between overlay items and the page

behind.

Borders can receive the RGBA treatment, too

div {

color: rgb(0, 0, 0);

background-color: rgb(255, 255, 255);

border: 10px solid rgba(255, 255, 255, 0.3);

}

IN CONCLUSION

That’s a brief insight into RGBA colour, what it’s good for

and how it can be used whilst providing support for older

browsers. With the current lack of support in Internet

Explorer, it’s probably not a technique that commercial

designs will want to heavily rely on right away – simply

because of the overhead of needing to think about

fallback all the time.

12 24 ways 2009 edition

It is, however, a useful tool to have for those smaller, less

critical touches that can really help to finesse a design. As

browser support becomes more mainstream, you’ll

already be familiar and practised with RGBA and ready to

go.

ABOUT THE AUTHOR

Drew McLellan is lead developer on your favourite small CMS,

Perch. He is Director and Senior Developer at UK-based web

development agency edgeofmyseat.com, and formerly Group

Working With RGBA Colour

24 ways 2009 edition 13

http://grabaperch.com/

Lead at the Web Standards Project. When not publishing 24

ways, Drew keeps a personal site covering web development

issues and themes, takes photos and tweets a lot.

14 24 ways 2009 edition

http://allinthehead.com/
http://flickr.com/drewm/
http://twitter.com/drewm

Remy Sharp 24ways.org/200902

2. Breaking Out The
Edges of The Browser

HTML5 contains more than just the new
entities for a more meaningful document, it
also contains an arsenal of JavaScript APIs.
So many in fact, that some APIs have
outgrown the HTML5 spec’s backyard and
have been sent away to grow up all on their
own and been given the prestigious honour
of being specs in their own right.

So when I refer to (bendy finger quote) “HTML5”, I mean

the HTML5 specification and a handful of other

specifications that help us authors build web applications.

Examples of those specs I would include in the umbrella

term would be: geolocation, web storage, web databases,

web sockets and web workers, to name a few.

Breaking Out The Edges of The Browser

24 ways 2009 edition 15

http://24ways.org/200902
http://dev.w3.org/html5/webstorage/
http://dev.w3.org/html5/webdatabase/
http://dev.w3.org/html5/websockets/
http://dev.w3.org/html5/workers/

For all you guys and gals, on this special 2009 series of 24

ways, I’m just going to focus on data storage and offline

applications: boldly taking your browser where no

browser has gone before!

WEB STORAGE

The Web Storage API is basically cookies on steroids, a

unhealthy dosage of steroids. Cookies are always a pain to

work with. First of all you have the problem of setting,

changing and deleting them. Typically solved by Googling

and blindly relying on PPK’s solution. If that wasn’t

enough, there’s the 4Kb limit that some of you have hit

when you really don’t want to.

The Web Storage API gets around all of the hoops you

have to jump through with cookies. Storage supports

around 5Mb of data per domain (the spec’s

recommendation, but it’s open to the browsers to

implement anything they like) and splits in to two types of

storage objects:

1. sessionStorage – available to all pages on that

domain while the window remains open

2. localStorage – available on the domain until manually

removed

16 24 ways 2009 edition

http://www.quirksmode.org/js/cookies.html

Support

Ignoring beta browsers for our support list, below is a list

of the major browsers and their support for the Web

Storage API:

▪ Latest: Internet Explorer, Firefox, Safari (desktop &

mobile/iPhone)

▪ Partial: Google Chrome (only supports localStorage)

▪ Not supported: Opera (as of 10.10)

Usage

Both sessionStorage and localStorage support the same

interface for accessing their contents, so for these

examples I’ll use localStorage.

The storage interface includes the following methods:

▪ setItem(key, value)

▪ getItem(key)

▪ key(index)

▪ removeItem(key)

▪ clear()

In the simple example below, we’ll use setItem and

getItem to store and retrieve data:

localStorage.setItem('name', 'Remy');

alert(localStorage.getItem('name'));

Breaking Out The Edges of The Browser

24 ways 2009 edition 17

Using alert boxes can be a pretty lame way of debugging.

Conveniently Safari (and Chrome) include database tab in

their debugging tools (cmd+alt+i), so you can get a visual

handle on the state of your data:

Viewing localStorage

As far as I know only Safari has this view on stored data

natively in the browser. There may be a Firefox plugin (but

I’ve not found it yet!) and IE… well that’s just IE.

Even though we’ve used setItem and getItem, there’s also

a few other ways you can set and access the data.

In the example below, we’re accessing the stored value

directly using an expando and equally, you can also set

values this way:

18 24 ways 2009 edition

http://en.wiktionary.org/wiki/expando

localStorage.name = "Remy";

alert(localStorage.name); // shows "Remy"

The Web Storage API also has a key method, which is zero

based, and returns the key in which data has been stored.

This should also be in the same order that you set the

keys, for example:

alert(localStorage.getItem(localStorage.key(0)));

// shows "Remy"

I mention the key() method because it’s not an unlikely

name for a stored value. This can cause serious problems

though.

When selecting the names for your keys, you need to be

sure you don’t take one of the method names that are

already on the storage object, like key, clear, etc. As there

are no warnings when you try to overwrite the methods, it

means when you come to access the key() method, the

call breaks as key is a string value and not a function.

You can try this yourself by creating a new stored value

using localStorage.key = "foo" and you’ll see that the

Safari debugger breaks because it relies on the key()

method to enumerate each of the stored values.

Breaking Out The Edges of The Browser

24 ways 2009 edition 19

Usage Notes

Currently all browsers only support storing strings. This

also means if you store a numeric, it will get converted to

a string:

localStorage.setItem('count', 31);

alert(typeof localStorage.getItem('count'));

// shows "string"

This also means you can’t store more complicated objects

natively with the storage objects. To get around this, you

can use Douglas Crockford’s JSON parser (though Firefox

3.5 has JSON parsing support baked in to the browser –

yay!) json2.js to convert the object to a stringified JSON

object:

var person = {

name: 'Remy',

height: 'short',

location: 'Brighton, UK'

};

localStorage.setItem('person', JSON.stringify(person));

alert(JSON.parse(localStorage.getItem('person')).name

);

// shows "Remy"

Alternatives

There are a few solutions out there that provide storage

solutions that detect the Web Storage API, and if it’s not

available, fall back to different technologies (for instance,

20 24 ways 2009 edition

http://www.json.org/json2.js

using a flash object to store data). One comprehensive

version of this is Dojo’s storage library. I’m personally

more of a fan of libraries that plug missing functionality

under the same namespace, just as Crockford’s JSON

parser does (above).

For those interested it what that might look like, I’ve

mocked together a simple implementation of

sessionStorage. Note that it’s incomplete (because it’s

missing the key method), and it could be refactored to not

using the JSON stringify (but you would need to ensure

that the values were properly and safely encoded):

// requires json2.js for all browsers other than Firefox

3.5

if (!window.sessionStorage && JSON) {

window.sessionStorage = (function () {

// window.top.name ensures top level, and supports

around 2Mb

var data = window.top.name ?

JSON.parse(window.top.name) : {};

return {

setItem: function (key, value) {

data[key] = value+""; // force to string

window.top.name = JSON.stringify(data);

},

removeItem: function (key) {

delete data[key];

window.top.name = JSON.stringify(data);

},

getItem: function (key) {

return data[key] || null;

Breaking Out The Edges of The Browser

24 ways 2009 edition 21

http://docs.dojocampus.org/dojox/storage

},

clear: function () {

data = {};

window.top.name = '';

}

};

})();

}

Now that we’ve cracked the cookie jar with our oversized

Web Storage API, let’s have a look at how we take our

applications offline entirely.

OFFLINE APPLICATIONS

Offline applications is (still) part of the HTML5

specification. It allows developers to build a web app and

have it still function without an internet connection. The

app is access via the same URL as it would be if the user

were online, but the contents (or what the developer

specifies) is served up to the browser from a local cache.

From there it’s just an everyday stroll through open web

technologies, i.e. you still have access to the Web Storage

API and anything else you can do without a web

connection.

For this section, I’ll refer you to a prototype demo I wrote

recently of a contrived Rubik’s cube (contrived because it

doesn’t work and it only works in Safari because I’m using

3D transforms).

22 24 ways 2009 edition

http://remysharp.com/demo/rubiks/

Offline Rubik’s cube

Breaking Out The Edges of The Browser

24 ways 2009 edition 23

Support

Support for offline applications is still fairly limited, but

the possibilities of offline applications is pretty exciting,

particularly as we’re seeing mobile support and support in

applications such as Fluid (and I would expect other

render engine wrapping apps).

Support currently, is as follows:

▪ Latest: Safari (desktop & mobile/iPhone)

▪ Sort of: Firefox‡

▪ Not supported: Internet Explorer, Opera, Google

Chrome

‡ Firefox 3.5 was released to include offline support, but

in fact has bugs where it doesn’t work properly (certainly

on the Mac), Minefield (Firefox beta) has resolved the bug.

Usage

The status of the application’s cache can be tested from

the window.applicationCache object. However, we’ll first

look at how to enable your app for offline access.

You need to create a manifest file, which will tell the

browser what to cache, and then we point our web page

to that cache:

<!DOCTYPE html>

<html manifest="remy.manifest">

<!-- continues ... -->

24 24 ways 2009 edition

For the manifest to be properly read by the browser, your

server needs to serve the .manifest files as text/manifest

by adding the following to your mime.types:

text/cache-manifest manifest

Next we need to populate our manifest file so the browser

can read it:

CACHE MANIFEST

/demo/rubiks/index.html

/demo/rubiks/style.css

/demo/rubiks/jquery.min.js

/demo/rubiks/rubiks.js

version 15

The first line of the manifest must read CACHE MANIFEST.

Then subsequent lines tell the browser what to cache.

The HTML5 spec recommends that you include the calling

web page (in my case index.html), but it’s not required. If I

didn’t include index.html, the browser would cache it as

part of the offline resources.

These resources are implicitly under the CACHE

namespace (which you can specify any number of times if

you want to).

In addition, there are two further namespaces: NETWORK

and FALLBACK.

Breaking Out The Edges of The Browser

24 ways 2009 edition 25

http://www.whatwg.org/specs/web-apps/current-work/multipage/iana.html#text/cache-manifest
http://remysharp.com/demo/rubiks/rubik.manifest

NETWORK is a whitelist namespace that tells the browser

not to cache this resource and always try to request it

through the network.

FALLBACK tells the browser that whilst in offline mode, if

the resource isn’t available, it should return the fallback

resource.

Finally, in my example I’ve included a comment with a

version number. This is because once you include a

manifest, the only way you can tell the browser to reload

the resources is if the manifest contents changes. So I’ve

included a version number in the manifest which I can

change forcing the browser to reload all of the assets.

How it works

If you’re building an app that makes use of the offline

cache, I would strongly recommend that you add the

manifest last. The browser implementations are very new,

so can sometimes get a bit tricky to debug since once the

resources are cached, they really stick in the browser.

These are the steps that happen during a request for an

app with a manifest:

1. Browser: sends request for your app.html

2. Server: serves all associated resources with app.html –

as normal

26 24 ways 2009 edition

3. Browser: notices that app.html has a manifest, it re-

request the assets in the manifest

4. Server: serves the requested manifest assets (again)

5. Browser: window.applicationCache has a status of

UPDATEREADY

6. Browser: reloads

7. Browser: only request manifest file (which doesn’t

show on the net requests panel)

8. Server: responds with 304 Not Modified on the

manifest file

9. Browser: serves all the cached resources locally

What might also add confusion to this process, is that the

way the browsers work (currently) is if there is a cache

already in place, it will use this first over updated

resources. So if your manifest has changed, the browser

will have already loaded the offline cache, so the user will

only see the updated on the next reload.

This may seem a bit convoluted, but you can also trigger

some of this manually through the applicationCache

methods which can ease some of this pain.

If you bind to the online event you can manually try to

update the offline cache. If the cache has then updated,

swap the updated resources in to the cache and the next

time the app loads it will be up to date. You could also

prompt your user to reload the app (which is just a

refresh) if there’s an update available.

Breaking Out The Edges of The Browser

24 ways 2009 edition 27

For example (though this is just pseudo code):

addEvent(applicationCache, 'updateready', function () {

applicationCache.swapCache();

tellUserToRefresh();

});

addEvent(window, 'online', function () {

applicationCache.update();

});

BREAKING OUT OF THE BROWSER

So that’s two different technologies that you can use to

break out of the traditional browser/web page model and

get your apps working in a more application-ny way.

There’s loads more in the HTML5 and non-HTML5 APIs to

play with, so take your Christmas break to check them

out!

28 24 ways 2009 edition

http://www.whatwg.org/specs/web-apps/current-work/multipage/
http://dev.w3.org/html5/

ABOUT THE AUTHOR

Remy Sharp is a developer, speaker, blogger, author of

upcoming jQuery for Designers (Manning) and contributing

author of The jQuery Cookbook (O’Reilly), and most recently a

conference organiser: Full Frontal JavaScript Conference. Remy

started in web development 10 years ago as the sole developer

for a finance web site, and as such, was exposed to all aspects

running the web site during, and long after, the dotcom boom.

Curator of Full Frontal JavaScript, a UK JavaScript conference,

contributing author to HTML5 Doctor, developer of JS Bin,

HTML5 Demos, Snap Bird (JavaScript driven twitter search

tool), jQuery team member and evangelist and developer on a

bunch of other JavaScript related apps. Yeah, Remy likes his

JavaScript!

Breaking Out The Edges of The Browser

24 ways 2009 edition 29

http://jqueryfordesigners.com
http://full-frontal.org
http://full-frontal.org
http://html5doctor.com
http://jsbin.com
http://html5demos.com
http://snapbird.org

Inayaili de León Persson 24ways.org/200903

3. Have a Field Day with
HTML5 Forms

Forms are usually seen as that obnoxious
thing we have to markup and style. I
respectfully disagree: forms (on a par with
tables) are the most exciting thing we have
to work with.

Here we’re going to take a look at how to style a beautiful

HTML5 form using some advanced CSS and latest CSS3

techniques. I promise you will want to style your own

forms after you’ve read this article.

Here’s what we’ll be creating:

30 24 ways 2009 edition

http://24ways.org/200903

Have a Field Day with HTML5 Forms

24 ways 2009 edition 31

The form. (Icons from Chalkwork Payments)

MEANINGFUL MARKUP

We’re going to style a simple payment form. There are

three main sections on this form:

▪ The person’s details

▪ The address details

▪ The credit card details

We are also going to use some of HTML5’s new input

types and attributes to create more meaningful fields and

use less unnecessary classes and ids:

▪ email, for the email field

▪ tel, for the telephone field

▪ number, for the credit card number and security code

▪ required, for required fields

▪ placeholder, for the hints within some of the fields

▪ autofocus, to put focus on the first input field when the

page loads

There are a million more new input types and form

attributes on HTML5, and you should definitely take a

look at what’s new on the W3C website. Hopefully this

will give you a good idea of how much more fun form

markup can be.

32 24 ways 2009 edition

http://www.mezzoblue.com/icons/chalkwork/payments/
http://www.w3.org/TR/html5/forms.html

A GOOD FOUNDATION

Each section of the form will be contained within its own

fieldset. In the case of the radio buttons for choosing

the card type, we will enclose those options in another

nested fieldset.

We will also be using an ordered list to group each label /

input pair. This will provide us with a (kind of) semantic

styling hook and it will also make the form easier to read

when viewing with no CSS applied:

Have a Field Day with HTML5 Forms

24 ways 2009 edition 33

The unstyled form

So here’s the markup we are going to be working with:

34 24 ways 2009 edition

<form id=payment>

<fieldset>

<legend>Your details</legend>

<label for=name>Name</label>

<input id=name name=name type=text

placeholder="First and last name" required autofocus>

<label for=email>Email</label>

<input id=email name=email type=email

placeholder="example@domain.com" required>

<label for=phone>Phone</label>

<input id=phone name=phone type=tel

placeholder="Eg. +447500000000" required>

</fieldset>

<fieldset>

<legend>Delivery address</legend>

<label for=address>Address</label>

<textarea id=address name=address rows=5

required></textarea>

<label for=postcode>Post code</label>

<input id=postcode name=postcode type=text

required>

Have a Field Day with HTML5 Forms

24 ways 2009 edition 35

<label for=country>Country</label>

<input id=country name=country type=text

required>

</fieldset>

<fieldset>

<legend>Card details</legend>

<fieldset>

<legend>Card type</legend>

<input id=visa name=cardtype type=radio>

<label for=visa>VISA</label>

<input id=amex name=cardtype type=radio>

<label for=amex>AmEx</label>

<input id=mastercard name=cardtype

type=radio>

<label for=mastercard>Mastercard</label>

</fieldset>

<label for=cardnumber>Card number</label>

<input id=cardnumber name=cardnumber type=number

required>

36 24 ways 2009 edition

<label for=secure>Security code</label>

<input id=secure name=secure type=number

required>

<label for=namecard>Name on card</label>

<input id=namecard name=namecard type=text

placeholder="Exact name as on the card" required>

</fieldset>

<fieldset>

<button type=submit>Buy it!</button>

</fieldset>

</form>

MAKING THINGS LOOK NICE

First things first, so let’s start by adding some defaults to

our form by resetting the margins and paddings of the

elements and adding a default font to the page:

html, body, h1, form, fieldset, legend, ol, li {

margin: 0;

padding: 0;

}

body {

background: #ffffff;

color: #111111;

Have a Field Day with HTML5 Forms

24 ways 2009 edition 37

font-family: Georgia, "Times New Roman", Times, serif;

padding: 20px;

}

Next we are going to style the form element that is

wrapping our fields:

form#payment {

background: #9cbc2c;

-moz-border-radius: 5px;

-webkit-border-radius: 5px;

border-radius: 5px;

padding: 20px;

width: 400px;

}

We will also remove the border from the fieldset and

apply some bottom margin to it. Using the :last-of-type

pseudo-class, we remove the bottom margin of the last

fieldset — there is no need for it:

form#payment fieldset {

border: none;

margin-bottom: 10px;

}

form#payment fieldset:last-of-type {

margin-bottom: 0;

}

Next we’ll make the legends big and bold, and we will also

apply a light-green text-shadow, to add that little extra

special detail:

38 24 ways 2009 edition

form#payment legend {

color: #384313;

font-size: 16px;

font-weight: bold;

padding-bottom: 10px;

text-shadow: 0 1px 1px #c0d576;

}

Our legends are looking great, but how about adding a

clear indication of how many steps our form has? Instead

of adding that manually to every legend, we can use

automatically generated counters.

To add a counter to an element, we have to use either the

:before or :after pseudo-elements to add content via

CSS. We will follow these steps:

▪ create a counter using the counter-reset property on

the form element

▪ call the counter with the content property (using the

same name we’ve created before)

▪ with the counter-incremet property, indicate that for

each element that matches our selector, that counter will

be increased by 1

form#payment > fieldset > legend:before {

content: "Step " counter(fieldsets) ": ";

counter-increment: fieldsets;

}

Have a Field Day with HTML5 Forms

24 ways 2009 edition 39

Finally, we need to change the style of the legend that is

part of the radio buttons group, to make it look like a

label:

form#payment fieldset fieldset legend {

color: #111111;

font-size: 13px;

font-weight: normal;

padding-bottom: 0;

}

STYLING THE LISTS

For our list elements, we’ll just add some nice rounded

corners and semi-transparent border and background.

Because we are using RGBa colors, we should provide a

fallback for browsers that don’t support them (that comes

before the RBGa color). For the nested lists, we will

remove these properties because they would be

overlapping:

form#payment ol li {

background: #b9cf6a;

background: rgba(255,255,255,.3);

border-color: #e3ebc3;

border-color: rgba(255,255,255,.6);

border-style: solid;

border-width: 2px;

-moz-border-radius: 5px;

-webkit-border-radius: 5px;

border-radius: 5px;

line-height: 30px;

40 24 ways 2009 edition

list-style: none;

padding: 5px 10px;

margin-bottom: 2px;

}

form#payment ol ol li {

background: none;

border: none;

float: left;

}

FORM CONTROLS

Now we only need to style our labels, inputs and the

button element.

All our labels will look the same, with the exception of

the one for the radio elements. We will float them to the

left and give them a width.

For the credit card type labels, we will add an icon as the

background, and override some of the properties that

aren’t necessary. We will be using the attribute selector to

specify the background image for each label — in this case,

we use the for attribute of each label.

To add an extra user-friendly detail, we’ll add a cursor:

pointer to the radio button labels on the :hover state, so

the user knows that he can simply click them to select

that option.

Have a Field Day with HTML5 Forms

24 ways 2009 edition 41

form#payment label {

float: left;

font-size: 13px;

width: 110px;

}

form#payment fieldset fieldset label {

background:none no-repeat left 50%;

line-height: 20px;

padding: 0 0 0 30px;

width: auto;

}

form#payment label[for=visa] {

background-image: url(visa.gif);

}

form#payment label[for=amex] {

background-image: url(amex.gif);

}

form#payment label[for=mastercard] {

background-image: url(mastercard.gif);

}

form#payment fieldset fieldset label:hover {

cursor: pointer;

}

Almost there! Now onto the input elements. Here we

want to match all inputs, except for the radio ones, and

the textarea. For that we will use the negation pseudo-

class (:not()). With it we can target all input elements

except for the ones with type of radio.

We will also make sure to add some :focus styles and add

the appropriate styling for the radio inputs:

42 24 ways 2009 edition

form#payment input:not([type=radio]),

form#payment textarea {

background: #ffffff;

border: none;

-moz-border-radius: 3px;

-webkit-border-radius: 3px;

-khtml-border-radius: 3px;

border-radius: 3px;

font: italic 13px Georgia, "Times New Roman", Times,

serif;

outline: none;

padding: 5px;

width: 200px;

}

form#payment input:not([type=submit]):focus,

form#payment textarea:focus {

background: #eaeaea;

}

form#payment input[type=radio] {

float: left;

margin-right: 5px;

}

And finally we come to our submit button. To it, we will

just add some nice typography and text-shadow, align it to

the center of the form and give it some background colors

for its different states:

form#payment button {

background: #384313;

border: none;

-moz-border-radius: 20px;

-webkit-border-radius: 20px;

Have a Field Day with HTML5 Forms

24 ways 2009 edition 43

-khtml-border-radius: 20px;

border-radius: 20px;

color: #ffffff;

display: block;

font: 18px Georgia, "Times New Roman", Times, serif;

letter-spacing: 1px;

margin: auto;

padding: 7px 25px;

text-shadow: 0 1px 1px #000000;

text-transform: uppercase;

}

form#payment button:hover {

background: #1e2506;

cursor: pointer;

}

And that’s it! See the completed form.

This form will not look the same on every browser.

Internet Explorer and Opera don’t support border-radius

(at least not for now); the new input types are rendered

as just normal inputs on some browsers; and some of the

most advanced CSS, like the counter, :last-of-type or

text-shadow are not supported on some browsers. But

that doesn’t mean you can’t use them right now, and

simplify your development process. My gift to you!

44 24 ways 2009 edition

http://24ways.org/examples/have-a-field-day-with-html5-forms/24ways-form.html

ABOUT THE AUTHOR

Inayaili de León Persson (or just Yaili) is a web designer and

author. She’s Lead Web Designer at Canonical, the company

that delivers Ubuntu. She’s Panamanian Portuguese, born in the

USSR, and has been living in London since 2008 — her favourite

city in the world. She loves cats and naps.

Have a Field Day with HTML5 Forms

24 ways 2009 edition 45

http://yaili.com/
http://ubuntu.com/

Paul Boag 24ways.org/200904

4. What makes a website
successful? It might not
be what you expect!

What makes some sites succeed and others
fail? Put another way, when you are asked to
redesign an existing website, what problems
are you looking out for and where do you
concentrate your efforts?

I would argue that as web designers we spend too much

time looking at the wrong kind of problem.

I recently ran a free open door consultancy clinic to

celebrate the launch of my new book (yes I know, two

shameless plugs in one sentence). This involved various

website owners volunteering their sites for review. Both

myself and the audience then provided feedback.

What quickly became apparent is that the feedback being

given by the audience was biased towards design and

development.

46 24 ways 2009 edition

http://24ways.org/200904
http://headscape.co.uk/clinic/
http://boagworld.com/websiteownersmanual/

Although their comments were excellent it focused

almost exclusively on the quality of code, site aesthetics

and usability. To address these issues in isolation is similar

to treating symptoms and ignoring the underlying illness.

CURE THE ILLNESS NOT THE SYMPTOMS

Poor design, bad usability and terribly written code are

symptoms of bigger problems. Often when we endeavour

to address these symptoms, we meet resistance from our

clients and become frustrated. This is because our clients

are still struggling with fundamental concepts we take for

granted.

Before we can address issues of aesthetics, usability and

code, we need to tackle business objectives, calls to action

and user tasks. Without dealing with these fundamental

principles our clients’ website will fail.

Let me address each in turn:

UNDERSTAND THE BUSINESS OBJECTIVES

Do you ask your clients why they have a website? It feels

like an obvious question. However, it is surprising how

many clients do not have an answer.

What makes a website successful? It might not be what you
expect!

24 ways 2009 edition 47

Without having a clear idea of the siteʼs business

objectives, the client has no way to know whether it is

succeeding. This means they have no justification for

further investment and that leads to quibbling over every

penny.

However most importantly, without clearly defined

business aims they have no standard against which to

base their decisions. Everything becomes subjective and

that will inevitably lead to problems.

Before we start discussing design, usability and

development, we need to focus our clients on establishing

concrete business objectives. This will provide a

framework for decision making during the development

phase.

This will not only help the client make decisions, it will

also focus them on the business and away from micro

managing the design.

ESTABLISH CLEAR CALLS TO ACTION

Once business objectives have been set this opens up the

possibility to establish clear calls to action.

I am amazed at how few website owners can name their

calls to action. However, I am even more staggered at how

few web designers ask about them.

48 24 ways 2009 edition

Calls to action are not just limited to ecommerce sites.

Whether you are asking people to sign up for a newsletter

or complete a contact us form, every site should have a

desired objective for users.

What is more, each page of a site should have micro calls

to action that always draw users on and never leave them

at a dead end.

Without clearly defined calls to action you cannot

successfully design a site, structure the user experience

or measure its success. They bring focus to the site and

encourage the client to concentrate their efforts on

helping people reach those goals.

Of course in order to know if a call to action is going to

work, it is necessary to do some user testing.

