

Credits

24 ways is the advent calendar for web
geeks. For twenty-four days each December
we publish a daily dose of web design and
development goodness to bring you all a
little Christmas cheer.

▪ 24 ways is brought to you by Perch CMS

▪ Produced by Drew McLellan, Brian Suda, Anna

Debenham and Owen Gregory.

▪ Designed by Paul Robert Lloyd.

▪ eBook published by edgeofmyseat.com and produced

by Rachel Andrew.

▪ Possible only with the help and dedication of our

authors.

2 24 ways 2011 edition

http://grabaperch.com/?ref=24w01
http://allinthehead.com/
http://suda.co.uk/
http://maban.co.uk/
http://maban.co.uk/
http://fullcreammilk.co.uk/
http://paulrobertlloyd.com/
http://edgeofmyseat.com
http://rachelandrew.co.uk/
http://24ways.org/authors/
http://24ways.org/authors/

2011

In October, Steve Jobs died. The thorniest
part of responsive web design, and an arena
for many competing and dissenting voices
was images. 24 ways tackled that and many
other issues head on: conditional loading;
front-end style guides; icon fonts; and the
importance of side projects.

Creating Custom Font Stacks with Unicode-Range............ 5

Conditional Loading for Responsive Designs.......................16

Subliminal User Experience ..23

Adaptive Images for Responsive Designs..............................32

Collaborative Development for a Responsively Designed

Web...46

Defending the Perimeter Against Web Widgets................53

Front-end Style Guides ...60

Adaptive Images for Responsive Designs… Again77

2011

24 ways 2011 edition 3

Composing the New Canon: Music, Harmony,

Proportion..91

Context First: Web Strategy in Four Handy Ws122

Nine Things I've Learned ...133

Displaying Icons with Fonts and Data- Attributes141

Your jQuery: Now With 67% Less Suck...............................150

Design the Invisible to Tell Better Stories on the Web..161

Extracting the Content ..174

CSS3 Patterns, Explained..184

Designing for Perfection ...200

Getting the Most Out of Google Analytics.........................207

Going Both Ways..231

Raising the Bar on Mobile ...243

Taming Complexity ..262

From Side Project to Not So Side Project271

There’s No Formula for Great Designs279

Crafting the Front-end ...289

4 24 ways 2011 edition

Drew McLellan 24ways.org/201101

1. Creating Custom Font
Stacks with Unicode-
Range

Any web designer or front-end developer
worth their salt will be familiar with the CSS
@font-face rule used for embedding fonts in a
web page. We’ve all used it — either directly
in our code ourselves, or via one of the web
font services like Fontdeck, Typekit or
Google Fonts.

If you’re like me, however, you’ll be used to just copying

and pasting in a specific incantation of lines designed to

get different formats of fonts working in different

browsers, and may not have really explored all the

capabilities of @font-face properties as defined by the

spec.

Creating Custom Font Stacks with Unicode-Range

24 ways 2011 edition 5

http://24ways.org/201101

One such property — the unicode-range descriptor —

sounds pretty dull and is easily overlooked. It does,

however, have some fairly interesting possibilities when

put to use in creative ways.

UNICODE-RANGE

The unicode-range descriptor is designed to help when

using fonts that don’t have full coverage of the characters

used in a page. By adding a unicode-range property to a

@font-face rule it is possible to specify the range of

characters the font covers.

@font-face {

font-family: BBCBengali;

src: url(fonts/BBCBengali.ttf) format("opentype");

unicode-range: U+00-FF;

}

In this example, the font is to be used for characters in the

range of U+00 to U+FF which runs from the unexciting

control characters at the start of the Unicode table

(symbols like the exclamation mark start at U+21) right

through to ÿ at U+FF – the extent of the Basic Latin

character range.

By adding multiple @font-face rules for the same family

but with different ranges, you can build up complete

coverage of the characters your page uses by using

different fonts.

6 24 ways 2011 edition

When I say that it’s possible to specify the range of

characters the font covers, that’s true, but what you’re

really doing with the unicode-range property is declaring

which characters the font should be used for. This

becomes interesting, because instead of merely working

with the technical constraints of available characters in a

given font, we can start picking and choosing characters

to use and selectively mix fonts together.

THE BEST AVAILABLE AMPERSAND

A few years back, Dan Cederholm wrote a post

encouraging designers to use the best available

ampersand. Dan went on to outline how this can be

achieved by wrapping our ampersands in a

element with a class applied:

&

A CSS rule can then be written to select the and

apply a different font:

span.amp {

font-family: Baskerville, Palatino, "Book Antiqua",

serif;

}

Creating Custom Font Stacks with Unicode-Range

24 ways 2011 edition 7

http://simplebits.com/notebook/2008/08/14/ampersands-2/
http://simplebits.com/notebook/2008/08/14/ampersands-2/

That’s a perfectly serviceable technique, but the

drawbacks are clear — you have to add extra markup

which is borderline presentational, and you also have to

be able to add that markup, which isn’t always possible

when working with a CMS.

Perhaps we could do this with unicode-range.

A BETTER BEST AVAILABLE AMPERSAND

The Unicode code point for an ampersand is U+26, so the

ampersand font stack above can be created like so:

@font-face {

font-family: 'Ampersand';

src: local('Baskerville'), local('Palatino'),

local('Book Antiqua');

unicode-range: U+26;

}

What we’ve done here is specify a new family called

Ampersand and created a font stack for it with the user’s

locally installed copies of Baskerville, Palatino or Book

Antiqua. We’ve then limited it to a single character range

— the ampersand. Of course, those don’t need to be local

fonts — they could be web font files, too. If you have a font

with a really snazzy ampersand, go for your life.

We can then use that new family in a regular font stack.

8 24 ways 2011 edition

h1 {

font-family: Ampersand, Arial, sans-serif;

}

With this in place, any <h1> elements in our page will use

the Ampersand family (Baskerville, Palatino or Book

Antiqua) for ampersands, and Arial for all other

characters. If the user doesn’t have any of the Ampersand

family fonts available, the ampersand will fall back to the

next item in the font stack, Arial.