TEST AGAINST THE RIGHT TASKS

As web designers we all like to boast about being ʻuser

centricʼ whatever that means! However, in reality I think

many of us are paying lip service to the subject.

Sure, we ask our clients about who their users are and

maybe even do some usability testing. However, usability

testing is no good if we are not asking the right questions.

Again we find ourselves working on a superficial level

rather than tackling the deeper issues.

What makes a website successful? It might not be what you
expect!

24 ways 2009 edition 49

Clients find it relatively easy to tell you who their target

audience is. Admittedly the list they come back with is

often overly long and contains a lot of edge cases.

However, where they begin to struggle is articulating

what these users will want to achieve on the website.

They know who they want to reach. However, they cannot

always tell you why those people would be interested in

the site.

These user tasks are another fundamental building block

for any successful website. Although it is important for a

website owner to understand what their objectives are

and what they want users to do, it is even more important

that they understand the users objectives as well.

Again, this provides context for the decisions they are

making about design, usability and functionality. Without

it the site will become self serving, largely ignoring the

needs of users.

User tasks help to focus the clientʼs mind on the needs of

their user, rather than what they can get out of them.

So am I claiming that design, usability and code do not

matter? Well the shocking truth is that to some extent I

am!

50 24 ways 2009 edition

THE SHOCKING TRUTH

Whether we like it or not there is significant evidence that

you can create a successful website with bad design,

terrible code and without ever running a usability test

session.

You only need to look at the design of Craigslist or the

code of Amazon to see that this is true.

However, I do not believe it is possible to build a

successful website without business objectives, calls to

action and a clear idea of user tasks.

Do not misunderstand me. I do believe design, usability

and code matters. I just believe that they only matter if

the fundamentals are already in place. These things

improve a solid foundation but are no use in their own

right.

As web designers it is our responsibility to ensure

fundamental questions are being asked, before we start

exploring other issues. If we do not, our websites will look

great, be well coded and have gone through endless

usability tests, however it will not be truly successful.

What makes a website successful? It might not be what you
expect!

24 ways 2009 edition 51

ABOUT THE AUTHOR

Paul Boag is a user experience consultant based in Dorset,

England. He’s the founder of Headscape, a successful web

design agency and hosts the longest running web design

podcast at boagworld.com. He also writes for web design

publications and speaks at various conferences and workshops.

52 24 ways 2009 edition

http://www.headscape.co.uk/
http://www.boagworld.com/

Bruce Lawson 24ways.org/200905

5. HTML5: Tool of Satan,
or Yule of Santa?

It would lead to unseasonal arguments to
discuss the title of this piece here, and the
arguments are as indigestible as the fourth
turkey curry of the season, so we’ll restrict
our article to the practical rather than the
philosophical: what HTML5 can you
reasonably expect to be able to use reliably
cross-browser in the early months of 2010?

The answer is that you can use more than you might think,

due to the seasonal tinsel of feature-detection and using

the sparkly pixie-dust of IE-only VML (but used in a way

that won’t damage your Elf).

CANVAS

canvas is a 2D drawing API that defines a blank area of

the screen of arbitrary size, and allows you to draw on it

using JavaScript. The pictures can be animated, such as in

HTML5: Tool of Satan, or Yule of Santa?

24 ways 2009 edition 53

http://24ways.org/200905

this canvas mashup of Wolfenstein 3D and Flickr. (The

difference between canvas and SVG is that SVG uses

vector graphics, so is infinitely scalable. It also keeps a

DOM, whereas canvas is just pixels so you have to do all

your own book-keeping yourself in JavaScript if you want

to know where aliens are on screen, or do collision

detection.)

Previously, you needed to do this using Adobe Flash or

Java applets, requiring plugins and potentially

compromising keyboard accessibility. Canvas drawing is

supported now in Opera, Safari, Chrome and Firefox. The

reindeer in the corner is, of course, Internet Explorer,

which currently has zero support for canvas (or SVG,

come to that).

Now, don’t pull a face like all you’ve found in your Yuletide

stocking is a mouldy satsuma and a couple of nuts—that’s

not the end of the story. Canvas was originally an Apple

proprietary technology, and Internet Explorer had a

similar one called Vector Markup Language which was

submitted to the W3C for standardisation in 1998 but

which, unlike canvas, was not blessed with retrospective

standardisation.

What you need, then, is some way for Internet Explorer to

translate canvas to VML on-the-fly, while leaving the

other, more standards-compliant browsers to use the

HTML5. And such a way exists—it’s a JavaScript library

54 24 ways 2009 edition

http://blog.nihilogic.dk/2008/07/wolfenflickr-3d-unlikely-mashup.html
http://en.wikipedia.org/wiki/Vector_Markup_Language

called excanvas. It’s downloadable from

http://code.google.com/p/explorercanvas/ and it’s simple

to include it via a conditional comment in the head for IE:

<!--[if IE]>

<script src="excanvas.js"></script>

<![endif]-->

Simply include this, and your canvas will be natively

supported in the modern browsers (and the library won’t

even be downloaded) whereas IE will suddenly render

your canvas using its own VML engine. Be sure, however,

to check it carefully, as the IE JavaScript engine isn’t so

fast and you’ll need to be sure that performance isn’t too

degraded to use.

FORMS

Since the beginning of the Web, developers have been

coding forms, and then writing JavaScript to check

whether an input is a correctly formed email address,

URL, credit card number or conforms to some other

pattern. The cumulative labour of the world’s developers

over the last 15 years makes whizzing round in a sleigh

and delivering presents seem like popping to the corner

shop in comparison.

With HTML5, that’s all about to change. As Yaili began to

explore on Day 3, a host of new attributes to the input

element provide built-in validation for email address

HTML5: Tool of Satan, or Yule of Santa?

24 ways 2009 edition 55

http://code.google.com/p/explorercanvas/
http://24ways.org/2009/have-a-field-day-with-html5-forms
http://24ways.org/2009/have-a-field-day-with-html5-forms

formats (input type=email), URLs (input type=url), any

pattern that can be expressed with a JavaScript-syntax

regex (pattern="[0-9][A-Z]{3}") and the like. New

attributes such as required, autofocus, input

type=number min=3 max=50 remove much of the tedious

JavaScript from form validation.

Other, really exciting input types are available (see all

input types). The datalist is reminiscent of a select box,

but allows the user to enter their own text if they don’t

want to choose one of the pre-defined options. input

type=range is rendered as a slider, while input type=date

pops up a date picker, all natively in the browser with no

JavaScript required at all.

Currently, support is most complete in an experimental

implementation in Opera and a number of the new

attributes in Webkit-based browsers. But don’t let that

stop you! The clever thing about the specification of the

new Web Forms is that all the new input types are

attributes (rather than elements). input defaults to input

type=text, so if a browser doesn’t understand a new

HTML5 type, it gracefully degrades to a plain text input.

So where does that leave validation in those browsers

that don’t support Web Forms? The answer is that you

don’t retire your pre-existing JavaScript validation just

yet, but you leave it as a fallback after doing some feature

detection. To detect whether (say) input type=email is

56 24 ways 2009 edition

http://www.whatwg.org/specs/web-apps/current-work/multipage/the-input-element.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-input-element.html

supported, you make a new input type=email with

JavaScript but don’t add it to the page. Then, you

interrogate your new element to find out what its type

attribute is. If it’s reported back as “email”, then the

browser supports the new feature, so let it do its work

and don’t bring in any JavaScript validation. If it’s reported

back as “text”, it’s fallen back to the default, indicating that

it’s not supported, so your code should branch to your old

validation routines. Alternatively, use the small (7K)

Modernizr library which will do this work for you and give

you JavaScript booleans like

Modernizr.inputtypes[email] set to true or false.

So what does this buy you? Well, first and foremost,

you’re future-proofing your code for that time when all

browsers support these hugely useful additions to forms.

Secondly, you buy a usability and accessibility win.

Although it’s tempting to style the stuffing out of your

form fields (which can, incidentally, lead to madness),

whatever your branding people say, it’s better to leave

forms as close to the browser defaults as possible. A

browser’s slider and date pickers will be the same across

different sites, making it much more comprehensible to

users. And, by using native controls rather than faking

sliders and date pickers with JavaScript, your forms are

much more likely to be accessible to users of assistive

technology.

HTML5: Tool of Satan, or Yule of Santa?

24 ways 2009 edition 57

http://www.modernizr.com/
http://meyerweb.com/eric/thoughts/2007/05/15/formal-weirdness/

HTML5 DOCTYPE

You can use the new DOCTYPE !doctype html now and –

hey presto – you’re writing HTML5, as it’s pretty much a

superset of HTML4. There are some useful advantages to

doing this. The first is that the HTML5 validator (I use

http://html5.validator.nu) also validates ARIA

information, whereas the HTML4 validator doesn’t, as

ARIA is a new spec developed after HTML4. (Actually, it’s

more accurate to say that it doesn’t validate your ARIA

attributes, but it doesn’t automatically report them as an

error.)

Another advantage is that HTML5 allows tabindex as a

global attribute (that is, on any element). Although

originally designed as an accessibility bolt-on, I ordinarily

advise you don’t use it; a well-structured page should

provide a logical tab order through links and form fields

already.

However, tabindex="-1" is a legal value in HTML5 as it

allows for the element to be programmatically focussable

by JavaScript. It’s also very useful for correcting a bug in

Internet Explorer when used with a keyboard; in-page

links go nowhere if the destination doesn’t have a

proprietary property called hasLayout set or a tabindex

of -1.

58 24 ways 2009 edition

http://html5.validator.nu
http://www.whatwg.org/specs/web-apps/current-work/multipage/elements.html#global-attributes
http://www.whatwg.org/specs/web-apps/current-work/multipage/elements.html#global-attributes
http://www.whatwg.org/specs/web-apps/current-work/multipage/editing.html#sequential-focus-navigation
http://juicystudio.com/article/ie-keyboard-navigation.php
http://juicystudio.com/article/ie-keyboard-navigation.php

So, whether it is the tool of Satan or yule of Santa, HTML5

is just around the corner. Some you can use now, and by

the end of 2010 I predict you’ll be able to use a whole lot

more as new browser versions are released.

ABOUT THE AUTHOR

Bruce Lawson evangelises Open Web Standards for the Opera

web browser, and has spent far too much time in 2009 thinking

about HTML5.

HTML5: Tool of Satan, or Yule of Santa?

24 ways 2009 edition 59

http://www.brucelawson.co.uk/
http://www.opera.com/
http://www.opera.com/

Trevor Morris 24ways.org/200906

6. Front-End Code
Reusability with CSS and
JavaScript

Most web standards-based developers are
more than familiar with creating their sites
with semantic HTML with lots and lots of
CSS. With each new page in a design, the
CSS tends to grow and grow and more
elements and styles are added. But CSS can
be used to better effect.

The idea of object-oriented CSS isn’t new. Nicole Sullivan

has written a presentation on the subject and outlines

two main concepts: separate structure and visual design;

and separate container and content. Jeff Croft talks about

Applying OOP Concepts to CSS:

60 24 ways 2009 edition

http://24ways.org/200906
http://www.stubbornella.org/content/2009/02/28/object-oriented-css-grids-on-github/
http://jeffcroft.com/sidenotes/2009/may/20/applying-oop-concepts-css/

I can make a class of .box that defines some
basic layout structure, and another class of
.rounded that provides rounded corners, and
classes of .wide and .narrow that define some
widths, and then easily create boxes of varying
widths and styles by assigning multiple classes
to an element, without having to duplicate
code in my CSS.

This concept helps reduce CSS file size, allows for great

flexibility, rapid building of similar content areas and

means greater consistency throughout the entire design.

You can also take this concept one step further and apply

it to site behaviour with JavaScript.

Build a versatile slideshow

I will show you how to build multiple slideshows using

jQuery, allowing varying levels of functionality which you

may find on one site design. The code will be flexible

enough to allow you to add previous/next links, image

pagination and the ability to change the animation type.

More importantly, it will allow you to apply any

combination of these features.

Image galleries are simply a list of images, so the obvious

choice of marking the content up is to use a . Many

designs, however, do not cater to non-JavaScript versions

of the website, and thus don’t take in to account large

Front-End Code Reusability with CSS and JavaScript

24 ways 2009 edition 61

multiple images. You could also simply hide all the other

images in the list, apart from the first image. This method

can waste bandwidth because the other images might be

downloaded when they are never going to be seen.

Taking this second concept — only showing one image —

the only code you need to start your slideshow is an

tag. The other images can be loaded dynamically via

either a per-page JavaScript array or via AJAX.

The slideshow concept is built upon the very versatile

Cycle jQuery Plugin and is structured in to another

reusable jQuery plugin. Below is the HTML and JavaScript

snippet needed to run every different type of slideshow I

have mentioned above.

<img src="path/to/image.jpg" alt="About the image"

title="" height="250" width="400" class="slideshow">

<script type="text/javascript">

jQuery().ready(function($) {

$('img.slideshow').slideShow({

images: ['1.jpg', '2.jpg', '3.jpg']

});

});

</script>

Slideshow plugin

If you’re not familiar with jQuery or how to write and

author your own plugin there are plenty of articles to help

you out.

62 24 ways 2009 edition

http://malsup.com/jquery/cycle/
http://jquery.com/
http://www.learningjquery.com/2007/10/a-plugin-development-pattern
http://docs.jquery.com/Plugins/Authoring
http://tkramar.blogspot.com/2008/02/improve-your-jquery-fu-write-plugins.html
http://tkramar.blogspot.com/2008/02/improve-your-jquery-fu-write-plugins.html

jQuery has a chainable interface and this is something

your plugin must implement. This is easy to achieve, so

your plugin simply returns the collection it is using:

return this.each(

function () {}

};

LOCAL VARIABLES

To keep the JavaScript clean and avoid any conflicts, you

must set up any variables which are local to the plugin and

should be used on each collection item. Defining all your

variables at the top under one statement makes adding

more and finding which variables are used easier. For

other tips, conventions and improvements check out

JSLint, the “JavaScript Code Quality Tool”.

var $$, $div, $images, $arrows, $pager,

id, selector, path, o, options,

height, width,

list = [], li = 0,

parts = [], pi = 0,

arrows = ['Previous', 'Next'];

CACHE JQUERY OBJECTS

It is good practice to cache any calls made to jQuery. This

reduces wasted DOM calls, can improve the speed of your

JavaScript code and makes code more reusable.

Front-End Code Reusability with CSS and JavaScript

24 ways 2009 edition 63

http://jslint.com/

The following code snippet caches the current selected

DOM element as a jQuery object using the variable name

$$. Secondly, the plugin makes its settings available to the

Metadata plugin‡ which is best practice within jQuery

plugins.

For each slideshow the plugin generates a <div> with a

class of slideshow and a unique id. This is used to wrap

the slideshow images, pagination and controls.

The base path which is used for all the images in the

slideshow is calculated based on the existing image which

appears on the page. For example, if the path to the image

on the page was /img/flowers/1.jpg the plugin would

use the path /img/flowers/ to load the other images.

$$ = $(this);

o = $.metadata ? $.extend({}, settings, $$.metadata()) :

settings;

id = 'slideshow-' + (i++ + 1);

$div = $('<div />').addClass('slideshow').attr('id', id);

selector = '#' + id + ' ';

path = $$.attr('src').replace(/[0-9]\.jpg/g, '');

options = {};

height = $$.height();

width = $$.width();

Note: the plugin uses conventions such as folder structure

and numeric filenames. These conventions help with the

reusable aspect of plugins and best practices.

64 24 ways 2009 edition

http://plugins.jquery.com/project/metadata

BUILD THE IMAGES

The cycle plugin uses a list of images to create the

slideshow. Because we chose to start with one image we

must now build the list programmatically. This is a case of

looping through the images which were added via the

plugin options, building the appropriate HTML and

appending the resulting to the DOM.

$.each(o.images, function () {

list[li++] = '';

list[li++] = '<img src="' + path + this + '" height="'

+ height + '" width="' + width + '">';

list[li++] = '';

});

$images = $('').addClass('cycle-images');

$images.append(list.join('')).appendTo($div);

Although jQuery provides the append method it is much

faster to create one really long string and append it to the

DOM at the end.

UPDATE THE OPTIONS

Here are some of the options we’re making available by

simply adding classes to the . You can change the

slideshow effect from the default fade to the sliding effect.

By adding the class of stopped the slideshow will not auto-

play and must be controlled via pagination or previous

and next links.

Front-End Code Reusability with CSS and JavaScript

24 ways 2009 edition 65

http://www.learningjquery.com/2009/03/43439-reasons-to-use-append-correctly
http://www.learningjquery.com/2009/03/43439-reasons-to-use-append-correctly

// different effect

if ($$.is('.slide')) {

options.fx = 'scrollHorz';

}

// don't move by default

if ($$.is('.stopped')) {

options.timeout = 0;

}

If you are using the same set of images throughout a

website you may wish to start on a different image on

each page or section. This can be easily achieved by simply

adding the appropriate starting class to the .

// based on the class name on the image

if ($$.is('[class*=start-]')) {

options.startingSlide =

parseInt($$.attr('class').replace(/.*start-([0-9]+).*/g,

"$1"), 10) - 1;

}

For example:

<img src="/img/slideshow/3.jpg" alt="About the image"

title="" height="250" width="400" class="slideshow

start-3">

By default, and without JavaScript, the third image in this

slideshow is shown. When the JavaScript is applied to the

page the slideshow must know to start from the correct

place, this is why the start class is required.

66 24 ways 2009 edition

You could capture the default image name and parse it to

get the position, but only the default image needs to be

numeric to work with this plugin (and could easily be

changed in future). Therefore, this extra specifically

defined option means the plugin is more tolerant.

PREVIOUS/NEXT LINKS

A common feature of slideshows is previous and next links

enabling the user to manually progress the images. The

Cycle plugin supports this functionality, but you must

generate the markup yourself. Most people add these

directly in the HTML but normally only support their

behaviour when JavaScript is enabled. This goes against

progressive enhancement. To keep with the best practice

progress enhancement method the previous/next links

should be generated with JavaScript.

The follow snippet checks whether the slideshow requires

the previous/next links, via the arrows class. It restricts

the Cycle plugin to the specific slideshow using the

selector we created at the top of the plugin. This means

multiple slideshows can run on one page without

conflicting each other.

The code creates a using the arrows array we defined

at the top of the plugin. It also adds a class to the

slideshow container, meaning you can style different

combinations of options in your CSS.

Front-End Code Reusability with CSS and JavaScript

24 ways 2009 edition 67

// create the arrows

if ($$.is('.arrows') && list.length > 1) {

options.next = selector + '.next';

options.prev = selector + '.previous';

$arrows = $('').addClass('cycle-arrows');

$.each(arrows, function (i, val) {

parts[pi++] = '<li class="' + val.toLowerCase() +

'">';

parts[pi++] = '<a href="#' + val.toLowerCase() +

'">';

parts[pi++] = '' + val + '';

parts[pi++] = '';

parts[pi++] = '';

});

$arrows.append(parts.join('')).appendTo($div);

$div.addClass('has-cycle-arrows');

}

The arrow array could be placed inside the plugin settings

to allow for localisation.

PAGINATION

The Cycle plugin creates its own HTML for the pagination

of the slideshow. All our plugin needs to do is create the

list and selector to use. This snippet creates the

pagination container and appends it to our specific

slideshow container. It sets the Cycle plugin pager option,

restricting it to the specific slideshow using the selector

68 24 ways 2009 edition

we created at the top of the plugin. Like the previous/next

links, a class is added to the slideshow container allowing

you to style the slideshow itself differently.

// create the clickable pagination

if ($$.is('.pagination') && list.length > 1) {

options.pager = selector + '.cycle-pagination';

$pager = $('').addClass('cycle-pagination');

$pager.appendTo($div);

$div.addClass('has-cycle-pagination');

}

Note: the Cycle plugin creates a with anchors listed

directly inside without the surrounding .

Unfortunately this is invalid markup but the code still

works.

Demos

Well, that describes all the ins-and-outs of the plugin, but

demos make it easier to understand! Viewing the source

on the demo page shows some of the combinations you

can create with a simple , a few classes and some

thought-out JavaScript.

View the demos →

Front-End Code Reusability with CSS and JavaScript

24 ways 2009 edition 69

http://www.trovster.com/lab/tips/oop-css-jquery/demo/

Decide on defaults

The slideshow plugin uses the exact same settings as the

Cycle plugin, but some are explicitly set within the

slideshow plugin when using the classes you have set.

When deciding on what functionality is going to be

controlled via this class method, be careful to choose your

defaults wisely. If all slideshows should auto-play, don’t

make this an option — make the option to stop the auto-

play. Similarly, if every slideshow should have previous/

next functionality make this the default and expose the

ability to remove them with a class such as “no-

pagination”.

In the examples presented on this article I have used a

class on each . You can easily change this to anything

you want and simply apply the plugin based on the jQuery

selector required.

Grab your images

If you are using AJAX to load in your images, you can

speed up development by deciding on and keeping to a

folder structure and naming convention. There are two

methods: basing the image path based on the current

URL; or based on the src of the image. The first allows a

different slideshow on each page, but in many instances a

site will have a couple of sets of images and therefore the

second method is probably preferred.

70 24 ways 2009 edition

http://docs.jquery.com/Selectors
http://docs.jquery.com/Selectors

Metadata ‡

A method which allows you to directly modify settings in

certain plugins, which also uses the classes from your

HTML already exists. This is a jQuery plugin called

Metadata. This method allows for finer control over the

plugin settings themselves. Some people, however, may

dislike the syntax and prefer using normal classes, like

above which when sprinkled with a bit more JavaScript

allows you to control what you need to control.

The takeaway

Hopefully you have understood not only what goes in to a

basic jQuery plugin but also learnt a new and powerful

idea which you can apply to other areas of your website.

The idea can also be applied to other common interfaces

such as lightboxes or mapping services such as Google

Maps — for example creating markers based on a list of

places, each with different pin icons based the anchor

class.

Front-End Code Reusability with CSS and JavaScript

24 ways 2009 edition 71

http://plugins.jquery.com/project/metadata

ABOUT THE AUTHOR

Trevor Morris a twenty-something web developer based in the

Midlands, UK. He is fluent in both front- and back-end coding,

and develops usable and accessible front-end interfaces using

web standards.

He very occasionally writes on his personal site at trovster.com

but for more up to date commentary you can follow him on

Twitter. He is also a prominent member of the The Multipack, a

community of multi-talented Web professionals from across

the West Midlands.

72 24 ways 2009 edition

http://www.trovster.com/
http://twitter.com/trovster
http://www.multipack.co.uk

Dan Mall 24ways.org/200907

7. Type-Inspired
Interfaces

One of the things that terrifies me most
about a new project is the starting point.
How is the content laid out? What colors do I
pick? Once things like that are decided, it
becomes significantly easier to continue
design, but it’s the blank page where I spend
the most time.

To that end, I often start by choosing type. I don’t need to

worry about colors or layout or anything else… just the

right typefaces that support the art direction. (This article

won’t focus on how to choose a typeface, but there are

some really great resources if you interested in that sort

of thing.)

And just like that, all your work is done. “Hold it just a

second,” you might say. “All I’ve done is pick type. I still

have to do the rest!”

Type-Inspired Interfaces

24 ways 2009 edition 73

http://24ways.org/200907
http://www.danielmall.com/archives/2008/03/13/the_tyranny_of_a_blank_page.php
http://observatory.designobserver.com/entry.html?entry=5497
https://www.amazon.com/dp/0201703394?tag=danielmall-20
https://www.amazon.com/dp/0881792063?tag=danielmall-20

To which I would reply, “Silly rabbit. You already have!”

You see, picking the right typeface gets you farther than

you might think. Here are a few tips on taking cues from

type to design interfaces and interface elements.

PERFECTING WEB 2.0

If you’re going for that beloved rounded corner look, you

might class it up a bit by choosing the wonderful Omnes

Pro by Joshua Darden. As the typeface already has a

rounded aesthetic, making buttons that fit the style

should be pretty easy.

I’ve found that using multiples helps to keep your

interfaces looking balanced and proportional. Noticing

that the top left edge of the letter “P” has about an 12px

corner radius, let’s choose a 24px radius for our button (a

multiple of 2), so that we get proper rounded corners. By

taking mathematical measurements from the typeface,

our button looks more thought out than just “place

arbitrary text on arbitrarily-sized button.” Pretty easy, eh?

74 24 ways 2009 edition

http://www.dardenstudio.com/typefaces/omnes
http://www.dardenstudio.com/typefaces/omnes
http://www.usabilitypost.com/2009/01/26/the-proper-way-to-draw-rounded-corners/

WHAT’S IN A NAME(PLATE)?

Rounded buttons are pretty popular buttons nowadays,

so let’s try something a bit more stylized.

Have a gander at Brothers, a sturdy face from Emigre. The

chiseled edges give us a perfect cue for a stylized button.

Using the same slope, you can make plated-looking

buttons that fit a different kind of style.

Type-Inspired Interfaces

24 ways 2009 edition 75

http://www.emigre.com/EF.php?fid=83"

HEADLINING

You might even take some cues from the style of the

typeface itself. Didone serifs are known for their lack of

bracketsーthat is, a gradual transition from the stem to

the serif. Instead, they typically connect at a right angle.

Another common characteristic is the high contrast in the

strokes: very thick stems, very thin serifs.

So, when using a high contrast typeface, you can use it to

your advantage to enhance hierarchy. Following our

“multiples” guideline, a 12px measurement from the

stems helps us create a top rule with a height of 24px (a

multiple of 2). We can take the exact 1px measurement

from the serif—a multiple of 1—to create the bottom rule.

Voilà! I use this technique a lot.

76 24 ways 2009 edition

http://en.wikipedia.org/wiki/Didone
http://typedia.com/learn/article/stem/
http://www.danielmall.com/

SWASHBUCKLERS

And don’t forget the importance of visual “speed bumps”

to break up long passages of text. A beautiful face like

Alejandro Paul’s Ministry Script has over a thousand

Type-Inspired Interfaces

24 ways 2009 edition 77

http://www.sudtipos.com/fonts/34

characters that can be manipulated or even combined to

create elegant interface elements. Altering the partial

differential character (∂) creates a delightful ornament

that can help to guide the eye through content.

78 24 ways 2009 edition

STAGGER & SWAGGER

What about layout? How can we use typography to

inform how our content is displayed?

Let’s take a typeface like Assembler. We might use this for

a design that needs to feel uneasy or uncomfortable. In

design terms, that might translate into using irregular

shapes and asymmetry. Using the proportional distances

and degrees from the perpendiculars, we could easily

create a multi-column layout that jives with the general

tone. And for all you skeptics that don’t think a layout like

this is doable on the web, stranger things have happened.

Type-Inspired Interfaces

24 ways 2009 edition 79

http://www.fonthead.com/fonts/Assembler
http://www.shauninman.com/archive/2008/07/30/v8

Background texture generously offered by Bittbox.

OVERALL DESIGN DIRECTION

Finally, your typography could impact the entire look of

the site, from the navigation to the interaction and

everything in between. Check out how the (now-defunct)

Nike Free site’s typography echoes the product itself, and

in turn influences the navigation.

FIND YOUR TYPE

With thousands of fonts to choose from, the possibilities

are ridiculously open. From angles to radii to color to

weight, you’ve got endless fodder before you. Great type

designers spent countless hours slaving over these

80 24 ways 2009 edition

http://www.bittbox.com/freebies/free-high-res-grungy-paper-textures

detailed letterforms; take advantage of it! Don’t feel like

you have to limit yourself to the same old Helvetica and

wet floors… unless your design calls for it.

Happy hunting!

ABOUT THE AUTHOR

Dan Mall is an award-winning interactive art director and

designer. He is an enthralled husband, Senior Designer at Big

Spaceship, former Interactive Director at Happy Cog, technical

editor for A List Apart, co-founder of Typedia, and singer/

keyboard player for contemporary-Christian band Four24. Dan

writes about design and other issues on Twitter and his

industry-recognized site, danielmall.com.

Type-Inspired Interfaces

24 ways 2009 edition 81

http://www.bigspaceship.com/
http://www.bigspaceship.com/
http://www.happycog.com/
http://www.alistapart.com/
http://typedia.com/
http://www.four24.com/
http://twitter.com/danielmall
http://www.danielmall.com/

Relly Annett-Baker 24ways.org/200908

8. The Construction of
Instruction

If the world were made to my specifications,
all your clients would be happy to pay for a
web writer to craft every sentence into
something as elegant as it was functional,
and the client would have planned the
content so that you had it just when you
asked, but we both know that won’t happen
every time. Sometimes you just know they
are going to write the About page, two
company blog pages and a Facebook fan
page before resigning their position as chief
content writer and you are going to end up
filling in all the details that will otherwise
just be Lorem Ipsum.

Welcome to the big world of microcopy:

82 24 ways 2009 edition

http://24ways.org/200908

A man walks into a bar. The bartender nods a
greeting and watches as the man scans the
bottles behind the bar.
“Er, you have a lot of gin here. Is there one you
would recommend?”
“Yes sir.”
Long pause.
“… Never mind, I’ll have the one in the green
bottle.”
“Certainly, sir. But you can’t buy it from this
part of the bar. You need to go through the
double doors there.”
“But they look like they lead into the kitchen.”
“Really, sir? Well, no, that’s where we allow
customers to purchase gin.”
The man walks through the doors. On the other
side he is greeted by the same bartender.
“Y-you!” he stammers but the reticent
bartender is now all but silent.
Unnerved, the man points to a green bottle,
“Er, I’d like to buy a shot of that please. With
ice and tonic water.”
The bartender mixes the drink and puts it on
the bar just out of the reach of the man and
looks up.
“Um, do you take cards?” the man asks, ready
to present his credit card.
The bartender goes to take the card to put it

The Construction of Instruction

24 ways 2009 edition 83

through the machine.
“Wait! How much was it – with sales tax and
everything? Do you take a gratuity?”
The bartender simply shrugs.
The man eyes him for a moment and decides to
try his luck at the bar next door.

In the Choose Your Own Adventure version of this story

there are plenty of ways to stop the man giving up. You

could let him buy the gin right where he was; you could

make the price more obvious; you could signpost the

place to buy gin. The mistakes made by the bar and

bartender are painfully obvious. And yet, there are

websites losing users everyday due to the same lack of

clear instruction.

A smidgen of well written copy goes a long way to

reassure the nervous prospect. Just imagine if our man

walked into the bar and the bartender explained that

although the bar was here, sales were conducted in the

next room because people were not then able to overhear

the man’s card details. Instead, he is left to fend for

himself. Online, we kick customers through the

anonymous double doors with a merry ‘Paypal will handle

your transaction!’.

Recently I worked on a site where the default error

message, to account for anything happening that the

developers hadn’t accounted for, was ‘SOMETHING HAS

84 24 ways 2009 edition

http://en.wikipedia.org/wiki/Choose_Your_Own_Adventure

GONE WRONG!’. It might have been technically accurate

but this is not how to inspire confidence in your

customers that they can make a successful purchase

through you. As everyone knows they can shop just fine,

thank you very much, it is your site they will blame. Card

declined? It’s the site. Didn’t know my email address has

changed? It’s the site. Can’t log in? It’s the site.

Yes, yes. I know. None of these things are related to your

site, or you the developer, but drop outs will be high and

you’ll get imploring emails from your client asking you to

wade knee deep into the site analytics to find a solution

by testing 41 shades of blue because if it worked for

Google…? Before you try a visual fix involving the Dulux

paint chart breeding with a Pantone swatch, take an

objective look at the information you are giving

customers. How much are you assuming they know? How

much are you relying on age-old labels and prompts

without clarification?

Here’s a fun example for non-North Americans: ask your

Granny to write out her billing address. If she looks at you

blankly, tell her it is the address where the bank sends her

statements. Imagine how many fewer instances of the

wrong address there would be if we routinely added that

information when people purchased from the UK?

Instead, we rely on a language convention that hasn’t

The Construction of Instruction

24 ways 2009 edition 85

http://stopdesign.com/archive/2009/03/20/goodbye-google.html

much common usage without explanation because, well,

because we always have since the banks told us how we

could take payments online.

So. Your client is busying themselves with writing the

ultimate Facebook fan page about themselves and here

you are left with creating a cohesive signup process or

basket or purchase instructions. Here are five simple rules

for bending puny humans to your will creating instructive

instructions and constructive error messages that

ultimately mean less hassle for you.

PLAN WHAT YOU WANT TO SAY AND PLAN IT
OUT AS EARLY AS POSSIBLE

This goes for all content. Walk a virtual mile in the shoes

of your users. What specific help can you offer customers

to actively encourage continuation and ensure a minimal

amount of dropouts? Make space for that information.

One of the most common web content mistakes is

jamming too much into a space that has been defined by

physical boundaries rather than planned out. If you

manage it, the best you can hope for is that no-one notices

it was a last-minute job. Mostly it reads like a bad game of

Tetris with content sticking out all over the place.

86 24 ways 2009 edition

USE YOUR WORDS

Microcopy often says a lot in a few words but without

those words you could leave room for doubt. When doubt

creeps in a customer wants reassurance just like Alice:

This time (Alice) found a little bottle… with the
words ‘DRINK ME’ beautifully printed on it in
large letters. It was all very well to say ‘Drink
me,’ but the wise little Alice was not going to
do that in a hurry. ‘No, I’ll look first,’ she said,
‘and see whether it’s marked “poison” or not’

Alice in Wonderland, Lewis Carroll.

Value clarity over brevity. Or a little more prosaically, “If in

doubt, spell it out.” Thanks, Jeremy!

BE PREPARED TO HELP

‘Login failed: email/password combination is
incorrect.’

Oh.

The Construction of Instruction

24 ways 2009 edition 87

http://www.adactio.com

‘Login failed: email/password combination is
incorrect.
Are you typing in all capitals? Caps Lock may be
on.
Have you changed your email address recently
and not updated your account with us? Try your
old email address first.
Can’t remember your password? We can help
you reset it.’

Ah!

BE DIRECT AND BE INFORMATIVE

There is rarely a site that doesn’t suffer from some degree

of jargon. Squash it early by setting a few guidelines about

what language and tone of voice you will use to converse

with your users. Be consistent. Equally, try to be as

specific as possible when giving error messages or

instructions and allay fears upfront.

Card payments are handled by paypal but you do not need

a paypal account to pay.

We will not display your email address but we might need

it to contact you.

Sign up for our free trial (no credit card required).

88 24 ways 2009 edition

http://www.flickr.com/photos/bokardo/3609989877/
http://www.flickr.com/photos/bokardo/3609989877/
http://www.flickr.com/photos/bokardo/4095012921/
http://www.flickr.com/photos/bokardo/4095012921/
http://www.flickr.com/photos/bokardo/4075847433/

COMBINE COPY AND VISUAL CUES, LEARN
FROM OTHERS AND TEST NEW
COMBINATIONS

While visual design and copy can work independently,

they work best together. New phrases and designs are

being tested all the time so take a peek at abtests.com for

more ideas, then test some new ideas and add your own

results. Have a look at the microcopy pool on Flickr for

some wonderful examples of little words and pictures

working together. And yes, you absolutely should join the

group and post more examples.

The Construction of Instruction

24 ways 2009 edition 89

http://www.abtests.com
http://www.flickr.com/groups/microcopy/pool/
http://www.flickr.com/groups/microcopy/pool/

A man walks into a bar. The bartender greets
him in a friendly manner and asks him what he
would like to drink.
“Gin and Tonic, please.”
“Yes sir, we have our house gin on offer but we
also have a particularly good import here too.”
“The import, please.”
“How would you like it? With a slice of lemon?
Over ice?”
“Both”
“That’s £3.80. We accept cash, cards or you
could open a tab.”
“Card please.”
“Certainly sir. Move just over here so that you
can’t be observed. Now, please enter your pin
number.”
“Thank you.”
“And here is your drink. Do let me know if
there is a problem with it. I shall just be here at
the bar. Enjoy.”

Cheers!

90 24 ways 2009 edition

ABOUT THE AUTHOR

Relly Annett-Baker lives in the Home Counties with her

husband, Paul Annett, and their two small sons. As a result, she

thrives on the country air and can be guaranteed to stand on

Lego at least once a day. Her principle employment is as live-in

domestic staff for two cats but when not being purred into

submission she is a content strategist and writer, runs

dedicated workshops in-house with companies big and small

and continues to procrastinate over the draft of her Five Simple

Steps book ‘Content Creation for the Web’ due out in 2012.

She’ll get right back to it just after she’s had another cup of tea

and checked her RSS feed.

The Construction of Instruction

24 ways 2009 edition 91

http://www.poppycopy.co.uk/

Patrick Lauke 24ways.org/200909

9. Don't Lose Your :focus

For many web designers, accessibility
conjures up images of blind users with
screenreaders, and the difficulties in making
sites accessible to this particular audience.
Of course, accessibility covers a wide range
of situations that go beyond the extreme
example of screenreader users. And while
it’s true that making a complex site
accessible can often be a daunting prospect,
there are also many small things that don’t
take anything more than a bit of judicious
planning, are very easy to test (without
having to buy expensive assistive
technology), and can make all the difference
to certain user groups.

In this short article we’ll focus on keyboard accessibility

and how careless use of CSS can potentially make your

sites completely unusable.

92 24 ways 2009 edition

http://24ways.org/200909

KEYBOARD ACCESS

Users who for whatever reason can’t use a mouse will

employ a keyboard (or keyboard-like custom interface) to

navigate around web pages. By default, they will use TAB

and SHIFT + TAB to move from one focusable element

(links, form controls and area) of a page to the next.

Note: in OS X, you’ll first need to turn on full keyboard

access under System Preferences > Keyboard and Mouse >

Keyboard Shortcuts. Safari under Windows needs to have

the option Press Tab to highlight each item on a webpage in

Preferences > Advanced enabled. Opera is the odd one out,

as it has a variety of keyboard navigation options – the

most relevant here being spatial navigation via

Shift+Down , Shift+Up , Shift+Left , and Shift+Right).

BUT I DON’T LIKE YOUR DOTTED LINES…

To show users where they are within a page, browsers

place an outline around the element that currently has

focus. The “problem” with these default outlines is that

some browsers (Internet Explorer and Firefox) also

display them when a user clicks on a focusable element

with the mouse. Particularly on sites that make extensive

use of image replacement on links with “off left”

techniques this can create very unsightly outlines that

stretch from the replaced element all the way to the left

edge of the browser.

Don't Lose Your :focus

24 ways 2009 edition 93

http://www.opera.com/browser/tutorials/nomouse/

Outline bleeding off to the left (image-replacement example
from carsonified.com)

There is a trivial workaround to prevent outlines from

“spilling over” by adding a simple overflow:hidden, which

keeps the outline in check around the clickable portion of

the image-replaced element itself.

Outline tamed with overflow:hidden

But for many designers, even this is not enough. As a final

solution, many actively suppress outlines altogether in

their stylesheets. Controversially, even Eric Meyer’s

popular reset.css – an otherwise excellent set of styles that

levels the playing field of varying browser defaults –

suppresses outlines.

94 24 ways 2009 edition

http://carsonified.com
http://meyerweb.com/eric/thoughts/2007/05/01/reset-reloaded/
http://meyerweb.com/eric/thoughts/2007/05/01/reset-reloaded/

html, body, div, span, applet, object, iframe ... {

...

outline: 0;

...

}

/* remember to define focus styles! */

:focus {

outline: 0;

}

Yes, in his explanation (and in the CSS itself) Eric does

remind designers to define relevant styles for :focus…

but judging by the number of sites that seem to ignore this

(and often remove the related comment from the

stylesheet altogether), the message doesn’t seem to have

sunk in.

Anyway… hurrah! No more unsightly dotted lines on our

lovely design. But what about keyboard users? Although

technically they can still TAB from one element to the

next, they now get no default cue as to where they are

within the page (one notable exception here is Opera,

where the outline is displayed regardless of stylesheets)…

and if they’re Safari users, they won’t even get an

indication of a link’s target in the status bar, like they

would if they hovered over it with the mouse.

Don't Lose Your :focus

24 ways 2009 edition 95

ONLY SUPPRESS OUTLINEOUTLINE FOR MOUSE USERS

Is there a way to allow users navigating with the keyboard

to retain the standard outline behaviour they’ve come to

expect from their browser, while also ensuring that it

doesn’t show display for mouse users?

Testing some convoluted style combinations

After playing with various approaches (see Better CSS

outline suppression for more details), the most elegant

solution also seemed to be the simplest: don’t remove the

outline on :focus, do it on :active instead – after all,

:active is the dynamic pseudo-class that deals explicitly

with the styles that should be applied when a focusable

element is clicked or otherwise activated.

a:active { outline: none; }

96 24 ways 2009 edition

http://patrickhlauke.github.io/web-standards/keyboard/test.html
http://patrickhlauke.github.io/web-standards/keyboard/test.html

The only minor issues with this method: if a user activates

a link and then uses the browser’s back button, the outline

becomes visible. Oh, and old versions of Internet Explorer

notoriously get confused by the exact meaning of :focus,

:hover and :active, so this method fails in IE6 and below.

Personally, I can live with both of these.

Note: at the last minute before submitting this article, I

discovered a fatal flaw in my test. It appears that outline

still manages to appear in the time between activating a

link and the link target loading (which in hindsight is

logical – after activation, the link does indeed receive

focus). As my test page only used in-page links, this issue

never came up before. The slightly less elegant solution is

to also suppress the outline on :hover.

a:hover, a:active { outline: none; }

IN CONCLUSION

Of course, many web designers may argue that they know

what’s best, even for their keyboard-using audience.

Maybe they’ve removed the default outline and are

instead providing some carefully designed :focus styles.

If they know for sure that these custom styles are indeed

a reliable alternative for their users, more power to

them… but, at the risk of sounding like Jakob “blue

underlined links” Nielsen, I’d still argue that sometimes

the default browser behaviours are best left alone.

Don't Lose Your :focus

24 ways 2009 edition 97

Complemented, yes (and if you’re already defining some

fancy styles for :hover, by all means feel free to also make

them display on :focus)… but not suppressed.

ABOUT THE AUTHOR

Patrick H. Lauke works as Web Evangelist in the Developer

Relations team at Opera Software. He has been engaged in the

discourse on standards and accessibility since early 2001 –

regularly speaking at conferences and contributing to a variety

of web development and accessibility related mailing lists and

98 24 ways 2009 edition

http://www.webkrauts.de/2009/12/11/verliere-nicht-den-focus/
http://my.opera.com/ODIN/
http://my.opera.com/ODIN/
http://www.opera.com

initiatives such as the Web Standards Project and the

Webkrauts. For more of his ruminations and weird experiments

you can visit Patrick’s personal site.

Don't Lose Your :focus

24 ways 2009 edition 99

http://www.webstandards.org
http://www.webkrauts.de
http://www.splintered.co.uk/

Mike Kus 24ways.org/200910

10. A New Year's
Resolution

The end of 2009 is fast approaching. Yet
another year has passed in a split second.
Our Web Designing careers are one year
older and it’s time to reflect on the highs
and lows of 2009. What was your greatest
achievement and what could you have done
better? Perhaps, even more importantly,
what are your goals for 2010?

Something that I noticed in 2009 is that being a web

designer 24/7; it’s easy to get consumed by the web. It’s

easy to get caught up in the blog posts, CSS galleries, web

trends and Twitter! Living in this bubble can lead to one’s

work becoming stale, boring and basically like everyone

else’s work on the web. No designer wants this.

So, I say on 1st January 2010 let’s make it our New Year’s

resolution to create something different, something

special or even ground-breaking! Make it your goal to

break the mold of current web design trends and light the

way for your fellow web designer comrades!

100 24 ways 2009 edition

http://24ways.org/200910

Of course I wouldn’t let you embark on the New Year

empty handed. To help you on your way I’ve compiled a

few thoughts and ideas to get your brains ticking!

DON’T DESIGN FOR THE WEB, JUST DESIGN

A key factor in creating something original and fresh for

the web is to stop thinking in terms of web design. The

first thing we need to do is forget the notion of headers,

footers, side bars etc. A website doesn’t necessarily need

any of these, so even before we’ve started we’ve already

limited our design possibilities by thinking in these very

conventional and generally accepted web terms. The

browser window is a 2D canvas like any other and we can

do with it what we like.

With this in mind we can approach web design from a

fresh perspective. We can take inspiration for web design

from editorial design, packaging design, comics, poster

design, album artwork, motion design, street signage and

anything else you can think of. Web design is way more

than the just the web and by taking this more wide angled

view of what web design is and can be you’ll find there are

a thousand more exiting design possibilities.

Note: Try leaving the wire framing till after you’ve gone to

town with some initial design concepts. You might find it

helps keep your head out of that ‘web space’ a little bit

longer, thus enabling you to think more freely about your

A New Year's Resolution

24 ways 2009 edition 101

design. Really go crazy with these as you can always pull it

back into line later. The key is to think big initially and

then work backwards. There’s no point restricting your

creativity early on because your technical knowledge can

foresee problems down the line. You can always sort

these problems out later on… let your creative juices flow!

Inspiration can come from anywhere! (Photo: modomatic)

TRY SOMETHING NEW!

Progress in web design or in any design discipline is a sort

of evolution. Design trends and solutions merge and

mutate to create new design trends and hopefully better

solutions. This is fine but the real leaps are made when

someone has the guts to do something different.

102 24 ways 2009 edition

http://www.flickr.com/photos/modomatic/3073295627/in/set-72157607082761840

Don’t be afraid to challenge the status quo. To create truly

original work you have to be prepared to get it wrong and

that’s hard to do. When you’re faced with this challenge

just remind yourself that in web design there is rarely a

‘best way to do something’, or why would we ever do it any

other way?

If you do this and get it right the pay off can be immense.

Not only will you work stand out from the crowd by a

mile, you will have become a trend setter as opposed to a

trend follower.

TELL A STORY WITH YOUR DESIGN

Great web design is way more than just the aesthetics,

functionality or usability. Great web design goes beyond

the pixels on the screen. For your website to make a real

impact on it’s users it has to connect with them

emotionally. So, whether your website is promoting your

own company or selling cheese it needs to move people.

You need to weave a story into your design. It’s this story

that your users will connect with.

To do this the main ingredients of your design need to be

strongly connected. In my head those main ingredients

are Copy, Graphic Design, Typography, imagery and

colour.

A New Year's Resolution

24 ways 2009 edition 103

Copy

Strong meaningful copy is the backbone to most great

web design work. Pay special attention to strap lines and

headlines as these are often the sparks that start the fire.

All the other elements can be inspired by this backbone of

strong copy.

Graphic Design

Use the copy to influence how you treat the page with

your graphic design. Let the design echo the words.

Typography

What really excites me about typography isn’t the general

text presentation on a page, most half decent web

designer have a grasp of this already. What excites me is

the potential there is to base a whole design on words and

letters. Using the strong copy you already have, one has

the opportunity the customise, distort, build and arrange

words and letters to create beautiful and powerful

compositions that can be the basis for an entire site

design.

104 24 ways 2009 edition

Get creative with Typography (Photo: Pam Sattler)

Imagery and Colour

With clever use of imagery (photographs or illustrations)

and colour you further have the chance to deepen the

story you are weaving into your design. The key is to use

meaningful imagery, don’t to insert generic imagery for

the sake of filling space… it’s just a wasted opportunity.

Remember, the main elements of your design combined

are greater than the sum of their parts. Whatever design

decisions you make on a page, make them for a good

reason. It’s not good enough to try and seduce your users

with slick and shiny web pages. For your site to leave a

lasting impression on the user you need to make that

emotional connection.

A New Year's Resolution

24 ways 2009 edition 105

http://www.graphic-exchange.com/images/10other/Vegasbypamsattler/Vegasbypamsattler11.jpg

Telling the Story (Advertising Agency: Tita, Milano, Italy, Art
Director: Emanuele Basso)

106 24 ways 2009 edition

http://adsoftheworld.com/media/print/feltrinelli_editore_richard_overy_war?size=_original
http://adsoftheworld.com/media/print/feltrinelli_editore_richard_overy_war?size=_original

GO ONE STEP FURTHER

So you’ve almost finished your latest website design.

You’ve fulfilled the brief, you’re happy with the result and

you’re pretty sure your client will be too. It’s at this point

we should ask ourselves “Can I push this further”? What

touches could you add to the site that’ll take it beyond

what was required and into something exceptional? The

truth is, to produce exceptional work we need to do more

than is required of us. We need to answer the brief and

then some!

Go back through your site and make a note of what

enhancements could be made to make the site not just

good but outstanding. It might be revisiting a couple of

pages that were neglected in the design process, it might

be adding some CSS 3 gloss for the users that can benefit

from it or it might just be adding some clever little easter

eggs to show that you care. These touches will soon add

up and make a massive difference to the finished product.

So, go one step further… take it further than you anyone

else will. Then your work will stand out for sure.

PARTING MESSAGE

I love being a designer for many of reasons but the main

one being that with every new project we embark on we

have the chance to express ourselves. We have the

chance to create something special, something that

A New Year's Resolution

24 ways 2009 edition 107

people will talk about. It’s this chance that drives us

onwards day after day, year after year. So in 2010 shout

louder than you ever have before, take chances, try

something new and above all design your socks off!

ABOUT THE AUTHOR

Mike Kus is a web/graphic designer & illustrator. He’s based in

UK and works for clients worldwide. You can see his work at

mikekus.com.

108 24 ways 2009 edition

http://www.mikekus.com

Jeremy Keith 24ways.org/200911

11. Incite A Riot

Given its relatively limited scope, HTML can
be remarkably expressive. With a bit of
lateral thinking, we can mark up content
such as tag clouds and progress meters,
even when we don’t have explicit HTML
elements for those patterns.

Suppose we want to mark up a short conversation:

Alice: “I think Eve is watching.”
Bob: “This isn’t a cryptography tutorial …we’re
in the wrong example!”

A note in the the HTML 4.01 spec says it’s okay to use a

definition list:

Another application of DL, for example, is for
marking up dialogues, with each DT naming a
speaker, and each DD containing his or her
words.

That would give us:

Incite A Riot

24 ways 2009 edition 109

http://24ways.org/200911
http://24ways.org/2006/marking-up-a-tag-cloud
http://24ways.org/2008/checking-out-progress-meters
http://www.w3.org/TR/html4/struct/lists.html#h-10.3

<dl>

<dt>Alice</dt>: <dd>I think Eve is watching.</dd>

<dt>Bob</dt>: <dd>This isn't a cryptography tutorial

...we're in the wrong example!</dd>

</dl>

This usage of a definition list is proof that writing W3C

specifications and smoking crack are not mutually

exclusive activities. “I think Eve is watching” is not a

definition of “Alice.” If you (ab)use a definition list in this

way, Norm will hunt you down.

The conversation problem was revisited in HTML5. What

if dt and dd didn’t always mean “definition title” and

“definition description”? A new element was forged:

dialog. Now the the “d” in dt and dd doesn’t stand for

“definition”, it stands for “dialog” (or “dialogue” if you can

spell):

<dialog>

<dt>Alice</dt>: <dd>I think Eve is watching.</dd>

<dt>Bob</dt>: <dd>This isn't a cryptography tutorial

...we're in the wrong example!</dd>

</dialog>

Problem solved …except that dialog is no longer in the

HTML5 spec. Hixie further expanded the meaning of dt

and dd so that they could be used inside details (which

makes sense—it starts with a “d”) and figure (…um). At

110 24 ways 2009 edition

http://24ways.org/2007/my-other-christmas-present-is-a-definition-list

the same time as the content model of details and

figure were being updated, the completely-unrelated

dialog element was dropped.

Back to the drawing board, or in this case, the HTML 4.01

specification. The spec defines the cite element thusly:

Contains a citation or a reference to other
sources.

Perfect! There’s even an example showing how this can

applied when attributing quotes to people:

As <CITE>Harry S. Truman</CITE> said,

<Q lang="en-us">The buck stops here.</Q>

For longer quotes, the blockquote element might be more

appropriate. In a conversation, where the order matters, I

think an ordered list would make a good containing

element for this pattern:

<cite>Alice</cite>: <q>I think Eve is

watching.</q>

<cite>Bob</cite>: <q>This isn't a cryptography

tutorial ...we're in the wrong example!</q>

Problem solved …except that the cite element has been

redefined in the HTML5 spec:

Incite A Riot

24 ways 2009 edition 111

http://www.w3.org/TR/html4/struct/text.html#edef-CITE
http://www.w3.org/TR/html4/struct/text.html#edef-CITE
http://www.whatwg.org/specs/web-apps/current-work/multipage/text-level-semantics.html#the-cite-element

The cite element represents the title of a work
… A person’s name is not the title of a work …
and the element must therefore not be used to
mark up people’s names.