YOU DIDN’T THINK IT WAS THAT EASY, DID
YOU?

Oh, if only it were so. The problem comes, as ever, with

the issue of browser support. The unicode-range

property has good support in WebKit browsers (like

Safari and Chrome, and the browsers on most popular

smartphone platforms) and in recent versions of Internet

Explorer. The big stumbling block comes in the form of

Firefox, which has no support at all.

If you’re familiar with how CSS works when it comes to

unsupported properties, you’ll know that if a browser

encounters a property it doesn’t implement, it just skips

that declaration and moves on to the next. That works

perfectly for things like border-radius — if the browser

can’t round off the corners, the declaration is skipped and

the user sees square corners instead. Perfect.

Creating Custom Font Stacks with Unicode-Range

24 ways 2011 edition 9

Less perfect when it comes to unicode-range, because if

no range is specified then the default is that the font is

applied for all characters — the whole range. If you’re

using a fancy font for flamboyant ampersands, you

probably don’t want that applied to all your text if

unicode-range isn’t supported. That would be bad. Really

bad.

ENSURING GOOD FALLBACKS

As ever, the trick is to make sure that there’s a sensible

fallback in place if a browser doesn’t have support for

whatever technology you’re trying to use. This is where

being a super nerd about understanding the spec you’re

working with really pays off.

We can make use of the rules of the CSS cascade to make

sure that if unicode-range isn’t supported we get a

sensible fallback font. What would be ideal is if we were

able to follow up the @font-face rule with a second rule

to override it if Unicode ranges aren’t implemented.

@font-face {

font-family: 'Ampersand';

src: local('Baskerville'), local('Palatino'),

local('Book Antiqua');

unicode-range: U+26;

}

@font-face {

10 24 ways 2011 edition

font-family: 'Ampersand';

src: local('Arial');

}

In theory, this code should make sense for all browsers.

For those that support unicode-range the two rules

become cumulative. They specify different ranges for the

same family, and in WebKit browsers this has the

expected result of using Arial for most characters, but

Baskerville and friends for the ampersand. For browsers

that don’t have support, the second rule should just

supersede the first, setting the font to Arial.

Unfortunately, this code causes current versions of

Firefox to freak out and use the first rule, applying

Baskerville to the entire range. That’s both unexpected

and unfortunate. Bad Firefox. On your rug.

If that doesn’t work, what can we do? Well, we know that

if given a unicode-range Firefox will ignore the range and

apply the font to all characters. That’s really what we’re

trying to achieve. So what if we specified a range for the

fallback font, but made sure it only covers some obscure

high-value Unicode character we’re never going to use in

our page? Then it wouldn’t affect the outcome for

browsers that do support ranges.

@font-face {

font-family: 'Ampersand';

src: local('Baskerville'), local('Palatino'),

local('Book Antiqua');

Creating Custom Font Stacks with Unicode-Range

24 ways 2011 edition 11

unicode-range: U+26;

}

@font-face {

/* Ampersand fallback font */

font-family: 'Ampersand';

src: local('Arial');

unicode-range: U+270C;

}

By specifying a range on the fallback font, Firefox appears

to correctly override the first based on the cascade sort

order. Browsers that do support ranges take the second

rule in addition, and apply Arial for that obscure character

we’re not using in any of our pages — U+270C.

So we get our nice ampersands in browsers that support

unicode-range and, thanks to our styling of an obscure

Unicode character, the font falls back to a perfectly

acceptable Arial in browsers that do not offer support.

Perfect!

That obscure character, my friends, is what Unicode

defines as the VICTORY HAND.

12 24 ways 2011 edition

✌
SO, HOW CAN WE USE THIS?

Ampersands are a neat trick, and it works well in

browsers that support ranges, but that’s not really the

point of all this. Styling ampersands is fun, but they’re only

really scratching the surface. Consider more involved

examples, such as substituting a different font for

numerals, or symbols, or even caps. Things certainly begin

to get a bit more interesting.

Creating Custom Font Stacks with Unicode-Range

24 ways 2011 edition 13

How do you know what the codes are for different

characters? Richard Ishida has a handy online conversion

tool available where you can type in the characters and

get the Unicode code points out the other end.

Of course, the fact remains that browser support for

unicode-range is currently limited, so any application

needs to have fallbacks that you’re still happy for a

significant proportion of your visitors to see. In some

cases, such as dedicated pages for mobile devices in an

HTML-based phone app, this is immediately useful as

support in WebKit browsers is already very good. In other

cases, you’ll have to use your own best judgement based

on your needs and audience.

One thing to keep in mind is that if you’re using web fonts,

the entire font will be downloaded even if only one

character is used. That said, the font shouldn’t be

downloaded if none of the characters within the Unicode

range are present in a given page.

As ever, there are pros and cons to using unicode-range

as well as varied but increasing support in browsers. It

remains a useful tool to understand and have in your

toolkit for when the right moment comes along.

14 24 ways 2011 edition

http://www.rishida.net/tools/conversion/
http://www.rishida.net/tools/conversion/

ABOUT THE AUTHOR

Drew McLellan is lead developer on your favourite small CMS,

Perch. He is Director and Senior Developer at UK-based web

development agency edgeofmyseat.com, and formerly Group

Lead at the Web Standards Project. When not publishing 24

ways, Drew keeps a personal site covering web development

issues and themes, takes photos and tweets a lot.

Creating Custom Font Stacks with Unicode-Range

24 ways 2011 edition 15

http://grabaperch.com/
http://allinthehead.com/
http://flickr.com/drewm/
http://twitter.com/drewm

Jeremy Keith 24ways.org/201102

2. Conditional Loading for
Responsive Designs

On the eighteenth day of last year’s 24 ways,
Paul Hammond wrote a great article called
Speed Up Your Site with Delayed Content.
He outlined a technique for loading some
content — like profile avatars — after the
initial page load. This gives you a nice
performance boost.

There’s another situation where this kind of delayed

loading could be really handy: mobile-first responsive

design.

Responsive design combines three techniques:

▪ a fluid grid

▪ flexible images

▪ media queries

16 24 ways 2011 edition

http://24ways.org/201102
http://24ways.org/authors/paulhammond
http://24ways.org/2010/speed-up-your-site-with-delayed-content
http://www.alistapart.com/articles/responsive-web-design/

At first, responsive design was applied to existing

desktop-centric websites to allow the layout to adapt to

smaller screen sizes. But more recently it has been

combined with another innovative approach called mobile

first.

Rather then starting with the big, bloated desktop site

and then scaling down for smaller devices, it makes more

sense to start with the constraints of the small screen and

then scale up for larger viewports. Using this approach,

your layout grid, your large images and your media

queries are applied on top of the pre-existing small-screen

design. It’s taking progressive enhancement to the next

level.

One of the great advantages of the mobile-first approach

is that it forces you to really focus on the core content of

your page. It might be more accurate to think of this as a

content-first approach. You don’t have the luxury of

sidebars or multiple columns to fill up with content that’s

just nice to have rather than essential.

But what happens when you apply your media queries for

larger viewports and you do have sidebars and multiple

columns? Well, you can load in that nice-to-have content

using the same kind of Ajax functionality that Paul

described in his article last year. The difference is that you

Conditional Loading for Responsive Designs

24 ways 2011 edition 17

http://www.lukew.com/ff/entry.asp?933
http://www.lukew.com/ff/entry.asp?933
http://adactio.com/journal/4523/

first run a quick test to see if the viewport is wide enough

to accommodate the subsidiary content. This is

conditional delayed loading.

Consider this situation: I’ve published an article about

cats and I’d like to include relevant cat-related news items

in the sidebar …but only if there’s enough room on the

screen for a sidebar.

I’m going to use Google’s News API to return the search

results. This is the ideal time to use delayed loading: I

don’t want a third-party service slowing down the

rendering of my page so I’m going to fire off the request

after my document has loaded.

Here’s an example of the kind of Ajax function that I

would write:

var searchNews = function(searchterm) {

var elem = document.createElement('script');

elem.src = 'http://ajax.googleapis.com/ajax/services/

search/news?v=1.0&q='+searchterm+'&callback=displayNews';

document.getElementsByTagName('head')[0].appendChild(elem);

};

I’ve provided a callback function called displayNews that

takes the JSON result of that Ajax request and adds it an

element on the page with the ID newsresults:

18 24 ways 2011 edition

http://media.24ways.org/2011/keith/cats-1.html
http://media.24ways.org/2011/keith/cats-1.html

var displayNews = function(news) {

var html = '',

items = news.responseData.results,

total = items.length;

if (total>0) {

for (var i=0; i<total; i++) {

var item = items[i];

html+= '<article>';

html+= '';

html+= '<h3>'+item.titleNoFormatting+'</h3>';

html+= '';

html+= '<p>';

html+= item.content;

html+= '</p>';

html+= '</article>';

}

document.getElementById('newsresults').innerHTML =

html;

}

};

Now, I can call that function at the bottom of my

document:

<script>

searchNews('cats');

</script>

If I only want to run that search when there’s room for a

sidebar, I can wrap it in an if statement:

Conditional Loading for Responsive Designs

24 ways 2011 edition 19

<script>

if (document.documentElement.clientWidth > 640) {

searchNews('cats');

}

</script>

If the browser is wider than 640 pixels, that will fire off a

search for news stories about cats and put the results into

the newsresults element in my markup:

<div id="newsresults">

<!-- search results go here -->

</div>

This works pretty well but I’m making an assumption that

people with small-screen devices wouldn’t be interested

in seeing that nice-to-have content. You know what they

say about assumptions: they make an ass out of you and

umptions. I should really try to give everyone at least the

option to get to that extra content:

<div id="newsresults">

<a href="http://www.google.com/

search?q=cats&tbm=nws">Search Google News

</div>

See the result

Visitors with small-screen devices will see that link to the

search results; visitors with larger screens will get the

search results directly.

20 24 ways 2011 edition

http://media.24ways.org/2011/keith/cats-2.html

I’ve been concentrating on HTML and JavaScript, but this

technique has consequences for content strategy and

information architecture. Instead of thinking about

possible page content in a binary way as either ‘on the

page’ or ‘not on the page’, conditional loading introduces a

third ‘it’s complicated’ option.

This was just a simple example but I hope it illustrates that

conditional loading could become an important part of the

content-first responsive design approach.

ABOUT THE AUTHOR

Conditional Loading for Responsive Designs

24 ways 2011 edition 21

Jeremy Keith is an Irish web developer living in Brighton,

England where he works with the web consultancy firm

Clearleft. He wrote the books, DOM Scripting, Bulletproof Ajax,

and most recently HTML5 For Web Designers.

His latest project is Huffduffer, a service for creating podcasts

of found sounds. When he’s not making websites, Jeremy plays

bouzouki in the band Salter Cane. His loony bun is fine benny

lava.

22 24 ways 2011 edition

http://adactio.com/
http://clearleft.com/
http://domscripting.com/
http://bulletproofajax.com/
http://html5forwebdesigners.com/
http://huffduffer.com/
http://saltercane.com/

Chris Sealey 24ways.org/201103

3. Subliminal User
Experience

The term ‘user experience’ is often used
vaguely to quantify common elements of the
interaction design process: wireframing,
sitemapping and so on. UX undoubtedly
involves all of these principles to some
degree, but there really is a lot more to it
than that.

Good UX is characterized by providing the user with

constant feedback as they step through your interface. It

means thinking about and providing fallbacks and error

resolutions in even the rarest of scenarios. It’s about

omitting clutter to make way for the necessary, and using

the most fundamental of design tools to influence a user’s

path. It means making no assumptions, designing right

down to the most distinct details and going one step

further every single time. In many cases, good UX is

completely subliminal.

Subliminal User Experience

24 ways 2011 edition 23

http://24ways.org/201103

There are simple tools and subtleties we can build into

our products to enhance the overall experience but, in

order to do so, we really have to step beyond where we

usually draw the line on what to design.