HTML5 is supposed to be backwards compatible with

previous versions of HTML, yet here we have a semantic

pattern already defined in HTML 4.01 that is now non-

conforming in HTML5. The entire justification for the

change boils down to this line of reasoning:

1. Given that: titles of works are often italicised and

2. given that: people’s names are not often italicised and

3. given that: most browsers italicise the contents of the

cite element,

4. therefore: the cite element should not be used to

mark up people’s names.

In other words, the default browser styling is now

dictating semantic meaning. The tail is wagging the dog.

Not to worry, the HTML5 spec tells us how we can mark

up names in conversations without using the cite element:

In some cases, the b element might be
appropriate for names

I believe the colloquial response to this is a combination of

the letters W, T and F, followed by a question mark.

The non-normative note continues:

112 24 ways 2009 edition

In other cases, if an element is really needed,
the span element can be used.

This is not a joke. We are seriously being told to use

semantically meaningless elements to mark up content

that is semantically meaningful.

We don’t have to take it.

Firstly, any conformance checker—that’s the new

politically correct term for “validator”—cannot possibly

check every instance of the cite element to see if it’s

really the title of a work and not the name of a person. So

we can disobey the specification without fear of

invalidating our documents.

Secondly, Hixie has repeatedly stated that browser

makers have a powerful voice in deciding what goes into

the HTML5 spec; if a browser maker refuses to implement

a feature, then that feature should come out of the spec

because otherwise, the spec is fiction. Well, one of the

design principles of HTML5 is the Priority of

Constituencies:

In case of conflict, consider users over authors
over implementors over specifiers over
theoretical purity.

That places us—authors—above browser makers. If we

resolutely refuse to implement part of the HTML5 spec,

then the spec becomes fiction.

Incite A Riot

24 ways 2009 edition 113

http://www.w3.org/TR/html-design-principles/#priority-of-constituencies
http://www.w3.org/TR/html-design-principles/#priority-of-constituencies

Join me in a campaign of civil disobedience against the

unnecessarily restrictive, backwards-incompatible

change to the cite element. Start using HTML5 but start

using it sensibly. Let’s ensure that bad advice remains

fictitious.

Tantek has set up a page on the WHATWG wiki to

document usage of the cite element for conversations.

Please contribute to it.

ABOUT THE AUTHOR

Jeremy Keith is an Irish web developer living in Brighton,

England where he works with the web consultancy firm

Clearleft. He wrote the books, DOM Scripting, Bulletproof Ajax,

and most recently HTML5 For Web Designers.

114 24 ways 2009 edition

http://wiki.whatwg.org/wiki/Cite_element
http://adactio.com/
http://clearleft.com/
http://domscripting.com/
http://bulletproofajax.com/
http://html5forwebdesigners.com/

His latest project is Huffduffer, a service for creating podcasts

of found sounds. When he’s not making websites, Jeremy plays

bouzouki in the band Salter Cane. His loony bun is fine benny

lava.

Incite A Riot

24 ways 2009 edition 115

http://huffduffer.com/
http://saltercane.com/

Ross Bruniges 24ways.org/200912

12. Self-Testing Pages
with JavaScript

Working at an agency I am involved more
and more on projects in which client side
code is developed internally then sent out to
a separate team for implementation. You
provide static HTML, CSS and JavaScript
which then get placed into the CMS and
brought to life as an actual website. As you
can imagine this can sometimes lead to
frustrations. However many safeguards you
include, handing over your code to someone
else is always a difficult thing to do
effectively.

In this article I will show you how you can create a

JavaScript implementation checker and that will give you

more time for drink based activity as your web site and

apps are launched quicker and with less unwanted drama!

116 24 ways 2009 edition

http://24ways.org/200912

AN ALL TOO FREQUENT OCCURRENCE

You’ve been working on a project for weeks, fixed all your

bugs and send it to be implemented. You hear nothing and

assume all is going well then a few days before it’s meant

to launch you get an email from the implementation team

informing you of bugs in your code that you need to

urgently fix.

The 24ways website with a misspelt ID for the years menu

Being paranoid you trawl through the preview URL, check

they have the latest files, check your code for errors then

notice that a required HTML attribute has been omitted

from the build and therefore CSS or JavaScript you’ve

hooked onto that particular attribute isn’t being applied

and that’s what is causing the “bug”.

Self-Testing Pages with JavaScript

24 ways 2009 edition 117

It takes you seconds drafting an email informing them of

this, it takes then seconds putting the required attribute

in and low and behold the bug is fixed, everyone is happy

but you’ve lost a good few hours of your life – this time

could have been better spent in the pub.

I’m going to show you a way that these kind of errors can

be alerted immediately during implementation of your

code and ensure that when you are contacted you know

that there actually is a bug to fix. You probably already

know the things that could be omitted from a build and

look like bugs so you’ll soon be creating tests to look for

these and alert when they are not found on the rendered

page. The error is reported directly to those who need to

know about it and fix it. Less errant bug reports and less

frantic emails ahoy!

118 24 ways 2009 edition

A page with an implementation issue and instant feedback on
the problem

JAVASCRIPT SELECTOR ENGINES TO THE
RESCUE

Whether you’re using a library or indeed tapping into the

loveliness of the new JavaScript Selector APIs looking for

particular HTML elements in JavaScript is fairly trivial

now.

For instance this is how you look for a div element with

the id attribute of year (the missing attribute from top

image) using jQuery (the library I’ll be coding my examples

in):

if ($(‘div#year’).length) {

alert(‘win’);

}

Using this logic you can probably imagine how you can

write up a quick method to check for the existence of a

particular element and alert when it’s not present — but

assuming you have a complex page you’re going to be

repeating yourself a fair bit and we don’t want to be doing

that.

Self-Testing Pages with JavaScript

24 ways 2009 edition 119

http://dev.w3.org/2006/webapi/selectors-api/

TEST SCRIPTS

If you’ve got a lot of complex HTML patterns that need

testing across a number of different pages it makes sense

to keep your tests out of production code. Chances are

you’ve already got a load of heavy JavaScript assets, and

when it comes to file size saving every little helps.

I don’t think that tests should contain code inside of them

so keep mine externally as JSON. This also means that you

can use the one set of tests in multiple places. We already

know that it’s a good idea to keep our CSS and JavaScript

separate so lets continue along those lines here.

The test script for this example looks like this:

{

"title": "JS tabs implementation test",

"description": "Check that the correct HTML patterns

has been used",

"author": "Ross Bruniges",

"created": "20th July 2009",

"tests": [

{

"name": "JS tabs elements",

"description": "Checking that correct HTML

elements including class/IDs are used on the page for

the JS to progressively enhance",

"selector": "div.tabbed_content",

"message": "We couldn't find VAR on the page -

it's required for our JavaScript to function correctly",

"check_for": {

"contains": {

120 24 ways 2009 edition

"elements": [

"div.tab_content", "h2"

],

"message": "We've noticed some missing

HTML:</p>VAR<p>please refer to the

examples sent for reference"

}

}

}

]

}

The first four lines are just a little bit of meta data so we

remember what this test was all about when we look at it

again in the future, or indeed if it ever breaks. The tests

are the really cool parts and firstly you’ll notice that it’s an

array – we’re only going to show one example test here

but there is no reason why you can’t place in as many as

you want. I’ll explain what each of the lines in the example

test means:

▪ name – short test name, I use this in pass/fail messaging

later

▪ description – meta data for future reference

▪ selector – the root HTML element from which your

HTML will be searched

▪ message – what the app will alert if the initial selector

isn’t found

▪ check_for – a wrapper to hold inner tests – those run if

the initial selector does match

Self-Testing Pages with JavaScript

24 ways 2009 edition 121

◦ contains – the type of check, we’re checking that the

selector contains specified elements

◦ elements – the HTML elements we are searching for

◦ message – a message for when these don’t match (VAR is

substituted when it’s appended to the page with the name

of any elements that don’t exist)

It’s very important to pass the function valid JSON

(JSONLint is a great tool for this) otherwise you might get

a console showing no tests have even been run.

THE JAVASCRIPT THAT MAKES THIS HELPFUL

Again, this code should never hit a production server so

I’ve kept it external. This also means that the only thing

that’s needed to be done by the implementation team

when they are ready to build is that they delete this code.

<script src="sleuth.js" type="text/javascript"></script>

<script type="text/javascript">

$(document).ready(function() {

sleuth.test_page.init(‘js_tabs_test.js');

});

</script>

“View the full JavaScript:/examples/self-testing-pages-

with-javascript/js/tests/test_suite.js

The init function appends the test console to the page

and inserts the CSS file required to style it (you don’t need

to use pictures of me when tests pass and fail though I see

122 24 ways 2009 edition

http://www.jsonlint.com/

no reason why you shouldn’t), goes and grabs the JSON

file referenced and parses it. The methods to pass

(tests_pass) and fail (haz_fail) the test I hope are pretty

self-explanatory as is the one which creates the test

summary once everything has been run (create_summary).

The two interesting functions are init_tests and

confirm_html.

INIT_TESTS

init_tests:function(i,obj) {

var $master_elm = $(obj.selector);

sleuth.test_page.$logger.append("<div id='test_" + i +

"' class='message'><p>" + obj.name +

"</p></div>");

var $container = $('#test_' + i);

if (!$master_elm.length) {

var err_sum = obj.message.replace(/VAR/gi,

obj.selector);

sleuth.test_page.haz_failed(err_sum, $container);

return;

}

if (obj.check_for) {

$.each(obj.check_for,function(key, value){

sleuth.test_page.assign_checks($master_elm,

$container, key, value);

});

} else {

sleuth.test_page.tests_passed($container);

Self-Testing Pages with JavaScript

24 ways 2009 edition 123

return;

}

}

The function gets sent the number of the current iteration

(used to create a unique id for its test summary) and the

current object that contains the data we’re testing against

as parameters.

We grab a reference to the root element and this is used

(pretty much in the example shown right at the start of

this article) and its length is checked. If the length is

positive we know we can continue to the inner tests (if

they exist) but if not we fail the test and don’t go any

further. We append the error to the test console for

everyone to see.

If we pass the initial check we send the reference to the

root element, message contains and the inner object to a

function that in this example sends us on to confirm_html

(if we had a more complex test suite it would do a lot

more).

CONFIRM_HTML

confirm_html:function(target_selector, error_elm, obj) {

var missing_elms = [];

$.each(obj.elements, function(i, val) {

if (!target_selector.find(val).length) {

missing_elms.push(val);

}

124 24 ways 2009 edition

});

if (missing_elms.length) {

var file_list = missing_elms.join('');

var err_sum = obj.message.replace(/VAR/gi,

file_list);

sleuth.test_page.haz_failed(err_sum, error_elm);

return;

}

sleuth.test_page.tests_passed(error_elm);

return;

}

We’re again using an array to check for a passed or failed

test and checking its length but this time we push in a

reference to each missing element we find.

If the test does fail we’re providing even more useful

feedback by informing what elements have been missed

out. All the implementation team need do is look for them

in the files we’ve sent and include them as expected.

No more silly implementation bugs!

Here is an example of a successful implementation.

Here are some examples of failed implementations – one

which fails at finding the root node and one that has the

correct root node but none of the inner HTML tests pass.

IS THIS ALL WE CAN CHECK FOR?

Certainly not!

Self-Testing Pages with JavaScript

24 ways 2009 edition 125

http://24ways.org/examples/self-testing-pages-with-javascript/tests_pass.html
http://24ways.org/examples/self-testing-pages-with-javascript/tests_fail.html
http://24ways.org/examples/self-testing-pages-with-javascript/tests_fail_again.html
http://24ways.org/examples/self-testing-pages-with-javascript/tests_fail_again.html

JavaScript provides pretty easy ways to check for

attributes, included files (if the files being checked for are

being referenced correctly and not 404ing) and even

applied CSS.

Want to check that those ARIA attributes are being

implemented correctly or that all images contain an alt

attribute well this simple test suite can be extended to

include tests for this – the sky is pretty much up to your

imagination.

ABOUT THE AUTHOR

126 24 ways 2009 edition

Ross Bruniges is a client-side engineer currently working at LBi,

a large creative agency on Brick Lane in London. A long-serving

Pub Standards regular, Ross likes beer, fine dining, taking

pictures of fine dining, making videos, rap music and twittering

the word beer (normally alongside other words too).

He has a blog in much need of a designers touch. Depending on

how well his article on 24ways goes he plans to blog more in the

future…

Self-Testing Pages with JavaScript

24 ways 2009 edition 127

http://www.lbi.co.uk
http://www.pubstandards.co.uk
http://www.flickr.com/photos/thecssdiv/
http://www.flickr.com/photos/thecssdiv/
http://www.youtube.com/user/theCSSdiv
http://twitter.com/rossbruniges/
http://www.thecssdiv.co.uk

David Greiner 24ways.org/200913

13. Rock Solid HTML
Emails

At some stage in your career, it’s likely
you’ll be asked by a client to design a HTML
email. Before you rush to explain that all the
cool kids are using social media, keep in
mind that when done correctly, email is still
one of the best ways to promote you and
your clients online. In fact, a recent survey
showed that every dollar spent on email
marketing this year generated more than
$40 in return. That’s more than any other
marketing channel, including the cool ones.

There are a whole host of ingredients that contribute to a

good email marketing campaign. Permission, relevance,

timeliness and engaging content are all important. Even

so, the biggest challenge for designers still remains

building an email that renders well across all the popular

email clients.

128 24 ways 2009 edition

http://24ways.org/200913
http://directmag.com/magilla/1020-e-mail-roi-still-slipping/

SAME SAME, BUT DIFFERENT

Before getting into the details, there are some

uncomfortable facts that those new to HTML email

should be aware of. Building an email is not like building

for the web. While web browsers continue their onward

march towards standards, many email clients have

stubbornly stayed put. Some have even gone backwards.

In 2007, Microsoft switched the Outlook rendering

engine from Internet Explorer to Word. Yes, as in the word

processor. Add to this the quirks of the major web-based

email clients like Gmail and Hotmail, sprinkle in a little

Lotus Notes and you’ll soon realize how different the

email game is.

While it’s not without its challenges, rest assured it can be

done. In my experience the key is to focus on three things.

First, you should keep it simple. The more complex your

email design, the more likely is it to choke on one of the

popular clients with poor standards support. Second, you

need to take your coding skills back a good decade. That

often means nesting tables, bringing CSS inline and

following the coding guidelines I’ll outline below. Finally,

you need to test your designs regularly. Just because a

template looks nice in Hotmail now, doesn’t mean it will

next week.

Rock Solid HTML Emails

24 ways 2009 edition 129

SETTING YOUR LOWEST COMMON
DENOMINATOR

To maintain your sanity, it’s a good idea to decide exactly

which email clients you plan on supporting when building

a HTML email. While general research is helpful, the email

clients your subscribers are using can vary significantly

from list to list. If you have the time there are a number of

tools that can tell you specifically which email clients your

subscribers are using. Trust me, if the testing shows

almost none of them are using a client like Lotus Notes,

save yourself some frustration and ignore it altogether.

Knowing which email clients you’re targeting not only

makes the building process easier, it can save you lots of

time in the testing phase too. For the purpose of this

article, I’ll be sharing techniques that give the best results

across all of the popular clients, including the notorious

ones like Gmail, Lotus Notes 6 and Outlook 2007. Just

remember that pixel perfection in all email clients is a pipe

dream.

Let’s get started.

USE TABLES FOR LAYOUT

Because clients like Gmail and Outlook 2007 have poor

support for float, margin and padding, you’ll need to use

tables as the framework of your email. While nested

tables are widely supported, consistent treatment of

130 24 ways 2009 edition

http://www.campaignmonitor.com/stats/email-clients/
http://www.campaignmonitor.com/email-clients/
http://fingerprintapp.com/

width, margin and padding within table cells is not. For the

best results, keep the following in mind when coding your

table structure.

Set the width in each cell, not the table

When you combine table widths, td widths, td padding

and CSS padding into an email, the final result is different

in almost every email client. The most reliable way to set

the width of your table is to set a width for each cell, not

for the table itself.

<table cellspacing="0" cellpadding="10" border="0">

<tr>

<td width="80"></td>

<td width="280"></td>

</tr>

</table>

Never assume that if you don’t specify a cell width the

email client will figure it out. It won’t. Also avoid using

percentage based widths. Clients like Outlook 2007 don’t

respect them, especially for nested tables. Stick to pixels.

If you want to add padding to each cell, use either the

cellpadding attribute of the table or CSS padding for

each cell, but never combine the two.

Rock Solid HTML Emails

24 ways 2009 edition 131

Err toward nesting

Table nesting is far more reliable than setting left and

right margins or padding for table cells. If you can achieve

the same effect by table nesting, that will always give you

the best result across the buggier email clients.

Use a container table for body background colors

Many email clients ignore background colors specified in

your CSS or the <body> tag. To work around this, wrap

your entire email with a 100% width table and give that a

background color.

<table cellspacing="0" cellpadding="0" border="0"

width="100%">

<tr>

<td bgcolor=”#000000”>

Your email code goes here.

</td>

</tr>

</table>

You can use the same approach for background images

too. Just remember that some email clients don’t support

them, so always provide a fallback color.

132 24 ways 2009 edition

Avoid unnecessary whitespace in table cells

Where possible, avoid whitespace between your <td>

tags. Some email clients (ahem, Yahoo! and Hotmail) can

add additional padding above or below the cell contents in

some scenarios, breaking your design for no apparent

reason.

CSS AND GENERAL FONT FORMATTING

While some email designers do their best to avoid CSS

altogether and rely on the dreaded tag, the truth is

many CSS properties are well supported by most email

clients. See this comprehensive list of CSS support across

the major clients for a good idea of the safe properties

and those that should be avoided.

Always move your CSS inline

Gmail is the culprit for this one. By stripping the CSS from

the <head> and <body> of any email, we’re left with no

choice but to move all CSS inline. The good news is this is

something you can almost completely automate. Free

services like Premailer will move all CSS inline with the

click of a button. I recommend leaving this step to the end

of your build process so you can utilize all the benefits of

CSS.

Rock Solid HTML Emails

24 ways 2009 edition 133

http://www.campaignmonitor.com/css/
http://premailer.dialect.ca/

Avoid shorthand for fonts and hex notation

A number of email clients reject CSS shorthand for the

font property. For example, never set your font styles like

this.

p {

font:bold 1em/1.2em georgia,times,serif;

}

Instead, declare the properties individually like this.

p {

font-weight: bold;

font-size: 1em;

line-height: 1.2em;

font-family: georgia,times,serif;

}

While we’re on the topic of fonts, I recently tested every

conceivable variation of @font-face across the major

email clients. The results were dismal, so unfortunately

it’s web-safe fonts in email for the foreseeable future.

When declaring the color property in your CSS, some

email clients don’t support shorthand hexadecimal colors

like color:#f60; instead of color:#ff6600;. Stick to the

longhand approach for the best results.

134 24 ways 2009 edition

Paragraphs

Just like table cell spacing, paragraph spacing can be

tricky to get a consistent result across the board. I’ve seen

many designers revert to using double
 or DIVs

with inline CSS margins to work around these shortfalls,

but recent testing showed that paragraph support is now

reliable enough to use in most cases (there was a time

when Yahoo! didn’t support the paragraph tag at all).

The best approach is to set the margin inline via CSS for

every paragraph in your email, like so:

p {

margin: 0 0 1.6em 0;

}

Again, do this via CSS in the head when building your

email, then use Premailer to bring it inline for each

paragraph later.

If part of your design is height-sensitive and calls for pixel

perfection, I recommend avoiding paragraphs altogether

and setting the text formatting inline in the table cell. You

might need to use table nesting or cellpadding / CSS to

get the desired result. Here’s an example:

<td width="200" style="font-weight:bold; font-size:1em;

line-height:1.2em;

font-family:georgia,'times',serif;">your height

sensitive text</td>

Rock Solid HTML Emails

24 ways 2009 edition 135

http://premailer.dialect.ca/

Links

Some email clients will overwrite your link colors with

their defaults, and you can avoid this by taking two steps.

First, set a default color for each link inline like so:

<a href="http://somesite.com/"

style="color:#ff00ff">this is a link

Next, add a redundant span inside the a tag.

<a href="http://somesite.com/"

style="color:#ff00ff">this

is a link

To some this may be overkill, but if link color is important

to your design then a superfluous span is the best way to

achieve consistency.

IMAGES IN HTML EMAILS

The most important thing to remember about images in

email is that they won’t be visible by default for many

subscribers. If you start your design with that assumption,

it forces you to keep things simple and ensure no

important content is suppressed by image blocking.

With this in mind, here are the essentials to remember

when using images in HTML email:

136 24 ways 2009 edition

Avoid spacer images

While the combination of spacer images and nested

tables was popular on the web ten years ago, image

blocking in many email clients has ruled it out as a reliable

technique today. Most clients replace images with an

empty placeholder in the same dimensions, others strip

the image altogether. Given image blocking is on by

default in most email clients, this can lead to a poor first

impression for many of your subscribers. Stick to fixed cell

widths to keep your formatting in place with or without

images.

Always include the dimensions of your image

If you forget to set the dimensions for each image, a

number of clients will invent their own sizes when images

are blocked and break your layout. Also, ensure that any

images are correctly sized before adding them to your

email. Some email clients will ignore the dimensions

specified in code and rely on the true dimensions of your

image.

Avoid PNGs

Lotus Notes 6 and 7 don’t support 8-bit or 24-bit PNG

images, so stick with the GIF or JPG formats for all

images, even if it means some additional file size.

Rock Solid HTML Emails

24 ways 2009 edition 137

Provide fallback colors for background images

Outlook 2007 has no support for background images

(aside from this hack to get full page background images

working). If you want to use a background image in your

design, always provide a background color the email client

can fall back on. This solves both the image blocking and

Outlook 2007 problem simultaneously.

Don’t forget altalt text

Lack of standards support means email clients have long

destroyed the chances of a semantic and accessible HTML

email. Even still, providing alt text is important from an

image blocking perspective. Even with images suppressed

by default, many email clients will display the provided

alt text instead. Just remember that some email clients

like Outlook 2007, Hotmail and Apple Mail don’t support

alt text at all when images are blocked.

Use the display hack for Hotmail

For some inexplicable reason, Windows Live Hotmail adds

a few pixels of additional padding below images. A

workaround is to set the display property like so.

img {display:block;}

This removes the padding in Hotmail and still gives you

the predicable result in other email clients.

138 24 ways 2009 edition

http://www.campaignmonitor.com/blog/post/1777/body-background-images-outlook/

Don’t use floats

Both Outlook 2007 and earlier versions of Notes offer no

support for the float property. Instead, use the align

attribute of the img tag to float images in your email.

If you’re seeing strange image behavior in Yahoo! Mail,

adding align=“top” to your images can often solve this

problem.

VIDEO IN EMAIL

With no support for JavaScript or the object tag, video in

email (if you can call it that) has long been limited to

animated gifs. However, some recent research I did into

the HTML5 video tag in email showed some promising

results.

Turns out HTML5 video does work in many email clients

right now, including Apple Mail, Entourage 2008,

MobileMe and the iPhone. The real benefit of this

approach is that if the video isn’t supported, you can

provide reliable fallback content such as an animated GIF

or a clickable image linking to the video in the browser.

Of course, the question of whether you should add video

to email is another issue altogether. If you lean toward the

“yes” side check out the technique with code samples.

Rock Solid HTML Emails

24 ways 2009 edition 139

http://www.campaignmonitor.com/blog/post/2905/html5-and-video-in-email/

WHAT ABOUT MOBILE EMAIL?

The mobile email landscape was a huge mess until

recently. With the advent of the iPhone, Android and big

improvements from Palm and RIM, it’s becoming less

important to think of mobile as a different email platform

altogether.

That said, there are a few key pointers to keep in mind

when coding your emails to get a decent result for your

more mobile subscribers.

Keep the width less than 600 pixels

Because of email client preview panes, this rule was

important long before mobile email clients came of age. In

truth, the iPhone and Pre have a viewport of 320 pixels,

the Droid 480 pixels and the Blackberry models hover

around 360 pixels. Sticking to a maximum of 600 pixels

wide ensures your design should still be readable when

scaled down for each device. This width also gives good

results in desktop and web-based preview panes.

Be aware of automatic text resizing

In what is almost always a good feature, email clients

using webkit (such as the iPhone, Pre and Android) can

automatically adjust font sizes to increase readability. If

140 24 ways 2009 edition

testing shows this feature is doing more harm than good

to your design, you can always disable it with the

following CSS rule:

-webkit-text-size-adjust: none;

DON’T FORGET TO TEST

While standards support in email clients hasn’t made

much progress in the last few years, there has been

continual change (for better or worse) in some email

clients. Web-based providers like Yahoo!, Hotmail and

Gmail are notorious for this. On countless occasions I’ve

seen a proven design suddenly stop working without

explanation.

For this reason alone it’s important to retest your email

designs on a regular basis. I find a quick test every month

or so does the trick, especially in the web-based clients.

The good news is that after designing and testing a few

HTML email campaigns, you will find that order will

emerge from the chaos. Many of these pitfalls will become

quite predictable and your inbox-friendly designs will take

shape with them in mind.

LOOKING AHEAD

Designing HTML email can be a tough pill for new

designers and standardistas to swallow, especially given

the fickle and retrospective nature of email clients today.

Rock Solid HTML Emails

24 ways 2009 edition 141

With HTML5 just around the corner we are entering a

new, uncertain phase. Will email client developers take

the opportunity to repent on past mistakes and bring

email clients into the present? The aim of groups such as

the Email Standards Project is to make much of the above

advice as redundant as the long-forgotten <blink> and

<marquee> tags, however, only time will tell if this is to

become a reality.

Although not the most compliant (or fashionable)

medium, the results speak for themselves – email is, and

will continue to be one of the most successful and

targeted marketing channels available to you. As a

designer with HTML email design skills in your arsenal,

you have the opportunity to not only broaden your

service offering, but gain a unique appreciation of how

vital standards are.

NEXT STEPS

Ready to get started? There are a number of HTML email

design galleries to provide ideas and inspiration for your

own designs.

▪ http://www.campaignmonitor.com/gallery/

▪ http://htmlemailgallery.com/

▪ http://inboxaward.com/

Enjoy!

142 24 ways 2009 edition

http://www.email-standards.org/
http://www.campaignmonitor.com/gallery/
http://htmlemailgallery.com/
http://inboxaward.com/

ABOUT THE AUTHOR

David Greiner is the co-founder of Campaign Monitor, email

marketing software for web designers. He has been working

with HTML email for more than a decade and started a number

of initiatives to improve web standards support in email

including the Email Standards Project and more recently the Fix

Outlook campaign. You can follow him on Twitter.

Rock Solid HTML Emails

24 ways 2009 edition 143

http://www.campaignmonitor.com/
http://www.email-standards.org
http://www.fixoutlook.org
http://www.fixoutlook.org
http://twitter.com/davegreiner/

Natalie Downe 24ways.org/200914

14. Going Nuts with CSS
Transitions

I’m going to show you how CSS 3 transforms
and WebKit transitions can add zing to the
way you present images on your site.

LAYING THE FOUNDATIONS

First we are going to make our images look like mini

polaroids with captions. Here’s the markup:

<div class="polaroid pull-right">

<p class="caption">Found this little cutie on a walk

in New Zealand!</p>

</div>

You’ll notice we’re using a somewhat presentational class

of pull-right here. This means the logic is kept separate

from the code that applies the polaroid effect. The

polaroid class has no positioning, which allows it to be

used generically anywhere that the effect is required. The

pull classes set a float and add appropriate margins—they

can be used for things like blockquotes as well.

144 24 ways 2009 edition

http://24ways.org/200914
http://media.24ways.org/2009/14/1/index.html

.polaroid {

width: 150px;

padding: 10px 10px 20px 10px;

border: 1px solid #BFBFBF;

background-color: white;

-webkit-box-shadow: 2px 2px 3px rgba(135, 139, 144,

0.4);

-moz-box-shadow: 2px 2px 3px rgba(135, 139, 144, 0.4);

box-shadow: 2px 2px 3px rgba(135, 139, 144, 0.4);

}

The actual polaroid effect itself is simply applied using

padding, a border and a background colour. We also apply

a nice subtle box shadow, using a property that is

supported by modern WebKit browsers and Firefox 3.5+.

We include the box-shadow property last to ensure that

future browsers that support the eventual CSS3 specified

version natively will use that implementation over the

legacy browser specific version.

The box-shadow property takes four values: three lengths

and a colour. The first is the horizontal offset of the

shadow—positive values place the shadow on the right,

while negative values place it to the left. The second is the

vertical offset, positive meaning below. If both of these

are set to 0, the shadow is positioned equally on all four

sides. The last length value sets the blur radius—the larger

the number, the blurrier the shadow (therefore the darker

you need to make the colour to have an effect).

Going Nuts with CSS Transitions

24 ways 2009 edition 145

The colour value can be given in any format recognised by

CSS. Here, we’re using rgba as explained by Drew behind

the first door of this year’s calendar.

ROTATION

For browsers that understand it (currently our old

favourites WebKit and FF3.5+) we can add some visual

flair by rotating the image, using the transform CSS 3

property.

-webkit-transform: rotate(9deg);

-moz-transform: rotate(9deg);

transform: rotate(9deg);

Rotations can be specified in degrees, radians (rads) or

grads. WebKit also supports turns unfortunately Firefox

doesn’t just yet.

For our example, we want any polaroid images on the left

hand side to be rotated in the opposite direction, using a

negative degree value:

.pull-left.polaroid {

-webkit-transform: rotate(-9deg);

-moz-transform: rotate(-9deg);

transform: rotate(-9deg);

}

Multiple class selectors don’t work in IE6 but as luck

would have it, the transform property doesn’t work in any

current IE version either. The above code is a good

146 24 ways 2009 edition

http://24ways.org/2009/working-with-rgba-colour
http://en.wikipedia.org/wiki/Radian
http://en.wikipedia.org/wiki/Grad_%28angle%29
http://media.24ways.org/2009/14/1/index.html

example of progressive enrichment: browsers that don’t

support box-shadow or transform will still see the image

and basic polaroid effect.

ANIMATION

WebKit is unique amongst browser rendering engines in

that it allows animation to be specified in pure CSS.

Although this may never actually make it in to the CSS 3

specification, it degrades nicely and more importantly is

an awful lot of fun!

Let’s go nuts.

Going Nuts with CSS Transitions

24 ways 2009 edition 147

http://media.24ways.org/2009/14/1/index.html

In the next demo, the image is contained within a link and

mousing over that link causes the polaroid to animate

from being angled to being straight.

Here’s our new markup:

<a href="http://www.flickr.com/photos/nataliedowne/

2340993237/" class="polaroid">

White water rafting in Queenstown

And here are the relevant lines of CSS:

a.polaroid {

/* ... */

-webkit-transform: rotate(10deg);

-webkit-transition: -webkit-transform 0.5s ease-in;

}

a.polaroid:hover,

a.polaroid:focus,

a.polaroid:active {

/* ... */

-webkit-transform: rotate(0deg);

}

The @-webkit-transition@ property is the magic wand

that sets up the animation. It takes three values: the

property to be animated, the duration of the animation

and a ‘timing function’ (which affects the animation’s

acceleration, for a smoother effect).

148 24 ways 2009 edition

http://media.24ways.org/2009/14/2/index.html
http://webkit.org/blog/138/css-animation/

-webkit-transition only takes affect when the specified

property changes. In pure CSS, this is done using dynamic

pseudo-classes. You can also change the properties using

JavaScript, but that’s a story for another time.

THROWING POLAROIDS AT A TABLE

Imagine there are lots of differently sized polaroid photos

scattered on a table. That’s the effect we are aiming for

with our next demo.

As an aside: we are using absolute positioning to arrange

the images inside a flexible width container (with a

minimum and maximum width specified in pixels). As

some are positioned from the left and some from the right

when you resize the browser they shuffle underneath

each other. This is an effect used on the UX London site.

Going Nuts with CSS Transitions

24 ways 2009 edition 149

http://www.w3.org/TR/css3-selectors/#dynamic-pseudos
http://www.w3.org/TR/css3-selectors/#dynamic-pseudos
http://media.24ways.org/2009/14/3/index.html
http://media.24ways.org/2009/14/3/index.html
http://2010.uxlondon.com/

This demo uses a darker colour shadow with more

transparency than before. The grey shadow in the

previous example worked fine, but it was against a solid

background. Since the images are now overlapping each

other, the more opaque shadow looked fake.

-webkit-box-shadow: 2px 2px 4px rgba(0,0, 0, 0.3);

-moz-box-shadow: 2px 2px 4px rgba(0,0, 0, 0.3);

box-shadow: 2px 2px 4px rgba(0,0, 0, 0.3);

On hover, as well as our previous trick of animating the

image rotation back to straight, we are also making the

shadow darker and setting the z-index to be higher than

the other images so that it appears on top.

AND FINALLY…

Finally, for a bit more fun, we’re going to simulate the

images coming towards you and lifting off the page. We’ll

achieve this by making them grow larger and by offsetting

the shadow & making it longer.

150 24 ways 2009 edition

Screenshot 1 shows the default state, while 2 shows our

previous hover effect. Screenshot 3 is the effect we are

aiming for, illustrated by demo 4.

a.polaroid {

/* ... */

z-index: 2;

-webkit-box-shadow: 2px 2px 4px rgba(0,0, 0, 0.3);

-moz-box-shadow: 2px 2px 4px rgba(0,0, 0, 0.3);

box-shadow: 2px 2px 4px rgba(0,0, 0, 0.3);

-webkit-transform: rotate(10deg);

-moz-transform: rotate(10deg);

transform: rotate(10deg);

-webkit-transition: all 0.5s ease-in;

}

a.polaroid:hover,

a.polaroid:focus,

a.polaroid:active {

z-index: 999;

border-color: #6A6A6A;

-webkit-box-shadow: 15px 15px 20px rgba(0,0, 0, 0.4);

-moz-box-shadow: 15px 15px 20px rgba(0,0, 0, 0.4);

box-shadow: 15px 15px 20px rgba(0,0, 0, 0.4);

-webkit-transform: rotate(0deg) scale(1.05);

-moz-transform: rotate(0deg) scale(1.05);

transform: rotate(0deg) scale(1.05);

}

Going Nuts with CSS Transitions

24 ways 2009 edition 151

http://media.24ways.org/2009/14/4/index.html

You’ll notice we are now giving the transform property

another transform function: scale, which takes increases

the size by the specified factor. Other things you can do

with transform include skewing, translating or you can go

mad creating your own transforms with a matrix.

The box-shadow has both its offset and blur radius

increased dramatically, and is darkened using the alpha

channel of the rgba colour.

And because we want the effects to all animate smoothly,

we pass a value of all to the -webkit-transition property,

ensuring that any changed property on that link will be

animated.

Demo 5 is the finished example, bringing everything nicely

together.

CSS transitions and transforms are a great example of

progressive enrichment, which means improving the

experience for a portion of the audience without

negatively affecting other users. They are also a lot of fun

to play with!

FURTHER READING

▪ -moz-transform – the mozilla developer center has a

comprehensive explanation of transform that also applies

to -webkit-transform and transform.

152 24 ways 2009 edition

https://developer.mozilla.org/en/CSS/-moz-transform
https://developer.mozilla.org/en/CSS/-moz-transform
http://media.24ways.org/2009/14/5/index.html
https://developer.mozilla.org/en/CSS/-moz-transform

▪ CSS: Animation Using CSS Transforms – this is a good,

more indepth tutorial on animations.

▪ CSS Animation – the Safari blog explains the usage of -

webkit-transform.

▪ Dinky pocketbooks with transform – another use for

transforms, create your own printable pocketbook.

▪ A while back, Simon wrote a little bookmarklet to spin

the entire page… warning: this will spin the entire page.

ABOUT THE AUTHOR

Natalie Downe is an excitable client-side web developer at

Clearleft in Brighton, a perfectionist by nature and comes with

the expertise and breadth of knowledge of a web agency

background. Although front-end development and usability

Going Nuts with CSS Transitions

24 ways 2009 edition 153

http://www.the-art-of-web.com/css/css-animation/
http://webkit.org/blog/138/css-animation/
http://natbat.net/2009/May/21/pocketbooks/
http://twitter.com/simonw/status/825123672
javascript:(function(){var d=0;setInterval(function() {document.body.style['-webkit-transform']= 'rotate('+ d +'deg)';d+=1},10)}());
http://natbat.net/
http://www.clearleft.com

engineering are her first loves, Natalie still has fun dabbling

with Python and poking the odd API. Natalie is also an

experienced usability consultant and project manager.

154 24 ways 2009 edition

Tim Van Damme 24ways.org/200915

15. CSS Animations

Friend: “You should learn how to write
CSS!”
Me: “…”
Friend: “CSS; Cascading Style Sheets. If
you’re serious about web design, that’s the
next thing you should learn.”
Me: “What’s wrong with tags?”

That was 8 years ago. Thanks to the hard work of Jeffrey,

Andy, Andy, Cameron, Colly, Dan and many others,

learning how to decently markup a website and write

lightweight stylesheets was surprisingly easy. They made

it so easy even a complete idiot (OH HAI) was able to

quickly master it.

And then… nothing. For a long time, it seemed like there

wasn’t happening anything in the land of CSS, time stood

still. Once you knew the basics, there wasn’t anything new

to keep up with. It looked like a great band split, but

people just kept re-releasing their music in various “Best

Of!” or “Remastered!” albums.

CSS Animations

24 ways 2009 edition 155

http://24ways.org/200915
http://www.zeldman.com/
http://www.andybudd.com/
http://www.stuffandnonsense.co.uk/
http://www.cameronmoll.com/
http://colly.com/
http://simplebits.com/

Fast forward a couple of years to late 2006. On the official

WebKit blog Surfin’ Safari, there’s an article about

something called CSS animations. Great new stuff to play

with, but only supported by nightly builds (read: very, very

beta) of WebKit. In the following months, they release

other goodies, like CSS gradients, CSS reflections, CSS

masks, and even more CSS animation sexiness. Whoa,

looks like the band got back together, found their second

youth, and went into overdrive! The problem was that if

you wanted to listen to their new albums, you had to own

some kind of new high-tech player no one on earth

(besides some early adopters) owned.

Back in the time machine. It is now late 2009, close to

Christmas. Things have changed. Browsers supporting

these new toys are widely available left and right. Even

non-techies are using these advanced browsers to surf

the web on a daily basis!

Epic win? Almost, but at least this gives us enough reason

to start learning how we could use all this new CSS

voodoo. On Monday, Natalie Downe showed you a good

tutorial on Going Nuts with CSS Transitions. Today, I’m

taking it one step further…

156 24 ways 2009 edition

http://webkit.org/blog/
http://webkit.org/blog/138/css-animation/
http://nightly.webkit.org/
http://webkit.org/blog/175/introducing-css-gradients/
http://webkit.org/blog/182/css-reflections/
http://webkit.org/blog/181/css-masks/
http://webkit.org/blog/181/css-masks/
http://webkit.org/blog/324/css-animation-2/
http://www.apple.com/safari/
http://www.google.com/chrome/
http://24ways.org/2009/going-nuts-with-css-transitions

HOWTO: A BASIC SPINNER

No matter how fast internet tubes or servers are, we’ll

always need spinners to indicate something’s happening

behind the scenes. Up until now, people would go to some

site, pick one of the available templates, customize their

foreground and background colors, and download a

beautiful GIF image.

There are some downsides to this though:

▪ It’s only _semi_-transparent: If you change your mind

and pick a slightly different background color, you need to

go back to the site, set all the parameters again, and

replace your current image. There isn’t even a way to pick

an image or gradient as background.

▪ Limited number of frames, probable to keep the file-

size as small as possible (don’t forget this thing needs to

be loaded before whatever process is finished in the

background), and you don’t have that 24 frames per

second smoothness.

▪ This is just too fucking easy. As a front-end code geek,

there must be a “cooler” way to do this!

What do we need to make a spinner with CSS animations?

One image, and one element on our webpage we can hook

on to. Yes, that’s it. I created a simple transparent PNG

that looks it might be a spinner, and for the element on the

page, I wrote this piece of genius HTML:

CSS Animations

24 ways 2009 edition 157

http://www.ajaxload.info/
http://www.ajaxload.info/
http://media.24ways.org/2009/15/assets/img/spinner.png

<p id="spinner">Please wait while we do what we do

best.</p>

Looks semantic enough to me! Here’s the basic HTML I’m

using to position the element in the center of the screen,

and make the text inside it disappear:

#spinner {

position: absolute;

top: 50%;

left: 50%;

margin: -100px 0 0 -100px;

height: 200px;

width: 200px;

text-indent: 250px;

white-space: nowrap;

overflow: hidden;

}

Cool, but now we don’t see anything. Let’s pull rabbit

number one out of the hat: -webkit-mask-image

(accompanied by the previously mentioned transparent

PNG image):

#spinner {

...

-webkit-mask-image: url(../img/spinner.png);

}

By now you should be feeling like a magician already. Oh,

wait, we still have a blank screen, looks like we left

something in the hat (tip: not rabbit droppings):

158 24 ways 2009 edition

#spinner {

...

-webkit-mask-image: url(../img/spinner.png);

background-color: #000;

}

Nice! What we’ve done right here is telling the element to

clip onto the PNG. It’s a lot like clipping layers in

Photoshop. So, spinners, they move, right? Into the hat

again, and look what we pull out this time: CSS

animations!

#spinner {

...

-webkit-mask-image: url(../img/spinner.png);

background-color: #000;

-webkit-animation-name: spinnerRotate;

-webkit-animation-duration: 2s;

-webkit-animation-iteration-count: infinite;

-webkit-animation-timing-function: linear;

}

Some explanation:

▪ -webkit-animation-name: Name of the animation we’ll

be defining later.

▪ -webkit-animation-duration: The timespan of the

animation.

▪ -webkit-animation-iteration-count: Repeat once, a

defined number of times or infinitely?

CSS Animations

24 ways 2009 edition 159

▪ -webkit-animation-timing-function: Linear is the

one you’ll be using mostly. Other options are ease-in,

ease-out, ease-in-out…

Let’s define spinnerRotate:

@-webkit-keyframes spinnerRotate {

from {

-webkit-transform:rotate(0deg);

}

to {

-webkit-transform:rotate(360deg);

}

}

En Anglais: Rotate #spinner#spinner starting at 0 degrees, ending

at 360 degrees, over a timespan of 2 seconds, at a

constant speed, and keep repeating this animation

forever.

That’s it! See it in action on the demo page.

Note: these examples only work when you’re using a WebKit-

based browser like Safari, Mobile Safari or Google Chrome. I’m

confident though that Mozilla and Opera will try their very

best catching up with all this new CSS goodness soon.

When looking at this example, you see the possibilities are

endless. Another advantage is you can change the look of

it entirely by only changing a couple of lines of CSS,

instead of re-creating and re-downloading the image from

some website smelling like web 2.0 gone bad. I made

160 24 ways 2009 edition

http://media.24ways.org/2009/15/spinner.html

another demo that shows how great it is to be able to

change background and foreground colors (even on the

fly!).

So there you have it, a smoothly animated, fully

transparent and completely customizable spinner. Cool? I

think so. (Ladies?)

But you can do a lot more with CSS animations than just

create pretty spinners. Since I was fooling around with it

anyway, I decided to test how far you can push this, space

is the final limit, right?

CONCLUSION

CSS has never been more exciting than it is right now. I’m

even prepared to say CSS is “cool” again, both for the

more experienced front-end developers as for the new

designers discovering CSS every day now.

But…

Remember when Javascript became popular? Remember

when Flash became popular? Every time we’re been given

new toys, some people aren’t ashamed to use it in a way

you can barely call constructive. I’m thinking of Geocities

websites, loaded with glowing blocks of text, moving

images, bad color usage… In the wise words of Stan Lee:

CSS Animations

24 ways 2009 edition 161

http://media.24ways.org/2009/15/spinner-alt.html
http://media.24ways.org/2009/15/space.html
http://media.24ways.org/2009/15/space.html

“With great power there must also come great

responsibility!” A sprinkle of CSS animations is better

than a bucket load. Apply with care.

ABOUT THE AUTHOR

Tim Van Damme is a freelance interface designer at Made by

Elephant. Not afraid to push the limits, friend of all things living,

blabbermouth, honest chap, passionate about the web, always

in the mood for a chat, blogger at Maxvoltar, boyfriend of

Gwenny, Belgian, Twitter addict.

162 24 ways 2009 edition

http://madebyelephant.com/
http://madebyelephant.com/
http://maxvoltar.com/
http://twitter.com/maxvoltar

Mark Boulton 24ways.org/200916

16. Designing For The
Switch

For a long time on the web, we’ve been
typographically spoilt. Yes, you heard me
correctly. Think about it: our computers
come with web fonts already installed; fonts
that have been designed specifically to work
well online and at small size; and fonts that
we can be sure other people have too.

Yes, we’ve been spoilt. We don’t need to think about using

Verdana, Arial, Georgia or Cambria.

Yet, for a long time now, designers have felt we needed

more. We want to choose whatever typeface we feel

necessary for our designs. We did bad things along the

way in pursuit of this goal such as images for text. Smart

people dreamt up tools to help us such as sIFR, or Cufón.

Only fairly recently, @font-face is supported in most

Designing For The Switch

24 ways 2009 edition 163

http://24ways.org/200916

browsers. The floodgates are opening. It really is the dawn

of a new typographic era on the web. And we must tread

carefully.

THE NEW TYPESETTERS

Many years ago, before the advent of desktop publishing,

if you wanted words set in a particular typeface, you had

to go to a Typesetter. A Typesetter, or Compositor, as they

were sometimes called, was a person whose job it was to

take the written word (in the form of a document or

manuscript) and ‘set’ the type in the desired typeface. The

designer would chose what typeface they wanted – and

all the ligatures, underlines, italics and whatnot – and then

scribble all over the manuscript so the typesetter could

set the correct type.

Then along came Desktop Publishing and every Tom, Dick

and Harry could choose type on their computer and an

entire link in the typographic chain was removed within

just a few years. Well, that’s progress I guess. That was

until six months ago when Typesetting was reborn on the

web in the guise of a font service: Typekit.

Typekit – and services like Typekit such as Typotheque,

Kernest and the upcoming Fontdeck – are typesetting

services for the web. You supply them with your content,

164 24 ways 2009 edition

http://www.typekit.com
http://www.typotheque.com/webfonts
http://kernest.com/
http://fontdeck.com/

in the form of a webpage, and they provide you with some

JavaScript to render that webpage in the typeface you’ve

specified simply by adding the font name in your CSS file.

Thanks to services like these, font foundries are now

talking to create licensing structures to allow us to embed

fonts into our web pages legally – which has always been a

sticking point in the past. So, finally, us designers can get

what we want: whatever typeface we want on the web.

Yes, but… there are hurdles. One of which is the subject of

this article.

THE DIFFERENCES BETWEEN WEB FONTS AND
OTHER FONTS

Web fonts are different to normal fonts. They differ in a

whole bunch of ways, from loose letter spacing to larger

x-heights. But perhaps the most notable practical

difference is file size. Let’s take a look at one of Typekit’s

latest additions from the FontFont library, Meta.

Meta Roman weighs in at 42 KB. This is a fairly typical file

size for a single weight of a good font. Now, let’s have a

look at Verdana. Verdana is 186 KB. For one weight. The

four weight family for Verdana weighs in at 686 KB. Four

weights for half a megabyte!? Why so huge?

Designing For The Switch

24 ways 2009 edition 165

http://www.fontfont.com/
http://typekit.com/fonts/512

Well, Verdana has a lot of information packed into its 186

KB. It has the largest hinting data table of any typeface

(the information carried by a font that tells it how to align

itself to the pixels on your screen). As it has been shipped

with Microsoft products since 1996, it has had time to

grow to support many, many languages. Along with its

cousin, Georgia (283 KB), Verdana was a new breed of

typeface. And it’s grown fat.

If really serious web typography takes off – and by that I

mean typefaces specifically designed for the screen – then

we’re going to see more fonts increase in file size as the

font files include more data. So, if you’re embedding a font

weighing in at 100 KB, what happens?

THE FLASH OF UNSTYLED TEXT

We all remember the Flash of Unstyled Content bug on

Internet Explorer, right? That annoying bug that caused a

momentary flash of unstyled HTML page. Well, the same

thing can happen with embedding fonts using @font-face.

An effect called The Flash of Unstyled Text (FOUT), first

coined by Paul Irish. Personally, I prefer to call it the Flash

of UnTypeset Text (still FOUT), as the text is styled, just

not with what you want.

If you embed a typeface in your CSS, then the browser will

download that typeface. Typically, browsers differ in the

way they handle this procedure.

166 24 ways 2009 edition

http://paulirish.com/2009/fighting-the-font-face-fout/

Firefox and Opera will render the text using the next font

in your font stack until the first (embedded) font is loaded.

It will then switch to the embedded font.

Webkit takes the approach that you asked for that font so

it will wait until it’s completely loaded before showing it

you.

In Opera and Firefox, you get a FOUT. In Webkit, you

don’t. You wait.

Hang on there. Didn’t I say that good web fonts weigh in

considerably more than ‘normal’ fonts? And whilst the

browser is downloading the font, the user gets what to

look at? Some pictures, background colours and whatever

else isn’t HTML? I believe Webkit’s handling of font

embedding – as deliberate as it is – is damaging to the

practice of font embedding. Why? Well, we can design to a

switch in typeface (as jarring as that is for the user), but

we can’t design to blank space.

Let’s have a closer look at how we can design to FOUT.

MORE CONSIDERED FONT STACKS

We all know that font stacks in CSS are there for when a

user doesn’t have a font; the browser will jump to the next

one in the stack. Adding embedded fonts into the font

stack means that because of FOUT (in gecko and Opera),

Designing For The Switch

24 ways 2009 edition 167

the user can see a switch, and depending on their

connection that switch could happen well into any reading

that the user may be doing.

The practicalities of this are that a user could be reading

and be towards the end of a line when the paragraph they

are reading changes shape. The word they were digesting

suddenly changes to three lines down. It’s the online

equivalent of someone turning the page for you when you

least expect it. So, how can we think about our font stacks

slightly differently so we can minimise the switch?

Two years ago, Richard Rutter wrote on this very site

about increasing our font stacks. By increasing the font

stacks (by using his handy matrix) we can begin to

experiment with different typefaces. However, when we

embed a typeface, we must look very carefully at the

typefaces in the font stack and the relationship between

them. Because, previously, the user would not see a

switch from one typeface to another, they’d just get either

one or the other. Not both. With FOUT, the user sees two

typefaces.

By carefully looking at the characteristics of the typefaces

you choose, you can minimise the typographic ‘distance’

between the type down the stack. In doing so, you

minimise the jarring effect of the switch.

Let’s take a look at an example of how to go about this.

168 24 ways 2009 edition

http://24ways.org/2007/increase-your-font-stacks-with-font-matrix
http://media.24ways.org/2007/17/fontmatrix.html

MICRO TYPOGRAPHY TO BUILD BETTER FONT
STACKS

Let’s say I want to use a recent edition to Typekit – Meta

Serif Book – as my embedded font. My font stack would

start like this:

font-family: 'Meta Serif Bold';

Where do you go from here? Well, first, familiarise

yourself with Richard’s Font Matrix so you get an idea of

what fonts are available for different people. Then start

by looking closely at the characters of the embedded font

and then compare them to different fonts from the

matrix.

When I do this, I’m looking to match type characteristics

such as x-height, contrast (the thickness and thinness of

strokes), the stress (the angle of contrast) and the shape

of the serifs (if the typeface has any).

Designing For The Switch

24 ways 2009 edition 169

http://typekit.com/fonts/513
http://typekit.com/fonts/513

Using just these simple comparative metrics means you

can get to a ‘best fit’ reasonably quickly. And remember,

you’re not after an ideal match. You’re after a match that

means the switch is less painful for the reader, but also a

typeface that carries similar characteristics so your

design doesn’t change too much.

Building upon my choice of embedded font, I can quickly

build up a stack by comparing letters.

This then creates my ‘best fit’ stack.

170 24 ways 2009 edition

This translates to the CSS as:

font-family: 'Meta Serif Bold', 'Lucida Bright',

Cambria, Georgia, serif

Following this process, and ending up with considered

font stacks, means that we can design to the Flash of

UnTypeset Content and ensure that our readers don’t get

a diminished experience.

Designing For The Switch

24 ways 2009 edition 171

ABOUT THE AUTHOR

Mark Boulton is a graphic designer from near Cardiff in the UK.

He used to work as a Senior Designer for the BBC, before he

took leave of his senses and formed his own design consultancy,

Mark Boulton Design. He studied typography, enjoys watching

a good boxing match, and is partial to a really good cuppa.