The purpose of this article is not to provide technical how-

tos, as the functionality is, in most cases, quite simple and

could be implemented in a myriad of ways. Rather, it will

present a handful of ideas for enhancing the experience of

an interface at a deeper level of design without relying on

the container.

We’ll cover three elements that should get you thinking in

the right mindset:

1. progress activity and post-active states

2. pseudo-class preloading

3. buttons and their (mis)behaviour

PROGRESS ACTIVITY AND THE POST-ACTIVE
STATE

We’ve long established that we can’t control the devices

our products are viewed on, which browser they’ll run in

or what connection speed will be used to access them. We

accept this all as factual, so why is it so often left to the

browser to provide feedback to the user when an event is

triggered or an error encountered? The browser isn’t part

24 24 ways 2011 edition

of the interface — it’s merely a container. A simple, visual

recognition of your users’ activity may be all it takes to

make or break the product.

Let’s begin with a commonly overlooked case: progress

activity.

A user moves their cursor over a hyperlink or button,

which is clearly defined as one by the visual language of

your content. Upon doing so, they trigger the :hover state

to confirm this element is indeed interactive. So far, so

good. What happens next is where it starts to fall apart:

the user hits this link, presumably triggering an :active

state, which is then returned to the normal state upon

release. And then what?

From this point on, your user is in limbo. The link has

fallen back to either its regular or :visited state. You’ve

effectively abandoned them and are relying entirely on

the browser they’re using to communicate that something

is happening. This poses quite a few problems:

▪ The user may lose focus of what they were doing.

▪ There is little consistency between progress indication

in browsers.

Subliminal User Experience

24 ways 2011 edition 25

▪ The user may not even notice that their action has been

acknowledged.

How many times have one or more of these events

happened to you due to a lack of communication from the

interface?

Think about the differences between Safari and Chrome

in this area — two browsers that, when compared to each

other, are relatively similar in nature, though this basic

feature differs in execution.

Like all aspects of designing the user experience, there is

no one true way to fix this problem, but we can introduce

details that many users will unconsciously appreciate.

Consider the basic loading indicator. It’s nothing new — in

fact, some would argue it’s quite a cliché. However,

whether using a spinning wheel or a progress bar, a gif or

JavaScript, or something more sophisticated, these simple

tools create an illusion of movement, progress and

activity. Depending on the implementation, progress

indication graphics can significantly increase a user’s

perception of the speed in which an event is taking place.

26 24 ways 2011 edition

http://www.newscientist.com/blogs/nstv/2010/12/best-videos-of-2010-progress-bar-illusion.html

Combine this with a cursor change and a lock over the

element to prevent double-clicking or reloading, and your

chances of keeping your user’s valuable attention have

significantly increased.

Demo: Progress activity and the post-active state

This same logic applies to all aspects of defaulting in a

browser, from micro-elements like this up to something as

simple as a 404 page. The difference in a user’s reaction to

hitting the default Apache 404 and a hand-crafted,

branded page are phenomenal and there are no prizes for

guessing which one they’re more likely to exit from.

PSEUDO-CLASS PRELOADING

Another detail that it pays well to look after is the use and

abuse of the :hover element and, more importantly, the

content revealed by it. Chances are you’re using the

:hover pseudo-class somewhere in almost every screen

you create. If content is being revealed on :hover and that

content takes some time to load, there will inevitably be a

delay the first time it is initiated. It appears tacky and half-

finished when a tooltip or drop-down loads instantly, only

to have its background or supporting elements follow

through a second or two later. So, let’s preload the

elements we know we’ll need.

Subliminal User Experience

24 ways 2011 edition 27

http://media.24ways.org/2011/sealey/progress-activity.html

A very simple application of this would be to load each file

into the default state of a visible element and offset them

by a large number. This ensures our elements have loaded

and are ready if and when they need to be displayed.

element {

background: url(path/to/image.jpg) -9999em -9999em

no-repeat;

}

element .tooltip {

display: none;

}

element:hover .tooltip {

display: block;

background: url(path/to/image.jpg) 0 0;

}

Background images are just one example. Of course, the

same logic can apply to any form of revealed content.

Using a sprite graphic can also be a clever — albeit tedious

— method for achieving the same goal, so if you’re using a

sprite, preloading in this way may not be necessary

The differences between preloading and not can only be

visualized properly with an actual demonstration.

Demo: Preloading revealed content

28 24 ways 2011 edition

http://media.24ways.org/2011/sealey/revealed-content-preloading.html

BUTTONS AND THEIR (MIS)BEHAVIOUR

Almost all of the time, a button serves just one purpose: to

be clicked (or tapped). When a button’s pressed,

therefore, if anything other than triggering the desired

event occurs, a user naturally becomes frustrated. I often

get funny looks when talking about this, but designing the

details of a button is something I consider essential.

It goes without saying that a button should always visually

recognise :hover and :active states. We can take that

one step further and disable some actions that get in the

way of pressing the button.

It’s rare that a user would ever want to select and use the

text on a button, so let’s cleanly disable it:

element {

-moz-user-select: -moz-none;

-webkit-user-select: none;

user-select: none;

}

If the button is image-based or contains an image, we

could also disable user dragging to make sure the image

element stays locked to the button:

element {

-moz-user-drag: -moz-none;

-webkit-user-drag: none;

user-drag: none;

}

Subliminal User Experience

24 ways 2011 edition 29

Demo: A more usable button

Disabling global features like this should be done with

utmost caution as it’s very easy to cross the line between

enhancement and friction. Cases where this is acceptable

are very rare, but it’s a good trick to keep in mind

nevertheless. Both Apple’s iCloud and Metalab’s Flow

applications use these tools appropriately and to great

extent.

You could argue that the visual feedback of having the

text selected or image dragged when a user mis-hits the

button is actually a positive effect, informing the user that

their desired action did not work. However, covering for

human error should be a designer’s job, not that of our

users. We can (almost) ensure it does work for them by

accommodating for errors like this in most cases.

FINAL THOUGHTS

Designing to this level of detail can seem obsessive, but as

a designer and user of many interfaces and applications, I

believe it can be the difference between a good user

experience and a great one.