172 24 ways 2009 edition

http://www.markboulton.co.uk/

Christian Heilmann 24ways.org/200917

17. The Web Is Your CMS

It is amazing what you can do these days
with the services offered on the web. Flickr
stores terabytes of photos for us and
converts them automatically to all kind of
sizes, finds people in them and even allows
us to edit them online. YouTube does almost
the same complete job with videos, LinkedIn
allows us to maintain our CV, Delicious our
bookmarks and so on.

We don’t have to do these tasks ourselves any more, as all

of these systems also come with ways to use the data in

the form of Application Programming Interfaces, or APIs

for short. APIs give us raw data when we send requests

telling the system what we want to get back.

The problem is that every API has a different idea of what

is a simple way of accessing this data and in which format

to give it back.

The Web Is Your CMS

24 ways 2009 edition 173

http://24ways.org/200917

MAKING IT EASIER TO ACCESS APIS

What we need is a way to abstract the pains of different

data formats and authentication formats away from the

developer — and this is the purpose of the Yahoo Query

Language, or YQL for short.

Libraries like jQuery and YUI make it easy and reliable to

use JavaScript in browsers (yes, even IE6) and YQL allows

us to access web services and even the data embedded in

web documents in a simple fashion – SQL style.

SELECT * FROM THE WEB AND FILTER IT THE
WAY I WANT

YQL is a web service that takes a few inputs itself:

▪ A query that tells it what to get, update or access

▪ An output format – XML, JSON, JSON-P or JSON-P-X

▪ A callback function (if you defined JSON-P or JSON-P-

X)

You can try it out yourself – check out this link to get back

Flickr photos for the search term

‘santa’*%20from%20flickr.photos.search%20where%20text%3D%22santa%22&format=xml

in XML format. The YQL query for this is

select * from flickr.photos.search where text="santa"

174 24 ways 2009 edition

http://developer.yahoo.com/yql
http://developer.yahoo.com/yql
http://jquery.com/
http://developer.yahoo.com/yui
http://query.yahooapis.com/v1/public/yql?q=select%20
http://query.yahooapis.com/v1/public/yql?q=select%20
http://query.yahooapis.com/v1/public/yql?q=select%20

The easiest way to take your first steps with YQL is to look

at the console. There you get sample queries, access to all

the data sources available to you and you can easily put

together complex queries. In this article, however, let’s

use PHP to put together a web page that pulls in Flickr

photos, blog posts, Videos from YouTube and latest

bookmarks from Delicious.

Check out the demo and get the source code on GitHub.

<?php

/* YouTube RSS */

$query = 'select description from rss(5) where

url="http://gdata.youtube.com/feeds/base/users/

chrisheilmann/

uploads?alt=rss&v=2&orderby=published&client=ytapi-youtube-profile";';

/* Flickr search by user id */

$query .= 'select farm,id,owner,secret,server,title

from flickr.photos.search where user_id="11414938@N00";';

/* Delicious RSS */

$query .= 'select title,link from rss where

url="http://feeds.delicious.com/v2/rss/

codepo8?count=10";';

/* Blog RSS */

$query .= 'select title,link from rss where

url="http://feeds.feedburner.com/wait-till-i/gwZf"';

/* The YQL web service root with JSON as the output */

$root = 'http://query.yahooapis.com/v1/public/

yql?format=json&env=store%3A%2F%2Fdatatables.org%2Falltableswithkeys';

/* Assemble the query */

$query = "select * from query.multi where

queries='".$query."'";

$url = $root . '&q=' . urlencode($query);

The Web Is Your CMS

24 ways 2009 edition 175

http://developer.yahoo.com/yql
http://developer.yahoo.com/yql
http://isithackday.com/24ways2009/
http://github.com/codepo8/24-ways-2009/blob/master/index.php

/* Do the curl call (access the data just like a

browser would) */

$ch = curl_init();

curl_setopt($ch, CURLOPT_URL, $url);

curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt($ch, CURLOPT_SSL_VERIFYHOST, false);

$output = curl_exec($ch);

curl_close($ch);

$data = json_decode($output);

$results = $data->query->results->results;

/* YouTube output */

$youtube = '<ul id="youtube">';

foreach($results[0]->item as $r){

$cleanHTML = undoYouTubeMarkupCrimes($r->description);

$youtube .= ''.$cleanHTML.'';

}

$youtube .= '';

/* Flickr output */

$flickr = '<ul id="flickr">';

foreach($results[1]->photo as $r){

$flickr .= ''.

'<a href="http://www.flickr.com/photos/

codepo8/'.$r->id.'/">'.

'farm .

'.static.flickr.com/'.

$r->server . '/' . $r->id . '_' . $r->secret .

'_s.jpg" alt="'.$r->title.'">';

}

$flickr .= '';

/* Delicious output */

$delicious = '<ul id="delicious">';

foreach($results[2]->item as $r){

$delicious .= '<a

176 24 ways 2009 edition

href="'.$r->link.'">'.$r->title.'';

}

$delicious .= '';

/* Blog output */

$blog = '<ul id="blog">';

foreach($results[3]->item as $r){

$blog .= 'link.'">'.$r->title.'';

}

$blog .= '';

function undoYouTubeMarkupCrimes($str){

$cleaner = preg_replace('/555px/','100%',$str);

$cleaner = preg_replace('/width="[^"]+"/','',$cleaner);

$cleaner = preg_replace('/<tbody>/','<colgroup><col

width="20%"><col width="50%"><col

width="30%"></colgroup><tbody>',$cleaner);

return $cleaner;

}

?>

What we are doing here is create a few different YQL

statements and queue them together with the

query.multi table. Each of these can be run inside YQL

itself. Check out the YouTube, Flickr, Delicious and Blog

example in the console if you don’t believe me. The benefit

of using this table is that we don’t make individual

requests for each query but we get all the data in one

single request – which means a much better performing

solution as the YQL server farm is faster on the web than

our servers.

The Web Is Your CMS

24 ways 2009 edition 177

http://developer.yahoo.com/yql/console/?q=select%20description%20from%20rss%285%29%20where%20url%3D%22http%3A%2F%2Fgdata.youtube.com%2Ffeeds%2Fbase%2Fusers%2Fchrisheilmann%2Fuploads%3Falt%3Drss%26v%3D2%26orderby%3Dpublished%26client%3Dytapi-youtube-profile%22&env=store%3A%2F%2Fdatatables.org%2Falltableswithkeys
http://developer.yahoo.com/yql/console/?q=select%20farm%2Cid%2Cowner%2Csecret%2Cserver%2Ctitle%20from%20flickr.photos.search%20where%20user_id%3D%2211414938%40N00%22&env=store%3A%2F%2Fdatatables.org%2Falltableswithkeys
http://developer.yahoo.com/yql/console/?q=select%20title%2Clink%20from%20rss%20where%20url%3D%22http%3A%2F%2Ffeeds.delicious.com%2Fv2%2Frss%2Fcodepo8%3Fcount%3D10%22&env=store%3A%2F%2Fdatatables.org%2Falltableswithkeys
http://developer.yahoo.com/yql/console/?q=select%20title%2Clink%20from%20rss%20where%20url%3D%22http%3A%2F%2Ffeeds.feedburner.com%2Fwait-till-i%2FgwZf%22&env=store%3A%2F%2Fdatatables.org%2Falltableswithkeys

We point the query to the YQL web service end point and

get the resulting data using cURL. All that we need to do

then is to convert the returned data to HTML lists that

can be printed out inside an HTML template.

MIXING, MATCHING AND USING HTML AS A
DATA SOURCE

This was a simple example of what YQL can do for you.

Where it gets really powerful however is by mixing and

matching different APIs. YQL is also a good tool to get

information from HTML documents. By using the html

table you can load the content of an HTML document

(which gets fixed automatically by HTMLTidy) and use

XPATH to filter down results to what you need. Take the

following example which takes headlines from the

news.bbc.co.uk homepage and runs the results through

Yahoo’s Term Extractor API to give you a list of currently

hot topics.

select * from search.termextract where context in (

select content from html where

url="http://news.bbc.co.uk" and

xpath="//table[@width=800]//a"

)

Try it out in the console or see the results here. In English,

this means:

1. Go to http://news.bbc.co.uk and get me the HTML

178 24 ways 2009 edition

http://developer.yahoo.com/yql/console/?q=select%20*%20from%20search.termextract%20where%20context%20in%20%28select%20content%20from%20html%20where%20url%3D%22http%3A%2F%2Fnews.bbc.co.uk%22%20and%20xpath%3D%22%2F%2Ftable[%40width%3D800]%2F%2Fa%22%29&env=store%3A%2F%2Fdatatables.org%2Falltableswithkeys
http://query.yahooapis.com/v1/public/yql?q=select%20*%20from%20search.termextract%20where%20context%20in%20%28select%20content%20from%20html%20where%20url%3D%22http%3A%2F%2Fnews.bbc.co.uk%22%20and%20xpath%3D%22%2F%2Ftable[%40width%3D800]%2F%2Fa%22%29&format=xml

2. Run it through HTML Tidy to clean it up.

3. Get me only the links inside the table with an attribute

of width and the value 800

4. Get only the content of the link and for each of the

links

1. Take the content and send it as context to the Yahoo

Term Extractor API

If we choose JSON-P as the output format we can use the

outcome directly in JavaScript (see this demo or see its

source):

<ul id="hottopics">

<script type="text/javascript">

function hottopics(o){

var res = o.query.results.Result,

all = res.length,

topics = {},

out = [],

html = '',

i=0;

/* create hash from topics to prevent repetition */

for(i=0;i<all;i++){

topics[res[i]] = res[i];

};

for(i in topics){

out.push(i);

};

html = '' + out.join('') + '';

document.getElementById('hottopics').innerHTML = html;

};

</script>

The Web Is Your CMS

24 ways 2009 edition 179

http://developer.yahoo.com/search/content/V1/termExtraction.html
http://developer.yahoo.com/search/content/V1/termExtraction.html
http://isithackday.com/24ways2009/hottopics.html
http://github.com/codepo8/24-ways-2009/blob/master/hottopics.html
http://github.com/codepo8/24-ways-2009/blob/master/hottopics.html

<script type="text/javascript"

src="http://query.yahooapis.com/v1/public/

yql?q=select%20content%20from%20search.termextract%20where

%20context%20in%20(select%20content%20from%20html%20where%20url%3D%22http%3A%2F%2Fnews.bbc.co.uk%22%20and%20xpath%3D%22%2F%2Ftable%5B%40width%3D800%5D%2F%2Fa%22)&format=json&callback=hottopics"></script>

Using JSON, we can also use PHP which means the demo

works for everybody – not only those with JavaScript

enabled (see this demo or see its source):

<ul id="hottopics">

<?php

$url = 'http://query.yahooapis.com/v1/public/

yql?q=select%20content'.

'%20from%20search.termextract%20where%20context%20in'.

'%20(select%20content%20from%20html%20where%20url%3D%22'.

'http%3A%2F%2Fnews.bbc.co.uk%22%20and%20xpath%3D%22%2F%2F'.

'table%5B%40width%3D800%5D%2F%2Fa%22)&format=json';

$ch = curl_init();

curl_setopt($ch, CURLOPT_URL, $url);

curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, false);

curl_setopt($ch, CURLOPT_SSL_VERIFYHOST, false);

$output = curl_exec($ch);

curl_close($ch);

$data = json_decode($output);

$topics = array_unique($data->query->results->Result);

echo join('',$topics);

?>

180 24 ways 2009 edition

http://isithackday.com/24ways2009/hottopics.php
http://github.com/codepo8/24-ways-2009/blob/master/hottopics.php

SUMMARY

This article could only scratch the surface of YQL. You

have not only read access to the web but you can also

write to web services. For example you can update

Twitter, post to your WordPress blog or shorten a URL

with bit.ly. Using Open Tables you can add any web

service to the YQL interface and you can even run server-

side JavaScript which is for example useful to return

Flickr photos as HTML or get the HTML content from a

document that needs POST data.

The web of data is already here, and using YQL you don’t

have to be a web services expert to use it and be part of it.

The Web Is Your CMS

24 ways 2009 edition 181

http://developer.yahoo.com/yql/console/?q=insert%20into%20wordpress.post%20%28title%2C%20description%2C%20blogurl%2C%20username%2C%20password%29%20values%20%28%22Test%20Title%22%2C%20%22This%20is%20a%20test%20body%22%2C%20%22http%3A%2F%2Fyqltest.wordpress.com%22%2C%20%22yqltest%22%2C%20%22password%22%29&env=store%3A%2F%2Fdatatables.org%2Falltableswithkeys
http://developer.yahoo.com/yql/guide/yql-opentables-chapter.html
http://developer.yahoo.com/yql/guide/yql-execute-chapter.html
http://developer.yahoo.com/yql/guide/yql-execute-chapter.html
http://www.wait-till-i.com/2009/11/02/getting-a-list-of-flickr-photos-by-location-andor-search-term-with-a-yql-open-table/
http://www.wait-till-i.com/2009/11/16/using-yql-to-read-html-from-a-document-that-requires-post-data/
http://www.wait-till-i.com/2009/11/16/using-yql-to-read-html-from-a-document-that-requires-post-data/
http://www.webkrauts.de/2009/12/17/webinhalte-einfach-vermischen-mit-yql/

ABOUT THE AUTHOR

Christian Heilmann grew up in Germany and, after a year

working for the red cross, spent a year as a radio producer.

From 1997 onwards he worked for several agencies in Munich

as a web developer. In 2000 he moved to the States to work for

Etoys and, after the .com crash, he moved to the UK where he

lead the web development department at Agilisys. In April 2006

he joined Yahoo! UK as a web developer and moved on to be the

Lead Developer Evangelist for the Yahoo Developer Network.

In December 2010 he moved on to Mozilla as Principal

Developer Evangelist for HTML5 and the Open Web. He

publishes an almost daily blog at http://wait-till-i.com and runs

an article repository at http://icant.co.uk. He also authored

Beginning JavaScript with DOM Scripting and Ajax: From

Novice to Professional.

182 24 ways 2009 edition

http://uk.yahoo.com/
http://wait-till-i.com
http://icant.co.uk
http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FBeginning-JavaScript-DOM-Scripting-Ajax%2Fdp%2F1590596803%2F&tag=24ways-20&linkCode=ur2&camp=1789&creative=9325
http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FBeginning-JavaScript-DOM-Scripting-Ajax%2Fdp%2F1590596803%2F&tag=24ways-20&linkCode=ur2&camp=1789&creative=9325

Elliot Jay Stocks 24ways.org/200918

18. A Pet Project is For
Life, Not Just for
Christmas

I’m excited: as December rolls on, I’m
winding down from client work and
indulging in a big pet project I’ve been
dreaming up for quite some time, with the
aim of releasing it early next year. I’ve
always been a bit of a sucker for pet projects
and currently have a few in the works: the
big one, two collaborations with friends, and
my continuing (and completely un-web-
related) attempt at music. But when I think
about the other designers and developers
out there whose work I admire, one thing
becomes obvious: they’ve all got pet
projects! Look around the web and you’ll see
that anyone worth their salt has some sort
of side project on the go. If you don’t have
yours yet, now’s the time!

A Pet Project is For Life, Not Just for Christmas

24 ways 2009 edition 183

http://24ways.org/200918
http://sourhaze.com/

HAVE A PET PROJECT TO COLLABORATE WITH
YOUR FRIENDS

It’s not uncommon to find me staring at my screen,

looking at beautiful websites my friends have made,

grinning inanely because I feel so honoured to know such

talented individuals. But one thing really frustrates me: I

hardly ever get to work with these people! Sure, there are

times when it’s possible to do so, but due to various

project situations, it’s a rarity.

So, in order to work with my friends, I’ve found the best

way is to instigate the collaboration outside of client work;

in other words, have a pet project together! Free from the

hard realities of budgets, time restraints, and client

demands, you and your friends can come up with

something purely for your own pleasures. If you’ve been

looking for an excuse to work with other designers or

developers whose work you love, the pet project is that

excuse. They don’t necessarily have to be friends, either: if

the respect is mutual, it can be a great way of breaking the

ice and getting to know someone.

184 24 ways 2009 edition

Figure 1: A forthcoming secret love-child from myself and Tim
Van Damme

HAVE A PET PROJECT TO ESCAPE FROM YOUR
DAY JOB

We all like to moan about our clients and bosses, don’t

we? But if leaving your job or firing your evil client just

isn’t an option, why not escape from all that and pour your

creative energies into something you genuinely enjoy?

A Pet Project is For Life, Not Just for Christmas

24 ways 2009 edition 185

http://timvandamme.com/
http://timvandamme.com/

It’s not just about reacting to negativity, either: a pet

project is a great way to give yourself a bit of variety. As

web designers, our day-to-day work forces us to work

within a set of web-related contraints and sometimes it

can be demoralising to spend so many hours fixing IE

bugs. The perfect antidote? Go and do some print design!

If it’s not possible in your day job or client work, the pet

project is the perfect place to exercise your other creative

muscles. Yes, print design (or your chosen alternative) has

its own constraints, but if they’re different to those you

experience on a daily basis, it’ll be a welcome relief and

you’ll return to your regular work feeling refreshed.

Figure 2: Ligature, Loop & Stem, from Scott Boms & Luke Dorny

HAVE A PET PROJECT TO FULFILL YOUR OWN
NEEDS

Many pet projects come into being because the designers

and/or developers behind them are looking for a tool to

accomplish a task and find that it doesn’t exist, thus

186 24 ways 2009 edition

http://ligatureloopandstem.com/
http://scottboms.com/
http://lukedorny.com/

prompting them to create their own solution. In fact, the

very app I’m using to write this article — Ommwriter, from

Herraiz Soto & Co — was originally a tool they’d created

for their internal staff, before releasing it to the public so

that it could be enjoyed by others.

Just last week, Tina Roth Eisenberg launched Teux Deux,

a pet project she’d designed to meet her own

requirements for a to-do list, having found that no

existing apps fulfilled her needs. Oh, and it was a

collaboration with her studio mate Cameron. Remember

what I was saying about working with your friends?

Figure 3: Teux Deux, the GTD pet project that launched just last
week

HAVE A PET PROJECT TO HELP PEOPLE OUT

Ommwriter and Teux Deux are free for anyone to use.

Let’s just think about that for a moment: the creators have

invested their time and effort in the project, and then

A Pet Project is For Life, Not Just for Christmas

24 ways 2009 edition 187

http://ommwriter.com/
http://herraizsoto.com/
http://swiss-miss.com/
http://teuxdeux.com
http://www.swiss-miss.com/2009/12/teuxdeux.html
http://www.swiss-miss.com/2009/12/teuxdeux.html
http://fictivekin.com
http://teuxdeux.com/

given it away to be used by others. That’s very cool and

something we’re used to seeing a lot of in the web

community (how lucky we are)! People love free stuff and

giving away the fruits of your labour will earn you major

kudos. Of course, there’s nothing wrong with making

some money, either — more on that in a second.

Figure 4: Dan Rubin‘s extremely helpful Make Photoshop
Faster

HAVE A PET PROJECT TO RAISE YOUR PROFILE

So, giving away free stuff earns you kudos. And kudos

usually helps you raise your profile in the industry. We all

like a bit of shameless fame, don’t we? But seriously, if you

want to become well known, make something cool. It

could be free (to buy you the love and respect of the

community) or it could be purchasable (if you’ve made

188 24 ways 2009 edition

http://superfluouslife.org/
http://makephotoshopfaster.com/
http://makephotoshopfaster.com/

something that’s cool enough to deserve hard-earned

cash), but ultimately it needs to be something that people

will love.

Figure 5: Type designer Jos Buivenga has shot to fame thanks to
his beautiful typefaces and ‘freemium’ business model

If you’re a developer with no design skills, team up with a

good designer so that the design community appreciate

its aesthetic. If you’re a designer with no development

skills, team up with a good developer so that it works. Oh,

and not that I’d recommend you ever do this for selfish

A Pet Project is For Life, Not Just for Christmas

24 ways 2009 edition 189

http://josbuivenga.demon.nl

reasons, but collaborating with someone you admire —

whose work is well-respected by the community — will

also help raise your profile.

HAVE A PET PROJECT TO MAKE MONEY

In spite of our best hippy-esque intentions to give away

free stuff to the masses, there’s also nothing wrong with

making a bit of money from your pet project. In fact, if

your project involves you having to make a considerable

financial investment, it’s probably a good idea to try and

recoup those costs in some way.

Figure 6: The success of Shaun Inman‘s various pet projects —
Mint, Fever, Horror Vacui, etc. — have allowed him to give up
client work entirely.

190 24 ways 2009 edition

http://shauninman.com/
http://haveamint.com/
http://feedafever.com/
http://shauninman.com/horrorvacui/

A very common way to do that in both the online and

offline worlds is to get some sort of advertising. For a

slightly different approach, try contacting a company who

are relevant to your audience and ask them if they’d be

interesting in sponsoring your project, which would

usually just mean having their brand associated with

yours in some way. This is still a form of advertising but

tends to allow for a more tasteful implementation, so it’s

worth pursuing.

Advertising is a great way to cover your own costs and

keep things free for your audience, but when costs are

considerably higher (like if you’re producing a magazine

with high production values, for instance), there’s nothing

wrong with charging people for your product. But, as I

mentioned above, you’ve got to be positive that it’s worth

paying for!

HAVE A PET PROJECT JUST FOR FUN

Sometimes there’s a very good reason for having a pet

project — and sometimes even a viable business reason —

but actually you don’t need any reason at all. Wanting to

have fun is just as worthy a motivation, and if you’re not

going to have fun doing it, then what’s the point?

Assuming that almost all pet projects are designed,

developed, written, printed, marketed and supported in

our free time, why not do something enjoyable?

A Pet Project is For Life, Not Just for Christmas

24 ways 2009 edition 191

Figure 7: Jessica Hische‘s beautiful Daily Drop Cap

IN CONCLUSION

The fact that you’re reading 24 ways shows that you have

a passion for the web, and that’s something I’m happy to

see in abundance throughout our community. Passion is a

term that’s thrown about all over the place, but it really is

evident in the work that people do. It’s perhaps most

192 24 ways 2009 edition

http://jessicahische.com/
http://dailydropcap.com/

evident, however, in the pet projects that people create.

Don’t forget that the very site you’re reading this article

on is… a pet project.

If you’ve yet to do so, make it a new year’s resolution for

2010 to have your own pet project so that you can

collaborate with your friends, escape from your day job,

fulfil your own needs, help people out, raise your profile,

make money, and — above all — have fun.

ABOUT THE AUTHOR

Elliot Jay Stocks is a designer, speaker, and author. He is also

the founder of typography magazine 8 Faces and, more

recently, the co-founder of Viewport Industries. He lives and

works in the countryside between Bristol and Bath, England.

A Pet Project is For Life, Not Just for Christmas

24 ways 2009 edition 193

http://8faces.com/
http://viewportindustries.com/

Photo: Samantha Cliffe

194 24 ways 2009 edition

http://samanthacliffe.com

Jonathan Snook 24ways.org/200919

19. Spruce It Up

The landscape of web typography is
changing quickly these days. We’ve gone
from the wild west days of sIFR to Cufón to
finally seeing font embedding seeing wide
spread adoption by browser developers (and
soon web designers) with @font-face. For
those who’ve felt limited by the typographic
possibilities before, this has been a good
year.

As Mark Boulton has so eloquently elucidated, @font-

face embedding doesn’t come without its drawbacks.

Font files can be quite large and FOUT—that nasty flash of

unstyled text—can be a distraction for users.

DATA URIS

We can battle FOUT by using Data URIs. A Data URI

allows the font to be encoded right into the CSS file.

When the font comes with the CSS, the flash of unstyled

text is mitigated. No extra HTTP requests are required.

Spruce It Up

24 ways 2009 edition 195

http://24ways.org/200919
http://24ways.org/2009/designing-for-the-switch

Don’t be a grinch, though. Sending hundreds of kilobytes

down the pipe still isn’t great. Sometimes, all we want to

do is spruce up our site with a little typographic sugar.

BE SELECTIVE

Dan Cederholm’s SimpleBits is an attractive site.

Take a look at the ampersand within the header of his site.

It’s the lovely (and free) Goudy Bookletter 1911 available

from The League of Movable Type. The Opentype format

is a respectable 28KB. Nothing too crazy but hold on here.

Mr. Cederholm is only using the ampersand! Ouch. That’s

a lot of bandwidth just for one character.

Can we optimize a font like we can an image? Yes. Image

optimization essentially works by removing unnecessary

image data such as colour data, hidden comments or using

compression algorithms. How do you remove

unnecessary information from a font? Subsetting.

If you’re the adventurous type, grab a copy of FontForge,

which is an open source font editing tool. You can open

the font, view and edit any of the glyphs and then re-

generate the font. The interface is a little clunky but you’ll

196 24 ways 2009 edition

http://simplebits.com/
http://www.theleagueofmoveabletype.com/fonts/8-goudy-bookletter-1911
http://www.theleagueofmoveabletype.com/
http://fontforge.sourceforge.net/

be able to select any character you don’t want and then

cut the glyphs. Re-generate your font and you’ve now got

a smaller file.

There are certainly more optimizations that can also be

made such as removing hinting and kerning information.

Keep in mind that removing this information may affect

how well the type renders.

At this time of year, though, I’m sure you’re quite busy.

Save yourself some time and head on over to the Font

Squirrel Font Generator.

Spruce It Up

24 ways 2009 edition 197

http://www.fontsquirrel.com/fontface/generator
http://www.fontsquirrel.com/fontface/generator

The Font Generator is extremely handy and allows for a

number of optimizations and cross-platform options to be

generated instantly. Select the font from your local

system—make sure that you are only using properly

licensed fonts!

In this particular case, we only want the ampersand. Click

on Subset Fonts which will open up a new menu. Unselect

any preselected sets and enter the ampersand into the

Single Characters text box.

Generate your font and what are you left with? 3KB.

The Font Generator even generates a base64 encoded

data URI stylesheet to be imported easily into your

project.

198 24 ways 2009 edition

Check out the Demo page. (This demo won’t work in

Internet Explorer as we’re only demonstrating the Data

URI font embedding and not using the EOT file format

that IE requires.)

NO UNNECESSARY ADDITIVES

If you peeked under the hood of that demo, did you notice

something interesting? There’s no around the

ampersand. The great thing about this is that we can take

advantage of the font stack’s natural ability to switch to a

fallback font when a character isn’t available.

Just like that, we’ve managed to spruce up our page with a

little typographic sugar without having to put on too

much weight.