The samples you’ve just seen are only a fraction of the

detail we can design for. Keep in mind that the

demonstrations, code and methods above outline just one

way to do this. You may not agree with all of these

processes or have the time and desire to consider them,

30 24 ways 2011 edition

http://media.24ways.org/2011/sealey/button-behaviour.html
http://icloud.com/
http://getflow.com/

but one fact remains: it’s not the technology, or the way

it’s done that’s important — it’s the logic and the concept

of designing everything.

ABOUT THE AUTHOR

Chris Sealey is a UI designer and front-end developer with a

passion for obsessively detailed graphics, clean-cut code and

copious amounts of caffeine. Having worked on the web for

roughly a quarter of its lifespan, he lives in Sydney and is

employed full-time as a web designer/developer for Holy Cow!

Design. He occasionally writes, designs and codes under the

moniker of 51bits where his work, ramblings and pet projects

reside.

Subliminal User Experience

24 ways 2011 edition 31

http://51bits.com/
http://www.holycow.com.au/
http://www.holycow.com.au/
http://51bits.com/

Matt Wilcox 24ways.org/201104

4. Adaptive Images for
Responsive Designs

So you’ve been building some responsive
designs and you’ve been working through
your checklist of things to do:

▪ You started with the content and designed around it,

with mobile in mind first.

▪ You’ve gone liquid and there’s nary a px value in sight;

% is your weapon of choice now.

▪ You’ve baked in a few media queries to adapt your

layout and tweak your design at different window widths.

▪ You’ve made your images scale to the container width

using the fluid Image technique.

▪ You’ve even done the same for your videos using a nifty

bit of JavaScript.

You’ve done a good job so pat yourself on the back. But

there’s still a problem and it’s as tricky as it is important:

image resolutions.

32 24 ways 2011 edition

http://24ways.org/201104
http://www.alistapart.com/articles/fluidgrids
http://unstoppablerobotninja.com/entry/fluid-images/
http://fitvidsjs.com
http://fitvidsjs.com

HTML HAS AN PROBLEM

CSS is great at adapting a website design to different

window sizes – it allows you not only to tweak layout but

also to send rescaled versions of the design’s images. And

you want to do that because, after all, a smartphone does

not need a 1,900-pixel background image1.

HTML is less great. In the same way that you don’t want

CSS background images to be larger than required, you

don’t want that happening with s either. A

smartphone only needs a small image but desktop users

need a large one. Unfortunately s can’t adapt like

CSS, so what do we do?

Well, you could just use a high resolution image and the

fluid image technique would scale it down to fit the

viewport; but that’s sending an image five or six times the

file size that’s really needed, which makes it slow to

download and unpleasant to use. Smartphones are pretty

impressive devices – my ancient iPhone 3G is more

powerful in every way than my first proper computer –

but they’re still terribly slow in comparison to today’s

desktop machines. Sending a massive image means it has

to be manipulated in memory and redrawn as you scroll.

You’ll find phones rapidly run out of RAM and slow to a

crawl.

Adaptive Images for Responsive Designs

24 ways 2011 edition 33

Well, OK. You went mobile first with everything else so

why not put in mobile resolution s too? Because

even though mobile devices are rapidly gaining share in

your analytics stats, they’re still not likely to be the major

share of your user base. I don’t think desktop users would

be happy with pokey little mobile resolution images, do

you? What we need are adaptive images.

ADAPTIVE IMAGE TECHNIQUES

There are a number of possible solutions, each with pros

and cons, and it’s not as simple to find a graceful solution

as you might expect.

Your first thought might be to use JavaScript to trawl

through the markup and rewrite the source attribute.

That’ll get you the right end result, but it’ll have done it in

a way you absolutely don’t want. That’s because of the

way browsers load resources. It starts to load the HTML

and builds the page on-the-fly; as soon as it finds an

element it immediately asks the server for that image.

After the HTML has finished loading, the JavaScript will

run, change the src attribute, and then the browser will

request that new image too. Not instead of, but as well as.

Not good: that’s added more bloat instead of cutting it.

Plain JavaScript is out then, which is a problem, because

what other tools do we have to work with as web

designers? Let’s ignore that for now and I’ll outline

34 24 ways 2011 edition

another issue with the concept of serving different

resolution images for different window widths: a basic file

management problem. To request a different image, that

image has to exist on the server. How’s it going to get

there? That’s not a trivial problem, especially if you have

non-technical users that update content through a CMS.

Let’s say you solve that – do you plan on a simple binary

switch: big image|little image? Is that really efficient or

future-proof? What happens if you have an archive of

existing content that needs to behave this way? Can you

apply such a solution to existing content or markup?

There’s a detailed round-up of potential techniques for

solving the adaptive images problem over at the Cloud

Four blog if you fancy a dig around exploring all the

options currently available. But I’m here to show you what

I think is the most flexible and easy to implement solution,

so here we are.

ADAPTIVE IMAGES

Adaptive Images aims to mitigate most of the issues

surrounding the problems of bringing the venerable

tag into the 21st century. And it works by leaving that tag

completely alone – just add that desktop resolution image

into the markup as you’ve been doing for years now. We’ll

fix it using secret magic techniques and bottled pixie

Adaptive Images for Responsive Designs

24 ways 2011 edition 35

http://www.cloudfour.com/responsive-imgs-part-2/
http://www.cloudfour.com/responsive-imgs-part-2/

dreams. Well, fine: with one .htaccess file, one small PHP

file and one line of JavaScript. But you’re killing the

mystique with that kind of talk.

So, what does this solution do?

▪ It allows s to adapt to the same break points you

use in your media queries, giving granular control in the

same way you get with your CSS.

▪ It installs on your server in five minutes or less and

after that is automatic and you don’t need to do anything.

▪ It generates its own rescaled images on the server and

doesn’t require markup changes, so you can apply it to

existing web content.

▪ If you wish, it will make all of your images go mobile-

first (just in case that’s what you want if JavaScript and

cookies aren’t available).

Sound good? I hope so. Here’s what you do.

SETTING UP AND ROLLING OUT

I’ll assume you have some basic server knowledge along

with that wealth of front-end wisdom exploding out of

your head: that you know not to overwrite any existing

.htaccess file for example, and how to set file permissions

on your server. Feeling up to it? Excellent.

1. Download the latest version of Adaptive Images either

from the website or from the GitHub repository.

36 24 ways 2011 edition

http://adaptive-images.com
http://github.com/mattwilcox/Adaptive-Images

2. Upload the included .htaccess and adaptive-

images.php files into the root folder of your website.

3. Create a directory called ai-cache and make sure the

server can write to it (CHMOD 755 should do it).

4. Add the following line of JavaScript into the <head> of

your site:

<script>document.cookie='resolution='+Math.max(screen.width,screen.height)+';

path=/‘;</script>

That’s it, unless you want to tweak the default settings.

You likely do, but essentially you’re already up and

running.

HOW IT WORKS

Adaptive Images does a number of things depending on

the scenario the script has to handle, but here’s a basic

overview of what it does when you load a page running it:

1. A session cookie is written with the value of the

visitor’s screen size in pixels.

2. The HTML encounters an tag and sends a

request to the server for that image. It also sends the

cookie, because that’s how browsers work.

3. Apache sits on the server and receives the request for

the image. Apache then has a look in the .htaccess file to

see if there are any special instructions for files in the

requested URL.

Adaptive Images for Responsive Designs

24 ways 2011 edition 37

4. There are! The .htaccess says “Hey, server! Any

request you get for a JPG, GIF or PNG file just send to the

adaptive-images.php file instead.”

5. The PHP file then does some intelligent thinking which

can cover a number of scenarios, but I’ll illustrate one path

that can happen:

▪ The PHP file looks for the cookie and finds out that the

user has a maximum screen width of 480px.

▪ The PHP has a look at the available media query sizes

that were configured and decides which one matches the

user’s device.

▪ It then has a look inside the /ai-cache/480/ folder to see

if a rescaled image already exists there.

▪ We’ll pretend it doesn’t – the PHP then goes to the

actual requested URI and finds that the original file does

exist.

▪ It has a look to see how wide that image is. If it’s already

smaller than the user’s screen width it sends it along and

stops there. But, let’s pretend the image is 1,000px wide.

▪ The PHP then resizes the image and saves it into the

/ai-cache/480 folder ready for the next time someone

needs it.

It also does a few other things when needs arise, for

example:

38 24 ways 2011 edition

▪ It sends images with a cache header field that tells

proxies not to cache the image, while telling browsers

they should. This avoids problems with proxy servers and

network caching systems grabbing the wrong image and

storing it.

▪ It handles cases where there isn’t a cookie set, and you

can choose whether to then send the mobile version or

the largest configured media query size.

▪ It compares timestamps between the source image and

the generated cache image – to ensure that if the source

image gets updated, the old cached file won’t be sent.

CUSTOMIZING

There are a few options you can customize if you don’t like

the default values. By looking in the PHP’s configuration

section at the top of the file, you can:

▪ Set the resolution breakpoints to match your media

query break points.

▪ Change the name and location of the ai-cache folder.

▪ Change the quality level any generated JPG images are

saved at.

▪ Have it perform a subtle sharpen on rescaled images to

help keep detail.

▪ Toggle whether you want it to compare the files in the

cache folder with the source ones or not.

▪ Set how long the browser should cache the images for.

Adaptive Images for Responsive Designs

24 ways 2011 edition 39

▪ Switch between a mobile-first or desktop-first

approach when a cookie isn’t found.

More importantly, you probably want to omit a few

folders from the AI behaviour. You don’t need or want it

resizing the images you’re using in your CSS, for example.

That’s fine – just open up the .htaccess file and follow the

instructions to list any directories you want AI to ignore.

Or, if you’re a dab hand at RewriteRules you can remove

the exclamation mark at the start of the rule and it’ll only

apply AI behaviour to a given list of folders.

CAVEATS

As I mentioned, I think this is one of the most flexible,

future-proof, retrofittable and easy to use solutions

available today. But, there are problems with this

approach as there are with all of the ones I’ve seen so far.

This is a PHP solution

I wish I was smarter and knew some fancy modern

languages the cool kids discuss at parties, but I don’t. So,

you need PHP on your server. That said, Adaptive Images

has a Creative Commons licence2 and I would welcome

anyone to contribute a port of the code3.

40 24 ways 2011 edition

Content delivery networks

Adaptive Images relies on the server being able to:

intercept requests for images; do some logic; and send

one of a given number of responses. Content delivery

networks are generally dumb caches, and they won’t

allow that to happen. Adaptive Images will not work if

you’re using a CDN to deliver your website.

A minor but interesting cookie issue.

As Yoav Weiss pointed out in his article Preloaders,

cookies and race conditions, there is no way to guarantee

that a cookie will be set before images are requested –

even though the JavaScript that sets the cookie is loaded

by the browser before it finds any tags. That could

mean images being requested without a cookie being

available. Adaptive Images has a two-fold mechanism to

avoid this being a problem:

1. The $mobile_first toggle allows you to choose what

to send to a browser if a cookie isn’t set. If FALSE then it

will send the highest configured resolution; if TRUE it will

send the lowest.

2. Even if set to TRUE, Adaptive Images checks the User

Agent String. If it discovers the user is on a desktop

environment, it will override $mobile_first and set it to

FALSE.

Adaptive Images for Responsive Designs

24 ways 2011 edition 41

http://blog.yoav.ws/2011/09/Preloaders-cookies-and-race-conditions
http://blog.yoav.ws/2011/09/Preloaders-cookies-and-race-conditions

This means that if $mobile_first is set to TRUE and the

user was unlucky (their browser didn’t write the cookie

fast enough), mobile devices will be supplied with the

smallest image, and desktop devices will get the largest.

The best way to get a cookie written is to use JavaScript

as I’ve explained above, because it’s the fastest way.