Spruce It Up

24 ways 2009 edition 199

http://media.24ways.org/2009/19/example.html

ABOUT THE AUTHOR

Jonathan Snook writes about tips, tricks, and bookmarks on his

blog at Snook.ca. He has also written for A List Apart and .net

magazine, and has co-authored two books, The Art and Science

of CSS and Accelerated DOM Scripting. He has also authored

and received world-wide acclaim for the self-published book,

Scalable and Modular Architecture for CSS sharing his

experience and best practices on CSS architecture.

Photo: Patrick H. Lauke

200 24 ways 2009 edition

http://snook.ca/
http://snook.ca/archives/writing/art_science_of_css
http://snook.ca/archives/writing/art_science_of_css
http://snook.ca/archives/javascript/accelerated_dom_scripting/
http://smacss.com
http://splintered.co.uk

Rachel Andrew 24ways.org/200920

20. Cleaner Code with
CSS3 Selectors

The parts of CSS3 that seem to grab the
most column inches on blogs and in articles
are the shiny bits. Rounded corners, text
shadow and new ways to achieve CSS layouts
are all exciting and bring with them all kinds
of possibilities for web design. However
what really gets me, as a developer, excited
is a bit more mundane.

In this article I’m going to take a look at some of the ways

our front and back-end code will be simplified by CSS3, by

looking at the ways we achieve certain visual effects now

in comparison to how we will achieve them in a glorious,

CSS3-supported future. I’m also going to demonstrate

how we can use these selectors now with a little help from

JavaScript – which can work out very useful if you find

yourself in a situation where you can’t change markup

that is being output by some server-side code.

Cleaner Code with CSS3 Selectors

24 ways 2009 edition 201

http://24ways.org/200920

THE WONDER OF NTH-CHILD

So why does nth-child get me so excited? Here is a really

common situation, the designer would like the tables in

the application to look like this:

Setting every other table row to a different colour is a

common way to enhance readability of long rows. The

tried and tested way to implement this is by adding a class

to every other row. If you are writing the markup for your

table by hand this is a bit of a nuisance, and if you stick a

row in the middle you have to change the rows the class is

applied to. If your markup is generated by your content

management system then you need to get the server-side

code to add that class – if you have access to that code.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Striping every other row - using classes</title>

<style type="text/css">

body {

202 24 ways 2009 edition

padding: 40px;

margin: 0;

font: 0.9em Arial, Helvetica, sans-serif;

}

table {

border-collapse: collapse;

border: 1px solid #124412;

width: 600px;

}

th {

border: 1px solid #124412;

background-color: #334f33;

color: #fff;

padding: 0.4em;

text-align: left;

}

td {

padding: 0.4em;

}

tr.odd td {

background-color: #86B486;

}

</style>

</head>

<body>

<table>

<tr>

<th>Name</th>

<th>Cards sent</th>

<th>Cards received</th>

<th>Cards written but not sent</th>

</tr>

<tr>

<td>Ann</td>

Cleaner Code with CSS3 Selectors

24 ways 2009 edition 203

<td>40</td>

<td>28</td>

<td>4</td>

</tr>

<tr class="odd">

<td>Joe</td>

<td>2</td>

<td>27</td>

<td>29</td>

</tr>

<tr>

<td>Paul</td>

<td>5</td>

<td>35</td>

<td>2</td>

</tr>

<tr class="odd">

<td>Louise</td>

<td>65</td>

<td>65</td>

<td>0</td>

</tr>

</table>

</body>

</html>

View Example 1

This situation is something I deal with on almost every

project, and apart from being an extra thing to do, it just

isn’t ideal having the server-side code squirt classes into

the markup for purely presentational reasons. This is

where the nth-child pseudo-class selector comes in. The

204 24 ways 2009 edition

http://24ways.org/examples/cleaner-code-with-css3-selectors/striped-table.html

server-side code creates a valid HTML table for the data,

and the CSS then selects the odd rows with the following

selector:

tr:nth-child(odd) td {

background-color: #86B486;

}

View Example 2

The odd and even keywords are very handy in this

situation – however you can also use a multiplier here. 2n

would be equivalent to the keyword ‘odd’ 3n would select

every third row and so on.

Browser support

Sadly, nth-child has pretty poor browser support. It is

not supported in Internet Explorer 8 and has somewhat

buggy support in some other browsers. Firefox 3.5 does

have support. In some situations however, you might want

to consider using JavaScript to add this support to

browsers that don’t have it. This can be very useful if you

are dealing with a Content Management System where

you have no ability to change the server-side code to add

classes into the markup.

I’m going to use jQuery in these examples as it is very

simple to use the same CSS selector used in the CSS to

target elements with jQuery – however you could use any

Cleaner Code with CSS3 Selectors

24 ways 2009 edition 205

http://24ways.org/examples/cleaner-code-with-css3-selectors/striped-table-css3.html
http://jquery.com

library or write your own function to do the same job. In

the CSS I have added the original class selector to the

nth-child selector:

tr:nth-child(odd) td, tr.odd td {

background-color: #86B486;

}

Then I am adding some jQuery to add a class to the

markup once the document has loaded – using the very

same nth-child selector that works for browsers that

support it.

<script src="http://code.jquery.com/

jquery-latest.js"></script>

<script>

$(document).ready(function(){

$("tr:nth-child(odd)").addClass("odd");

});

</script>

View Example 3

We could just add a background colour to the element

using jQuery, however I prefer not to mix that information

into the JavaScript as if we change the colour on our table

rows I would need to remember to change it both in the

CSS and in the JavaScript.

206 24 ways 2009 edition

http://24ways.org/examples/cleaner-code-with-css3-selectors/striped-table-jquery.html

DOING SOMETHING DIFFERENT WITH THE
LAST ELEMENT

So here’s another thing that we often deal with. You have

a list of items all floated left with a right hand margin on

each element constrained within a fixed width layout. If

each element has the right margin applied the margin on

the final element will cause the set to become too wide

forcing that last item down to the next row as shown in

the below example where I have used a grey border to

indicate the fixed width.

Currently we have two ways to deal with this. We can put

a negative right margin on the list, the same width as the

space between the elements. This means that the extra

margin on the final element fills that space and the item

doesn’t drop down.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>The last item is different</title>

<style type="text/css">

body {

Cleaner Code with CSS3 Selectors

24 ways 2009 edition 207

padding: 40px;

margin: 0;

font: 0.9em Arial, Helvetica, sans-serif;

}

div#wrapper {

width: 740px;

float: left;

border: 5px solid #ccc;

}

ul.gallery {

margin: 0 -10px 0 0;

padding: 0;

list-style: none;

}

ul.gallery li {

float: left;

width: 240px;

margin: 0 10px 10px 0;

}

</style>

</head>

<body>

<div id="wrapper">

<ul class="gallery">

</div>

</body>

</html>

View Example 4

208 24 ways 2009 edition

http://24ways.org/examples/cleaner-code-with-css3-selectors/last-child.html

The other solution will be to put a class on the final

element and in the CSS remove the margin for this class.

ul.gallery li.last {

margin-right: 0;

}

This second solution may not be easy if the content is

generated from server-side code that you don’t have

access to change.

It could all be so different. In CSS3 we have marvellously

common-sense selectors such as last-child, meaning that

we can simply add rules for the last list item.

ul.gallery li:last-child {

margin-right: 0;

}

View Example 5

This removed the margin on the li which is the last-

child of the ul with a class of gallery. No messing about

sticking classes on the last item, or pushing the width of

the item out wit a negative margin.

If this list of items repeated ad infinitum then you could

also use nth-child for this task. Creating a rule that

makes every 3rd element margin-less.

ul.gallery li:nth-child(3n) {

margin-right: 0;

}

Cleaner Code with CSS3 Selectors

24 ways 2009 edition 209

http://24ways.org/examples/cleaner-code-with-css3-selectors/last-child-css.html

View Example 6

A similar example is where the designer has added

borders to the bottom of each element – but the last item

does not have a border or is in some other way different.

Again, only a class added to the last element will save you

here if you cannot rely on using the last-child selector.

Browser support for last-child

The situation for last-child is similar to that of nth-

child, in that there is no support in Internet Explorer 8.

However, once again it is very simple to replicate the

functionality using jQuery. Adding our .last class to the

last list item.

$("ul.gallery li:last-child").addClass("last");

210 24 ways 2009 edition

http://24ways.org/examples/cleaner-code-with-css3-selectors/last-child-nth-child.html

We could also use the nth-child selector to add the .last

class to every third list item.

$("ul.gallery li:nth-child(3n)").addClass("last");

View Example 7

FUN WITH FORMS

Styling forms can be a bit of a trial, made difficult by the

fact that any CSS applied to the input element will effect

text fields, submit buttons, checkboxes and radio buttons.

As developers we are left adding classes to our form fields

to differentiate them. In most builds all of my text fields

have a simple class of text whereas I wouldn’t dream of

adding a class of para to every paragraph element in a

document.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/

xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>Syling form fields</title>

<style type="text/css">

body {

padding: 40px;

margin: 0;

font: 0.9em Arial, Helvetica, sans-serif;

}

form div {

clear: left;

Cleaner Code with CSS3 Selectors

24 ways 2009 edition 211

http://24ways.org/examples/cleaner-code-with-css3-selectors/last-child-nth-child-jquery.html

padding: 0 0 0.8em 0;

}

form label {

float: left;

width: 120px;

}

form .text, form textarea {

border:1px solid #333;

padding: 0.2em;

width: 400px;

}

form .button {

border: 1px solid #333;

background-color: #eee;

color: #000;

padding: 0.1em;

}

</style>

</head>

<body>

<h1>Send your Christmas list to Santa</h1>

<form method="post" action="" id="christmas-list">

<div><label for="fName">Name</label>

<input type="text" name="fName" id="fName"

class="text" /></div>

<div><label for="fEmail">Email address</label>

<input type="text" name="fEmail" id="fEmail"

class="text" /></div>

<div><label for="fList">Your list</label>

<textarea name="fList" id="fList" rows="10"

cols="30"></textarea></div>

<div><input type="submit" name="btnSubmit"

id="btnSubmit" value="Submit" class="button" ></div>

212 24 ways 2009 edition

</form>

</body>

</html>

View Example 8

Attribute selectors provide a way of targeting elements

by looking at the attributes of those elements. Unlike the

other examples in this article which are CSS3 selectors,

the attribute selector is actually a CSS2.1 selector – it just

doesn’t get much use because of lack of support in

Internet Explorer 6. Using attribute selectors we can

write rules for text inputs and form buttons without

needing to add any classes to the markup. For example

after removing the text and button classes from my text

and submit button input elements I can use the following

rules to target them:

form input[type="text"] {

border: 1px solid #333;

padding: 0.2em;

width: 400px;

}

form input[type="submit"]{

border: 1px solid #333;

background-color: #eee;

color: #000;

padding: 0.1em;

}

View Example 9

Cleaner Code with CSS3 Selectors

24 ways 2009 edition 213

http://24ways.org/examples/cleaner-code-with-css3-selectors/form.html
http://24ways.org/examples/cleaner-code-with-css3-selectors/form-css.html

Another problem that I encounter with forms is where I

am using CSS to position my labels and form elements by

floating the labels. This works fine as long as I want all of

my labels to be floated, however sometimes we get a set

of radio buttons or a checkbox, and I don’t want the label

field to be floated. As you can see in the below example

the label for the checkbox is squashed up into the space

used for the other labels, yet it makes more sense for the

checkbox to display after the text.

I could use a class on this label element however CSS3 lets

me to target the label attribute directly by looking at the

value of the for attribute.

label[for="fOptIn"] {

float: none;

width: auto;

}

214 24 ways 2009 edition

Being able to precisely target attributes in this way is

incredibly useful, and once IE6 is no longer an issue this

will really help to clean up our markup and save us from

having to create all kinds of special cases when generating

this markup on the server-side.

Browser support

The news for attribute selectors is actually pretty good

with Internet Explorer 7+, Firefox 2+ and all other

modern browsers all having support. As I have already

mentioned this is a CSS2.1 selector and so we really

should expect to be able to use it as we head into 2010!

Internet Explorer 7 has slightly buggy support and will fail

on the label example shown above however I discovered a

workaround in the Sitepoint CSS reference comments.

Adding the selector label[htmlFor="fOptIn"] to the

correct selector will create a match for IE7.

IE6 does not support these selector but, once again, you

can use jQuery to plug the holes in IE6 support. The

following jQuery will add the text and button classes to

your fields and also add a checks class to the label for the

checkbox, which you can use to remove the float and

width for this element.

$('form input[type="submit"]').addClass("button");

$('form input[type="text"]').addClass("text");

$('label[for="fOptIn"]').addClass("checks");

Cleaner Code with CSS3 Selectors

24 ways 2009 edition 215

http://reference.sitepoint.com/css/attributeselector#usernote472

View Example 10

The selectors I’ve used in this article are easy to overlook

as we do have ways to achieve these things currently. As

developers – especially when we have frameworks and

existing code that cope with these situations – it is easy to

carry on as we always have done.

I think that the time has come to start to clean up our

front and backend code and replace our reliance on

classes with these more advanced selectors. With the

help of a little JavaScript almost all users will still get the

full effect and, where we are dealing with purely visual

effects, there is definitely a case to be made for not

worrying about the very small percentage of people with

old browsers and no JavaScript. They will still receive a

readable website, it may just be missing some of the

finesse offered to the modern browsing experience.

216 24 ways 2009 edition

http://24ways.org/examples/cleaner-code-with-css3-selectors/form-jquery.html

ABOUT THE AUTHOR

Rachel Andrew is a Director of edgeofmyseat.com, a UK web

development consultancy and creators of the small content

management system, Perch. She is the author of a number of

books, most recently The Profitable Side Project Handbook and

CSS3 Layout Modules, and is a regular columnist for A List

Apart.

When not writing about business and technology on her blog at

rachelandrew.co.uk or speaking at conferences, you will usually

find Rachel running up and down one of the giant hills in Bristol.

Cleaner Code with CSS3 Selectors

24 ways 2009 edition 217

http://grabaperch.com
http://rachelandrew.co.uk/books
http://rachelandrew.co.uk/books/the-profitable-side-project
http://rachelandrew.co.uk/books/css3-layout-modules
http://alistapart.com/author/rachelandrew
http://alistapart.com/author/rachelandrew
http://rachelandrew.co.uk
http://lanyrd.com/profile/rachelandrew/

Jina Bolton 24ways.org/200921

21. Make Out Like a
Bandit

If you are anything like me, you are a
professional juggler. No, we don’t juggle
bowling pins or anything like that (or do
you? Hey, that’s pretty rad!). I’m talking
about the work that we juggle daily. In my
case, I’m a full-time designer, a half-time
graduate student, a sometimes author and
conference speaker, and an all-the-time
social networker. Only two of these
“positions” have actually put any money in
my pocket (and, well, the second one takes a
lot of money out). Still, this is all part of the
work that I do. Your work situation is
probably similar. We are workaholics.

So if we work so much in our daily lives, shouldn’t we be

making out like bandits? Umm, honestly, I’m not hitting on

you, silly. I’m talking about our success. We work and work

and work. Shouldn’t we be filthy, stinking rich? Well…

okay, that’s not quite what I mean either. I’m not

necessarily talking about money (though that could

218 24 ways 2009 edition

http://24ways.org/200921

potentially be a part of it). I’m talking about success — as

in feeling a true sense of accomplishment and feeling

happy about what we do and why we do it.

It’s important to feel accomplished and a general

happiness in our work. To make out like a bandit (or have

an incredible amount of success), you can either get lucky

or work hard for it. And if you’re going to work hard for it,

you might as well make it all meaningful and worthwhile.

This is what I strive for in my own work and my life, and

the following points I’m sharing with you are the steps I

am taking to work toward this.

I know the price of success: dedication, hard
work & an unremitting devotion to the things
you want to see happen. — Frank Lloyd Wright

LEARN. PARTICIPATE. DO.

The best way to get good at something is to keep doing

whatever it is you’re doing that you want to be good at.

For example, a sushi-enthusiast might take a sushi-making

class because she wants to learn to make sushi for herself.

It totally makes sense while the teacher demonstrates all

the procedures, materials, and methods needed to make

good, beautiful sushi. Later, the student goes home and

tries to make sushi on her own, she gets totally confused

and lost. Okay, I’m not even going to hide it, I’m talking

Make Out Like a Bandit

24 ways 2009 edition 219

about myself (this happened to me). As much as I love

sushi, I couldn’t even begin to make good sushi because

I’ve never really practiced.

Take advantage of learning opportunities where possible.

Whether you’re learning CSS, Actionscript, or visual

design, the best way to grasp how to do things is to

participate, practice, do. Apply what you learn in your

work. Participation is so vital to your success. If you have

problems, let people know, and ask. But definitely practice

on your own. And as cliché as it may sound, believe in

yourself because if you don’t think you can do it, no one

else will think you can either.

MAINTAIN MOMENTUM

With whatever it is you’re doing, if you find yourself “on a

roll”, you should take advantage of that momentum and

keep moving. Sure, you’ll definitely want to take breaks

here or there, but remember that momentum can be very

difficult to obtain again once you’ve lost it. Get it done!

DEAL WITH PEOPLE

Whether you love or hate people, the fact is, you gotta

deal with them — even the difficult ones. If you’re in a

management position, then you know pretty well that

most people don’t like being told what to do (even if that’s

their job). Find ways to get people excited about what

220 24 ways 2009 edition

they’re doing. Make people feel that they (and what they

do) are needed — people respond better if they’re valued,

not commanded. Even if you’re not in a management

position, this still applies to the way you work with your

coworkers, clients, vendors, etc.

Resolve any conflicts right away. Conflicts will inevitably

happen. Move on to how you can improve the situation,

and do it as quickly as possible. Don’t spend too much

time focusing on whose screw up it is — nobody feels good

in this situation. Also, try to keep people informed on

whatever it is you need or what it is you’re doing. If you’re

waiting on something from someone, and it’s been a while,

don’t be afraid to say something (tactfully). Sometimes

people are forgetful — or just slacking. Hey, it happens!

HELP YOURSELF BY HELPING OTHERS

What are some of the small, simple things you can do

when you’re working that will help the people you work

with (and in most cases, will end up helping yourself)? For

example: if you’re a designer, perhaps taking a couple

minutes now to organize and name your Photoshop layers

will end up saving time later (since it will be easier to find

things). This is going to help both you and your team. Or,

developers: taking some time to write some

documentation (even if it’s as simple as a comment in the

code, or a well-written commit message) could potentially

save valuable time for both you and your team later.

Make Out Like a Bandit

24 ways 2009 edition 221

Maybe you have to take a little time to sit down with a

coworker and explain why something works the way it

does. This helps them out tremendously — and will most

likely lead to them respecting you a little more. This is a

benefit.

If you make little things like this a habit, people will notice.

People will enjoy working with you. People will trust you

and rely on you. Sure, it might seem beneficial at any given

moment to be “in it for yourself” (and therefore only

helping yourself), but that won’t last very long. Helping

others (whether it be a small or large feat) will cause a

positive impact in the long run — and that is what will be

more valuable to you and your career.

DO WORK THAT IS MEANINGFUL

One of the best ways to feel successful about what you do

is to feel good and happy about it. And a great way to feel

good and happy about what you’re doing is to actually do

good. This could be purpose-driven work that focuses on

sustainability and environmentalism, or work that helps

support causes and charity. Perhaps the work simply

inspires people. Or maybe the work is just something you

are very passionate about. Whatever the work may be, try

working on projects that are meaningful to you. You’ll do

well simply by being more motivated and interested. And

it’s a double-win if the project is meaningful to others as

well.

222 24 ways 2009 edition

http://sustainableparty.com/
http://www.storyofstuff.com/
http://bakingforgood.com/
http://www.charitywater.org/
http://fiftypeopleonequestion.com/

I feel very fortunate to work at a place like Crush + Lovely,

where we have found quite frequently that the projects

that inspire people, focus on global and social good, and

create some sort of positive impact are the very projects

that bring us more paid projects. But more importantly,

we are happy and excited to do it. You might not work at a

company that takes on those types of projects. But

perhaps you have your own personal endeavors that

create this excitement for you. Elliot Jay Stocks wrote

about having pet projects. Do you take on side projects?

What are those projects?

Over the last couple years, I’ve seen some really fantastic

side projects come out that are great examples of

meaningful work. These projects reflect the passions and

goals of the respective designers and developers involved,

and therefore become quite successful (because the

people involved simply love what they are doing while

they’re doing it). Some of these projects include:

▪ Typedia is a shared encyclopedia of typefaces which

serves as a resource to classify, categorize, and connect

typefaces. It was founded by Jason Santa Maria, a graphic

designer with a love and passion for typography. He

created it as a solution to a problem he faced as a

designer: finding the right typeface.

Make Out Like a Bandit

24 ways 2009 edition 223

http://crushlovely.com
http://24ways.org/2009/a-pet-project-is-for-life-not-just-for-christmas
http://typedia.com/
http://jasonsantamaria.com

▪ Huffduffer was created by Jeremy Keith, a web

developer who wanted to create a podcast of inspirational

talks — but after he found that this could be tedious, he

decided to create a tool to automate this.

▪ Level & Tap was created by passionate photographer

and web developer, Tom Watson. It began as a

photography print store for Tom’s best personal

photography. Over time, more photographers were added

to the site and the site has grown to become quite a great

collection of beautiful photography.

▪ Heat Eat Review is a review blog created by

information architect and user experience designer, Abi

Jones. As a foodie, she is able to use this passion for this

blog, as it focuses on reviewing TV Dinners, Frozen Meals,

and Microwavable Foods.

▪ Art in My Coffee, a favorite personal project of my own,

is a photo blog of coffee art I created, after I found that my

friends and I were frequently posting coffee art photos to

Flickr, Twitter, and other websites. After the blog became

more popular, I teamed up with Meagan Fisher on the

project, who has just as much a passion for coffee art, if

not more.

SO, WHAT’S IMPORTANT TO YOU?

This is the very, very important question here. What really

matters to you most? Beyond just working on meaningful

projects you are passionate about, is the work you’re

224 24 ways 2009 edition

http://huffduffer.com/
http://adactio.com/
http://levelandtap.com/
http://tincorporated.com/
http://heateatreview.com/
http://jonesabi.com/
http://jonesabi.com/
http://artinmycoffee.com
http://owltastic.com

doing the right work for you, so that you can live a good

lifestyle? Scott Boms wrote an excellent article, Burnout,

in which he shares his own experience in battling stress

and exhaustion, and what he learned from it. You should

definitely read the article in its entirety, but a couple of his

points that are particularly excellent are:

▪ Make time for numero uno, in which you make time for

the things in life that make you happy

▪ Examine your values, goals, and measures of success,

in which you work toward the things you are passionate

about, your own personal development, and focusing on

the things that matter.

A solid work-life balance can be a challenging struggle to

obtain. Of course, you can cheat this by finding ways to

combine the things you love with the things you do (so

then it doesn’t even feel like you’re working — oh, you

sneaky little bandit!). However, there are other factors to

consider beyond your general love for the work you’re

doing. Take proper care of yourself physically, mentally,

and socially.

SO, ARE YOU MAKING OUT LIKE A BANDIT?

Do you feel accomplished and generally happy with your

work? If not, perhaps that is something to focus on for the

next year. Consider your work (both in your job as well as

Make Out Like a Bandit

24 ways 2009 edition 225

http://www.alistapart.com/articles/burnout/

any side projects you may take on) and how it benefits you

— present and future. Take any steps necessary to get you

to where you need to be. If you are miserable, fix it!

Finally, it’s important to be thankful for the things that

matter to you and make you happy. Pass it along everyday.

Thank people. It’s a simple thing, really. Saying “thank you”

can and will have enormous impact on the people around

you. Oh. And, I apologize if the title of this article led you

to thinking it would teach you how to be an amazing

kisser. That’s a different article entirely for 24 ways to

impress your friends!

226 24 ways 2009 edition

ABOUT THE AUTHOR

Jina Bolton is a Senior Product Designer at Salesforce UX,

where she helps design and develop systems for enterprise

software. She also loves Sass; she leads Team Sass Design, an

open source task force that redesigned the Sass brand and

website. Jina also organizes the San Francisco Sass Meet Up,

The Mixin. She coauthored two books, Fancy Form Design and

The Art & Science of CSS. Previously, she has worked with rad

companies including Apple, Engine Yard, and Crush + Lovely.

Photo: Nick Howland

Make Out Like a Bandit

24 ways 2009 edition 227

http://sushiandrobots.com/
http://sass-lang.com/styleguide/team
http://themixinsf.com/

Jeffrey Zeldman 24ways.org/200922

22. Real Fonts and
Rendering: The New
Elephant in the Room

My friend, the content strategist Kristina
Halvorson, likes to call content “the
elephant in the room” of web design. She
means it’s the huge problem that no one on
the web development team or client side is
willing to acknowledge, face squarely, and
plan for.

A typical web project will pass through many helpful

phases of research, and numerous beneficial user

experience design iterations, while the content—which in

most cases is supposed to be the site’s primary

focus—gets handled haphazardly at the end. Hence,

elephant in the room, and hence also artist Kevin Cornell’s

recent use of elephantine imagery to illustrate A List Apart

articles on the subject. But I digress.

Without discounting the primacy of the content problem,

we web design folk have now birthed ourselves a second

lumbering mammoth, thanks to our interest in “real fonts

228 24 ways 2009 edition

http://24ways.org/200922
http://contentstrategy.com/
http://contentstrategy.com/
http://www.alistapart.com/articles/content-strategist-as-digital-curator/
http://www.alistapart.com/issues/296

on the web“ (the unfortunate name we’ve chosen for the

recent practice of serving web-licensed fonts via CSS’s

decade-old @font-face declaration—as if Georgia,

Verdana, and Times were somehow unreal).

For the fact is, even bulletproof and mo’ bulletproofer

@font-face CSS syntax aren’t really bulletproof if we care

about looks and legibility across browsers and platforms.

HYENAS IN THE BREAKFAST NOOK

The problem isn’t just that foundries have yet to agree on

a standard font format that protects their intellectual

property. And that, even when they do, it will be a while

before all browsers support that standard—leaving aside

the inevitable politics that impede all standardization

efforts. Those are problems, but they’re not the elephant.

Call them the coyotes in the room, and they’re slowly

being tamed.

Nor is the problem that workable, scalable business

models (of which Typekit‘s is the most visible and, so far,

the most successful) are still being shaken out and tested.