However, for those that want it, there is a JavaScript-free

method which uses CSS and a bogus PHP ‘image’ to set

the cookie. A word of caution: because it requests an

external file, this method is slower than the JavaScript

one, and it is very likely that the cookie won’t be set until

after images have been requested.

THE FUTURE

For today, this is a pretty good solution. It works, and as it

doesn’t interfere with your markup or source material in

any way, the process is non-destructive. If a future

solution is superior, you can just remove the Adaptive

Images files and you’re good to go – you’d never know AI

had been there.

However, this isn’t really a long-term solution, not least

because of the intermittent problem of the cookie and

image request race condition. What we really need are a

number of standardized ways to handle this in the future.

42 24 ways 2011 edition

First, we could do with browsers sending far more

information about the user’s environment along with each

HTTP request (device size, connection speed, pixel

density, etc.), because the way things work now is no

longer fit for purpose. The web now is a much broader

entity used on far more diverse devices than when these

technologies were dreamed up, and we absolutely require

the server to have better knowledge about device

capabilities than is currently possible. Relying on cookies

to do this job doesn’t cut it, and the User Agent String is a

complete mess incapable of fulfilling the various purposes

we are forced to hijack it for.

Secondly, we need a W3C-backed markup level solution

to supply semantically different content at different

resolutions, not just rescaled versions of the same

content as Adaptive Images does.

I hope you’ve found this interesting and will find Adaptive

Images useful.

FOOTNOTES

1 While I’m talking about preventing smartphones from

downloading resources they don’t need: you should be

careful of your media query construction if you want to

stop WebKit downloading all the images in all of the CSS

files.

Adaptive Images for Responsive Designs

24 ways 2011 edition 43

http://zomigi.com/blog/essential-considerations-for-crafting-quality-media-queries/
http://zomigi.com/blog/essential-considerations-for-crafting-quality-media-queries/

2 Adaptive Images has a very broad Creative Commons

licence and I warmly welcome feedback and community

contributions via the GitHub repository.

3 There is a ColdFusion port of an older version of

Adaptive Images. I do not have anything to do with ported

versions of Adaptive Images.

ABOUT THE AUTHOR

Matt Wilcox has been a web developer for seven years and

spent the last six specialising in front-end coding and design at a

couple of small agencies.

He loves bouldering, photography, and a good debate. He is

continually re-starting his attempts to learn Japanese.

44 24 ways 2011 edition

http://github.com/mattwilcox/adaptive-images
https://github.com/cfjedimaster/Adaptive-Images
https://github.com/cfjedimaster/Adaptive-Images

He has a personal website at mattwilcox.net and, after five

years, a burning desire to get it re-designed.

Adaptive Images for Responsive Designs

24 ways 2011 edition 45

http://mattwilcox.net

Paul Lloyd 24ways.org/201105

5. Collaborative
Development for a
Responsively Designed
Web

In responsive web design we’ve found a
technique that allows us to design for the
web as a medium in its own right: one that
presents a fluid, adaptable and ever
changing canvas.

Until this point, we gave little thought to the environment

in which users will experience our work, caring more

about the aggregate than the individual. The applications

we use encourage rigid layouts, whilst linear processes

focus on clients signing off paintings of websites that have

little regard for behaviour and interactions. The handover

of pristine, pixel-perfect creations to developers isn’t

dissimilar to farting before exiting a crowded lift, leaving

front-end developers scratching their heads as they fill in

the inevitable gaps. If you haven’t already, I recommend

reading Drew’s checklist of things to consider before

handing over a design.

46 24 ways 2011 edition

http://24ways.org/201105
http://weblog.muledesign.com/2010/08/why_we_dont_deliver_photoshop_files.php
http://24ways.org/2008/easing-the-path-from-design-to-development

Somehow, this broken methodology has survived for the

last fifteen years or so. Even the advent of web standards

has had little impact. Now, as we face an onslaught of

different devices, the true universality of the web can no

longer be ignored.

Responsive web design is just the thin end of the wedge.

Largely concerned with layout, its underlying philosophy

could ignite a trend towards interfaces that adapt to any

number of different variables: input methods, bandwidth

availability, user preference – you name it!

With such adaptability, a collaborative and iterative

process is required. Ethan Marcotte, who worked with the

team behind the responsive redesign of the Boston Globe

website, talked about such an approach in his book:

The responsive projects I’ve worked on have
had a lot of success combining design and
development into one hybrid phase, bringing
the two teams into one highly collaborative
group.

Whilst their process still involved the creation of desktop-

centric mock-ups, these were presented to the entire

team early on, where questions about how pages might

adapt and behave at different sizes were asked. Mock-ups

were quickly converted into HTML prototypes, meaning

further decisions could be based on usage rather than

guesswork (and endless hours spent in Photoshop).

Collaborative Development for a Responsively Designed Web

24 ways 2011 edition 47

http://www.abookapart.com/products/responsive-web-design

Regardless of the exact process, it’s clear that the

relationship between our two disciplines is more crucial

than ever. Yet, historically, it seems a wedge has been

driven between us – perhaps a result of segregation and

waterfall-style processes – resulting in animosity.

So how can we improve this relationship? Ultimately, we’ll

need to adapt, but even within existing workflows we can

start to overlap. Simply adjusting our attitude can effect

change, and bring design and development teams closer

together.

Good design is constant contact.

Mark Otto

The way we work needs to be more open and inclusive.

For example, ensuring members of the development team

attend initial kick-off meetings and design workshops will

not only ensure technical concerns are raised, but mean

that those implementing our designs better understand

the problems we’re trying to solve.

It can also be useful at this stage to explain how you work

and the sort of deliverables you expect to produce. This

will give developers a chance to make recommendations

on how these can be optimized for their own needs.

You may even find opportunities to share the load. On a

recent project I worked on, our development partners

offered to produce the interactive prototypes needed for

48 24 ways 2011 edition

http://markdotto.com/2011/09/20/good-design-is-constant-contact/

user testing. This allowed us to concentrate on refining

the experience, whilst they were able to get a head start

on building the product.