The quality and ease of use of such services, their stability

on heavily visited sites (via massively backed-up server

clusters), and the fairness and sustainability of their

pricing will determine how licensing and serving “real

fonts” works in the short and long term for the majority of

designer/developers.

Real Fonts and Rendering: The New Elephant in the Room

24 ways 2009 edition 229

http://www.alistapart.com/issues/296
http://www.alistapart.com/articles/cssatten
http://www.alistapart.com/articles/cssatten
http://paulirish.com/2009/bulletproof-font-face-implementation-syntax/
http://readableweb.com/mo-bulletproofer-font-face-css-syntax/
http://hacks.mozilla.org/2009/10/woff/
http://typekit.com/

Nor is our primary problem that developers with no

design background may serve ugly or illegible fonts that

take forever to load, or fonts that take a long time to

download and then display as ordinary system fonts (as

happens on, say, about.validator.nu). Ugliness and poor

optimization on the web are nothing new. That support

for @font-face in Webkit and Mozilla browsers (and for

TrueType fonts converted to Embedded OpenType in

Internet Explorer) adds deadly weapons to the non-

designer’s toolkit is not the technology’s fault. JavaScript

and other essential web technologies are equally

susceptible to abuse.

BEAUTY IS IN THE EYE OF THE RENDERING
ENGINE

No, the real elephant in the room—the thing few web

developers and no “web font” enthusiasts are talking

about—has to do with legibility (or lack thereof) and

aesthetics (or lack thereof) across browsers and

platforms. Put simply, even fonts optimized for web use

(which is a whole thing: ask a type designer) will not look

good in every browser and OS. That’s because every

browser treats hinting differently, as does every OS, and

every OS version.

Firefox does its own thing in both Windows and Mac OS,

and Microsoft is all over the place because of its need to

support multiple generations of Windows and Cleartype

230 24 ways 2009 edition

http://about.validator.nu/

and all kinds of hardware simultaneously. Thus “real type”

on a single web page can look markedly different, and

sometimes very bad, on different computers at the same

company. If that web page is your company’s, your opinion

of “web fonts” may suffer, and rightfully. (The advantage

of Apple’s closed model, which not everyone likes, is that

it allows the company to guarantee the quality and

consistency of user experience.)

As near as my font designer friends and I can make out,

Apple’s Webkit in Safari and iPhone ignores hinting and

creates its own, which Apple thinks is better, and which

many web designers think of as “what real type looks like.”

The forked version of Webkit in Chrome, Android, and

Palm Pre also creates its own hinting, which is close to

iPhone’s—close enough that Apple, Palm, and Google

could propose it as a standard for use in all browsers and

platforms. Whether Firefox would embrace a theoretical

Apple and Google standard is open to conjecture, and I

somehow have difficulty imagining Microsoft buying

in—even though they know the web is more and more

mobile, and that means more and more of their customers

are viewing web content in some version of Webkit.

THE END OF SIMPLE

There are ways around this ugly type ugliness, but they

involve complicated scripting and sniffing—the very

nightmares from which web standards and the simplicity

Real Fonts and Rendering: The New Elephant in the Room

24 ways 2009 edition 231

of @font-face were supposed to save us. I don’t know that

even mighty Typekit has figured out every needed

variation yet (although, working with foundries, they

probably will).

For type foundries, the complexity and expense of

rethinking classic typefaces to survive in these hostile

environments may further delay widespread adoption of

web fonts and the resolution of licensing and formatting

issues. The complexity may also force designers (even

those who prefer to own) to rely on a hosted rental model

simply to outsource and stay current with the detection

and programming required.

Forgive my tears. I stand in a potter’s field of ideas like

“Keep it simple,” by a grave whose headstone reads “Write

once, publish everywhere.”

232 24 ways 2009 edition

ABOUT THE AUTHOR

Jeffrey Zeldman is the founder and executive creative director

of Happy Cog™, an agency of web design specialists, and the co-

founder (with Eric Meyer) of An Event Apart.

In 1995, the former art director and copywriter launched one of

the first personal sites (Jeffrey Zeldman Presents) and began

publishing web design tutorials. In 1998 he co-founded (and for

several years led) The Web Standards Project, a grassroots

coalition that brought standards to our browsers. That same

year, he launched A List Apart “for people who make websites.”

Real Fonts and Rendering: The New Elephant in the Room

24 ways 2009 edition 233

http://www.happycog.com/
http://www.zeldman.com/
http://www.webstandards.org/
http://www.alistapart.com/

Jeffrey has written many articles and two books, notably the

foundational web standards text Designing With Web Standards,

now in its third edition.

Photo: John Morrison

234 24 ways 2009 edition

http://www.zeldman.com/dwws/
http://www.flickr.com/photos/localcelebrity/

Andrew Clarke 24ways.org/200923

23. Ignorance Is Bliss

This is a true story.

MEET MIKE

Mike’s a smart guy. He knows a great browser when he

sees one. He uses Firefox on his Windows PC at work and

Safari on his Mac at home. Mike asked us to design a Web

site for his business. So we did.

We wanted to make the best Web site for Mike that we

could, so we used all of the CSS tools that are available

today. That meant using RGBa colour to layer elements,

border-radius to add subtle rounded corners and

(possibly most experimental of all new CSS), generated

gradients.

Ignorance Is Bliss

24 ways 2009 edition 235

http://24ways.org/200923
http://stuffandnonsense.co.uk

The home page Mike sees in Safari on his Mac

Mike loves what he sees.

236 24 ways 2009 edition

MEET SAM

Sam works with Mike. She uses Internet Explorer 7

because it came on the Windows laptop that the company

bought her when she joined.

Ignorance Is Bliss

24 ways 2009 edition 237

The home page Sam sees in Internet Explorer 7 on her PC

Sam loves the new Web site too.

238 24 ways 2009 edition

How could both of them be happy when they experienced

the Web site differently?

The new WYSIWYG

When I first presented my designs to Mike and Sam, I

showed them a Web page made with HTML and CSS in

their respective browsers and not a picture of a Web

page. By showing neither a static image of my design, I set

none of the false expectations that, by definition, a static

Photoshop or Fireworks visual would have established.

Mike saw rounded corners and subtle shadows in Firefox

and Safari. Sam saw something equally as nice, just a little

different, in Internet Explorer. Both were very happy

because they saw something that they liked.

Neither knew, or needed to know, about the subtle

differences between browsers. Their users don’t need to

know either.

That’s because in the real world, people using the Web

don’t find a Web site that they like, then open up another

browser to check that it looks they same. They simply buy

what they came to buy, read what what they came to read,

do what they came to do, then get on with their lives in

blissful ignorance of what they might be seeing in another

browser.

Ignorance Is Bliss

24 ways 2009 edition 239

Often when I talk or write about using progressive CSS,

people ask me, “How do you convince clients to let you

work that way? What’s your secret?” Secret? I tell them

what they need to know, on a need-to-know basis.

EPILOGUE

Sam has a new iPhone that Mike bought for her as a

reward for achieving her sales targets. She loves her

iPhone and was surprised at just how fast and good-

looking the company Web site appears on that. So she

asked,

“Andy, I didn’t know you optimised our site for
mobile. I don’t remember seeing an invoice for
that.”

I smiled.

“That one was on the house.”

240 24 ways 2009 edition

ABOUT THE AUTHOR

Andrew Clarke runs Stuff and Nonsense, a tiny web design

company where they make fashionably flexible websites.

Andrew’s the author of Transcending CSS and Hardboiled Web

Design and hosts the popular weekly podcast Unfinished

Business where he discusses the business side of web, design

and creative industries with his guests. He tweets as

@malarkey.

Ignorance Is Bliss

24 ways 2009 edition 241

http://stuffandnonsense.co.uk/
http://unfinished.bz/
http://unfinished.bz/
http://twitter.com/malarkey

Meagan Fisher 24ways.org/200924

24. Make Your Mockup in
Markup

We aren’t designing copies of web pages,
we’re designing web pages.

Andy Clarke, via Quotes on Design

The old way

I used to think the best place to design a website was in an

image editor. I’d create a pixel-perfect PSD filled with

generic content, send it off to the client, go through

several rounds of revisions, and eventually create the

markup.

Does this process sound familiar? You’re not alone. In a

very scientific and official survey I conducted, close to

90% of respondents said they design in Photoshop before

the browser.

242 24 ways 2009 edition

http://24ways.org/200924
http://quotesondesign.com/andy-clarke/
http://twitter.com/meaganfisher/status/6415419346

That process is whack, yo!

Recently, thanks in large part to the influence of design

hero Dan Cederholm, I’ve come to the conclusion that a

website’s design should begin where it’s going to live: in

the browser.

DIE PHOTOSHOP, DIE

Some of you may be wondering, “what’s so bad about

using Photoshop for the bulk of my design?” Well, any

seasoned designer will tell you that working in Photoshop

is akin to working in a minefield: you never know when it’s

going to blow up in your face.

The application Adobe Photoshop CS4 has unexpectedly ruined
your day.

Photoshop’s propensity to crash at crucial moments is a

running joke in the industry, as is its barely usable

interface. And don’t even get me started on the hot,

steaming pile of crap that is text rendering.

Make Your Mockup in Markup

24 ways 2009 edition 243

http://simplebits.com/
http://simplebits.com/
http://twitter.com/cameronmoll/status/6303122170
http://adobegripes.tumblr.com/
http://adobegripes.tumblr.com/
http://cssbeauty.com/skillshare/discussion/407/appearance-of-text-in-photoshop-vs-browser/

Text rendered in Photoshop (left) versus Safari (right).

Crashing and text rendering issues suck, but we’ve

learned to live with them. The real issue with using

Photoshop for mockups is the expectations you’re setting

for a client. When you send the client a static image of the

design, you’re not giving them the whole picture — they

can’t see how a fluid grid would function, how the design

will look in a variety of browsers, basic interactions like

:hover effects, or JavaScript behaviors. For more on the

disadvantages to showing clients designs as images rather

than websites, check out Andy Clarke’s Time to stop

showing clients static design visuals.

A necessary evil?

In the past we’ve put up with Photoshop because it was

vital to achieving our beloved rounded corners, drop

shadows, outer glows, and gradients. However, with the

recent adaptation of CSS3 in major browsers, and the

slow, joyous death of IE6, browsers can render mockups

that are just as beautiful as those created in an image

editor. With the power of RGBA, text-shadow, box-

shadow, border-radius, transparent PNGs, and @font-

244 24 ways 2009 edition

http://www.alistapart.com/articles/fluidgrids
http://forabeautifulweb.com/blog/about/time_to_stop_showing_clients_static_design_visuals/
http://forabeautifulweb.com/blog/about/time_to_stop_showing_clients_static_design_visuals/

face combined, you can create a prototype that radiates

shiny awesomeness right in the browser. If you can see

this epic article through to the end, I’ll show you step by

step how to create a gorgeous mockup using mostly

markup.

GET STARTED BY GETTING NAKED

Content precedes design. Design in the absence
of content is not design, it’s decoration.

Jeffrey Zeldman

In the beginning, don’t even think about style. Instead,

start with the foundation: the content. Lay the

groundwork for your markup order, and ensure that your

design will be useable with styles and images turned off.

This is great for prioritizing the content, and puts you on

the right path for accessibility and search engine

optimization. Not a bad place to start, amirite?

Make Your Mockup in Markup

24 ways 2009 edition 245

http://twitter.com/zeldman/statuses/804159148

An example of unstyled content, in all its naked glory. View it
large.

FLUSH OUT THE LAYOUT

The next step is to structure the content in a usable way.

With CSS, making basic layout changes is as easy as

switching up a float, so experiment to see what structure

suits the content best.

246 24 ways 2009 edition

http://owltastic.com/clients/24ways/step1/index.html
http://owltastic.com/clients/24ways/step1/index.html

The mockup with basic layout work done.

Got your grids covered

There are a variety of tools that allow you to layer a grid

over your browser window. For Mac users I recommend

using Slammer, and PC users can check out one of the

bookmarklets that are available, such as 960 Gridder.

The mockup with a grid applied using Slammer.

Once you’ve found a layout that works well for the

content, pass it along to the client for review. This keeps

them involved in the design process, and gives them an

idea of how the site will be structured when it’s live.

Make Your Mockup in Markup

24 ways 2009 edition 247

http://ringce.com/slammer
http://gridder.andreehansson.se/
http://ringce.com/slammer

START YOUR STYLING

Now for the fun part: begin applying the presentation

layer. Let usability considerations drive your decisions

about color and typography; use highlighted colors and

contrasting typefaces on elements you wish to emphasize.

RGBA? More like RGByay!

Introducing color is easy with RGBA. I like to start with

the page’s main color, then use white at varying opacities

to empasize content sections.

In the example mockup the body background is set to
rgba(203,111,21), the content containers are set to
rgba(255,255,255,0.7), and a few elements are highlighted
with rgba(255,255,255,0.1) If you’re not sure how RGBA
works, check out Drew McLellan’s super helpful 24ways article.

248 24 ways 2009 edition

http://24ways.org/2009/working-with-rgba-colour

Laying down type

Just like with color, you can use typography to evoke a

feeling and direct a user’s attention. Have contrasting

typefaces (like serif headlines and sans-serif body text) to

group the content into meaningful sections.

In a recent A List Apart article, the Master of Web

Typography™ Jason Santa Maria offers excellent advice

on how to choose your typefaces:

Write down a general description of the
qualities of the message you are trying to
convey, and then look for typefaces that
embody those qualities.

Sounds pretty straightforward. I wanted to give my design

a classic feel with a hint of nostalgia, so I used Georgia for

the headlines, and incorporated the ornate ampersand

from Baskerville into the header.

A closeup on the site’s header.

Make Your Mockup in Markup

24 ways 2009 edition 249

http://www.alistapart.com/articles/on-web-typography/
http://jasonsantamaria.com/

LET’S GET SEXY

The design doesn’t look too bad as it is, but it’s still pretty

flat. We can do better, and after mixing in some CSS3 and

a couple of PNGs, it’s going to get downright steamy in

here.

Give it some glow

Objects in the natural world reflect light, so to make your

design feel tangible and organic, give it some glow. In the

example design I achieved this by creating two white to

transparent gradients of varying opacities. Both have a

solid white border across their top, which gives edges a

double border effect and makes them look sharper. Using

CSS3’s text-shadow on headlines and box-shadow on

content modules is another quick way to add depth.

250 24 ways 2009 edition

A wide and closeup view of the design with gradients, text-
shadow and box-shadow added. For information on how to
implement text-shadow and box-shadow using RGBA, check out
the article I wrote on it last week.

37 pieces of flair

Okay, maybe you don’t need that much flair, but it couldn’t

hurt to add a little; it’s the details that will set your design

apart. Work in imagery and texture, using PNGs with an

alpha channel so you can layer images and still tweak the

color later on.

The design with grungy textures, a noisy diagonal stripe
pattern, and some old transportation images layered behind the
text. Because the colors are rendered using RGBA, these images
bleed through the content, giving the design a layered feel. Best
viewed large.

Make Your Mockup in Markup

24 ways 2009 edition 251

http://owltastic.com/2009/12/shadows-and-css3/
http://www.youtube.com/watch?v=-bXHPqj3NcI
http://owltastic.com/clients/24ways/prototype/index.html
http://owltastic.com/clients/24ways/prototype/index.html

SEND IT OFF

Hey, look at that. You’ve got a detailed, well structured

mockup for the client to review. Best of all, your markup is

complete too. If the client approves the design at this

stage, your template is practically finished. Bust out the

party hats!

NOT SO FAST, BUSTER!

So I don’t know about you, but I’ve never gotten a design

past the client’s keen eye for criticism on the first go. Let’s

review some hypothetical feedback (none of which is too

outlandish, in my experience), and see how we’d make the

requested changes in the browser.

Updating the typography

My ex-girlfriend loved Georgia, so I never want
to see it again. Can we get rid of it? I want to
use a font that’s chunky and loud, just like my
stupid ex-girlfriend.

Fakey McClient

Yikes! Thankfully with CSS, removing Georgia is as easy

as running a find and replace on the stylesheet. In my

revised mockup, I used @font-face and League Gothic on

the headlines to give the typography the, um, unique feel

the client is looking for.

252 24 ways 2009 edition

http://www.theleagueofmoveabletype.com/fonts/7-league-gothic

The same mockup, using @font-face on the headlines. If you’re
unfamiliar with implementing @font-face, check out Nice Web
Type‘s helpful article.

Adding rounded corners

I’m not sure if I’ll like it, but I want to see what
it’d look like with rounded corners. My cousin,
a Web 2.0 marketing guru, says they’re trendy
right now.

Fakey McClient

Switching to rounded corners is a nightmare if you’re

doing your mockup in Photoshop, since it means

recreating most of the shapes and UI elements in the

design. Thankfully, with CSS border-radius comes to our

rescue! By applying this gem of a style to a handful of

classes, you’ll be rounded out in no time.

Make Your Mockup in Markup

24 ways 2009 edition 253

http://nicewebtype.com/notes/2009/10/30/how-to-use-css-font-face/
http://nicewebtype.com/notes/2009/10/30/how-to-use-css-font-face/

The mockup with rounded corners, created using border-
radius. If you’re not sure how to implement border-radius,
check out CSS3.info‘s quick how-to.

Making changes to the color

The design is too dark, it’s depressing! They
call it ‘the blues’ for a reason, dummy. Can you
try using a brighter color? I want orange, like
Zeldman uses.

Fakey McClient

Making color changes is another groan-inducing task

when working in Photoshop. Finding and updating every

background layer, every drop shadow, and every link can

take forever in a complex PSD. However, if you’ve done

254 24 ways 2009 edition

http://www.css3.info/preview/rounded-border/

your mockup in markup with RGBA and semi-transparent

PNGs, making changes to your color is as easy as updating

the body background and a few font colors.

The mockup with an orange color scheme. Best viewed large.

AHEM, WHAT ABOUT INTERNET EXPLORER?

Gee, thanks for reminding me, buzzkill. Several of the CSS

features I’ve suggested you use, such as RGBA, text-

shadow and box-shadow, and border-radius, are not

supported in Internet Explorer. I know, it makes me sad

too. However, this doesn’t mean you can’t try these

techniques out in your markup based mockups. The point

Make Your Mockup in Markup

24 ways 2009 edition 255

http://owltastic.com/clients/24ways/prototype-alt/index.html

here is to get your mockups done as efficiently as possible,

and to keep the emphasis on markup from the very

beginning.

Once the design is approved, you and the client have to

decide if you can live with the design looking different in

different browsers. Is it so bad if some users get to see

drop shadows and some don’t? Or if the rounded corners

are missing for a portion of your audience? The design

won’t be broken for IE people, they’re just missing out on

a few visual treats that other users will see.

The idea of rewarding users who choose modern

browsers is not a new concept; Dan covers it thoroughly

in Handcrafted CSS, and it’s been written about in the

past by Aaron Gustafson and Andy Clarke on several

occasions. I believe we shouldn’t have to design for the

lowest common denominator (cough, IE6 users, cough);

instead we should create designs that are beautiful in

modern browsers, but still degrade nicely for the other

guy. However, some clients just aren’t that progressive,

and in that case you can always use background images

for drop shadows and rounded corners, as you have in the

past.

256 24 ways 2009 edition

http://handcraftedcss.com/
http://www.alistapart.com/articles/progressiveenhancementwithcss
http://www.stuffandnonsense.co.uk/
http://forabeautifulweb.com/blog/about/five_css_design_browser_differences_i_can_live_with/
http://www.stuffandnonsense.co.uk/blog/about/what_does_browser_testing_mean_today/

CLOSING THOUGHTS

With the advent of CSS3, browsers are just as capable of

giving us beautiful, detailed mockups as Photoshop, and in

half the time. I’m not the only one to make an argument

for this revised process; in his article Time to stop

showing clients static design visuals, and in his

presentation Walls Come Tumbling Down, Andy Clarke

makes a fantastic case for creating your mockups in

markup.

So I guess my challenge to you for 2010 is to get out of

Photoshop and into the code. Even if the arguments for

designing in the browser aren’t enough to make you

change your process permanently, it’s worthwhile to give

it a try. Look at the New Year as a time to experiment;

applying constraints and evaluating old processes can do

wonders for improving your efficiency and creativity.

Make Your Mockup in Markup

24 ways 2009 edition 257

http://forabeautifulweb.com/blog/about/time_to_stop_showing_clients_static_design_visuals/
http://forabeautifulweb.com/blog/about/time_to_stop_showing_clients_static_design_visuals/
http://www.stuffandnonsense.co.uk/blog/about/walls_come_tumbling_down_presentation_slides_and_transcript/
http://www.stuffandnonsense.co.uk/

ABOUT THE AUTHOR

Meagan Fisher is passionate about owls, coffee, and web

design. In her ongoing mission to make the web a better place,

she’s partnered with some of the best designers in the industry,

such as SimpleBits, Happy Cog, and Crush + Lovely. When she’s

not creating interfaces, she’s speaking, tweeting, writing on

Owltastic, or posting coffee art photography to Art in my

Coffee.

258 24 ways 2009 edition

http://simplebits.com/
http://happycog.com/
http://crushlovely.com/
http://twitter.com/meaganfisher
http://owltastic.com/
http://artinmycoffee.com/
http://artinmycoffee.com/

	Credits
	2009
	Working With RGBA Colour
	What is RGBA Colour?
	Don’t We Have Opacity Already?
	The How-To
	Supporting All Browsers
	Falling back to solid colour
	Falling back to a PNG

	Next Steps
	In Conclusion
	About the author

	Breaking Out The Edges of The Browser
	Web Storage
	Support
	Usage
	Usage Notes
	Alternatives

	Offline Applications
	Support
	Usage
	How it works

	Breaking out of the Browser
	About the author

	Have a Field Day with HTML5 Forms
	Meaningful markup
	A good foundation
	Making things look nice
	Styling the lists
	Form controls
	About the author

	What makes a website successful? It might not be what you expect!
	Cure the illness not the symptoms
	Understand the business objectives
	Establish clear calls to action
	Test against the right tasks
	The shocking truth
	About the author

	HTML5: Tool of Satan, or Yule of Santa?
	Canvas
	Forms
	HTML5 DOCTYPE
	About the author

	Front-End Code Reusability with CSS and JavaScript
	Build a versatile slideshow
	Slideshow plugin
	Local Variables
	Cache jQuery Objects
	Build the Images
	Update the Options
	Previous/Next Links
	Pagination

	Demos
	Decide on defaults
	Grab your images
	Metadata ‡
	The takeaway
	About the author

	Type-Inspired Interfaces
	Perfecting Web 2.0
	What’s in a name(plate)?
	Headlining
	Swashbucklers
	Stagger & Swagger
	Overall Design Direction
	Find Your Type
	About the author

	The Construction of Instruction
	Plan what you want to say and plan it out as early as possible
	Use your words
	Be prepared to help
	Be direct and be informative
	Combine copy and visual cues, learn from others and test new combinations
	About the author

	Don't Lose Your :focus
	Keyboard Access
	But I Don’t Like Your Dotted Lines…
	Only Suppress outline For Mouse Users
	In Conclusion
	About the author

	A New Year's Resolution
	Don’t design for the web, just design
	Try something new!
	Tell a story with your design
	Copy
	Graphic Design
	Typography
	Imagery and Colour

	Go one step further
	Parting message
	About the author

	Incite A Riot
	About the author

	Self-Testing Pages with JavaScript
	An all too frequent occurrence
	JavaScript selector engines to the rescue
	Test scripts
	The JavaScript that makes this helpful
	init_tests
	confirm_html
	Is this all we can check for?
	About the author

	Rock Solid HTML Emails
	Same same, but different
	Setting your lowest common denominator
	Use tables for layout
	Set the width in each cell, not the table
	Err toward nesting
	Use a container table for body background colors
	Avoid unnecessary whitespace in table cells

	CSS and general font formatting
	Always move your CSS inline
	Avoid shorthand for fonts and hex notation
	Paragraphs
	Links

	Images in HTML emails
	Avoid spacer images
	Always include the dimensions of your image
	Avoid PNGs
	Provide fallback colors for background images
	Don’t forget alt text
	Use the display hack for Hotmail
	Don’t use floats

	Video in email
	What about mobile email?
	Keep the width less than 600 pixels
	Be aware of automatic text resizing

	Don’t forget to test
	Looking ahead
	Next steps
	About the author

	Going Nuts with CSS Transitions
	Laying the foundations
	Rotation
	Animation
	Throwing polaroids at a table
	And Finally…
	Further reading
	About the author

	CSS Animations
	Howto: A basic spinner
	Conclusion
	About the author

	Designing For The Switch
	The New Typesetters
	The differences between Web Fonts and other fonts
	The Flash of Unstyled Text
	More considered font stacks
	Micro Typography to build better font stacks
	About the author

	The Web Is Your CMS
	Making it easier to access APIs
	Select * from the web and filter it the way I want
	Mixing, matching and using HTML as a data source
	Summary
	About the author

	A Pet Project is For Life, Not Just for Christmas
	Have a pet project to collaborate with your friends
	Have a pet project to escape from your day job
	Have a pet project to fulfill your own needs
	Have a pet project to help people out
	Have a pet project to raise your profile
	Have a pet project to make money
	Have a pet project just for fun
	In conclusion
	About the author

	Spruce It Up
	Data URIs
	Be Selective
	No Unnecessary Additives
	About the author

	Cleaner Code with CSS3 Selectors
	The wonder of nth-child
	Browser support

	Doing something different with the last element
	Browser support for last-child

	Fun with forms
	Browser support

	About the author

	Make Out Like a Bandit
	Learn. Participate. Do.
	Maintain momentum
	Deal with people
	Help yourself by helping others
	Do work that is meaningful
	So, what’s important to you?
	So, are you making out like a bandit?
	About the author

	Real Fonts and Rendering: The New Elephant in the Room
	Hyenas in the Breakfast Nook
	Beauty is in the Eye of the Rendering Engine
	The End of Simple
	About the author

	Ignorance Is Bliss
	Meet Mike
	Meet Sam
	The new WYSIWYG

	Epilogue
	About the author

	Make Your Mockup in Markup
	The old way
	That process is whack, yo!
	Die Photoshop, die
	A necessary evil?

	Get started by getting naked
	Flush out the layout
	Got your grids covered

	Start your styling
	RGBA? More like RGByay!
	Laying down type

	Let’s get sexy
	Give it some glow
	37 pieces of flair

	Send it off
	Not so fast, Buster!
	Updating the typography
	Adding rounded corners
	Making changes to the color

	Ahem, what about Internet Explorer?
	Closing thoughts
	About the author