While developers should be involved at the beginning of

projects, it’s also important that designers are able to

review and contribute to a product as it’s being built. Any

handover should be done in person, and ideally you’ll have

a day set aside to do so. Having additional budget

available for follow-up design reviews is also

recommended. Learning how to use version control tools

like Subversion or Git will allow you to work within the

same environment as developers, and allow you to

contribute code or graphic assets directly to a project if

needed.

Don’t underestimate the benefits of designer and

developer sitting next to each other. Subtle nuances can

be explored far more easily than if they were conducted

over email or phone. As Ethan writes, “‘Design’ is the

means, not merely the end; the path we walk over the

course of a project, the choices we make”.

It’s from collaboration like this that I’ve become fond of

producing visual style guides. These demonstrate

typographic treatments for common markup and patterns

(blockquotes, lists, pagination, basic form controls and so

on). Thinking in terms of components rather than

Collaborative Development for a Responsively Designed Web

24 ways 2011 edition 49

http://unstoppablerobotninja.com/entry/the-boston-globe/

individual pages not only fits in better with how a

developer will implement a site, but can also ensure your

design works as a coherent whole.

Despite the amount of research and design produced,

when it comes to the crunch, there will always be a need

for compromise. As the old saying goes, ‘fast, cheap and

good – pick two.’ It’s important that you know which

pieces are crucial to a design and which areas can allow

for movement. Pick your battles wisely. Having an agreed

set of design principles can be useful when making such

decisions, as they help everyone focus on the goals of the

project.

The best compromises are reached when both
sides understand the issues of the other.

Richard Rutter

Ultimately, better collaboration comes through a shared

understanding of the different competencies required to

build a website. Instead of viewing ourselves in terms of

discrete roles, we should instead look to emphasize our

range of abilities, and work with others whose skills are

complementary.

Perhaps somebody who actively seeks to broaden their

knowledge is the mark of a professional. Seek these

people out.

50 24 ways 2011 edition

http://clagnut.com/blog/2315/

The best developers I’ve worked with have a respect for

design, probably having attempted to do some

themselves! Having wrangled with a few MySQL

databases myself, I certainly believe the obverse is true.

While knowing HTML won’t necessarily make you a

better designer, it will help you understand the issues

being faced by a front-end developer and, more

importantly, allow you to offer solutions or alternative

approaches.

So take a moment to think about how you work with

developers and how you could improve your relationship

with them. What are you doing to ease the path towards

our collaborative future?

Collaborative Development for a Responsively Designed Web

24 ways 2011 edition 51

ABOUT THE AUTHOR

Paul Robert Lloyd is interaction designer at the Guardian. Prior

to this he was a senior designer at Clearleft, where he worked

for clients such as NBCUniversal, Channel 4, Mozilla and

UNICEF UK.

When not working on side projects (he is currently digitizing

George Bradshaw’s railway guide), Paul can be found writing

about design, travel and more on his blog or blathering on

Twitter.

52 24 ways 2011 edition

http://theguardian.com/
http://clearleft.com
http://bradshawsguide.org
http://paulrobertlloyd.com/
http://twitter.com/paulrobertlloyd/

Rich Thornett 24ways.org/201106

6. Defending the
Perimeter Against Web
Widgets

On July 14, 1789, citizens of Paris stormed
the Bastille, igniting a revolution that
toppled the French monarchy. On July 14 of
this year, there was a less dramatic (though
more tweeted) takedown: The Deck network,
which delivers advertising to some of the
most popular web design and culture
destinations, was down for about thirty
minutes. During this period, most partner
sites running ads from The Deck could not
be viewed as result.

A few partners were unaffected (aside from not having an

ad to display). Fortunately, Dribbble, was one of them. In

this article, I’ll discuss outages like this and how to defend

against them. But first, a few qualifiers: The Deck has

been rock solid – this is the only downtime we’ve

Defending the Perimeter Against Web Widgets

24 ways 2011 edition 53

http://24ways.org/201106
http://en.wikipedia.org/wiki/Bastille_Day
http://en.wikipedia.org/wiki/Bastille_Day
http://decknetwork.net/
http://dribbble.com

witnessed since joining in June. More importantly, the

issues in play are applicable to any web widget you might

add to your site to display third-party content.

DOWN AND OUT

Your defense is only as good as its weakest link. Web

pages are filled with links, some of which threaten the

ability of your page to load quickly and correctly. If you

want your site to work when external resources fail, you

need to identify the weak links on your site. In this article,

we’ll talk about web widgets as a point of failure and

defensive JavaScript techniques for handling them.

WIDGETS 101

Imagine a widget that prints out a Pun of the Day on your

site. A simple technique for both widget provider and

consumer is for the provider to expose a URL:

http://widgetjonesdiary.com/punoftheday.js

which returns a JavaScript file like this:

document.write("<h2>The Pun of the Day</h2><p>Where do

frogs go for beers after work? Hoppy hour!</p>");

The call to document.write() injects the string passed

into the document where it is called. So to display the

widget on your page, simply add an external script tag

where you want it to appear:

54 24 ways 2011 edition

http://en.wikipedia.org/wiki/Web_widget

<div class="punoftheday">

<script src="http://widgetjonesdiary.com/

punoftheday.js"></script>

<!-- Content appears here as output of script above -->

</div>

This approach is incredibly easy for both provider and

consumer. But there are implications…

DOCUMENT.WRITE()… OR WRONG?

As in the example above, scripts may perform a

document.write() to inject HTML. Page rendering halts

while a script is processed so any output can be inlined

into the document. Therefore, page rendering speed

depends on how fast the script returns the data. If an

external JavaScript widget hangs, so does the page

content that follows. It was this scenario that briefly

stalled partner sites of The Deck last summer.

THE ELEGANT SOLUTION

To make our web widget more robust, calls to

document.write() should be avoided. This can be

achieved with a technique called JSONP (AKA JSON with

padding). In our example, instead of writing inline with

document.write(), a JSONP script passes content to a

callback function:

Defending the Perimeter Against Web Widgets

24 ways 2011 edition 55

http://en.wikipedia.org/wiki/JSON#JSONP

publishPun("<h2>Pun of the Day</h2><p>Where do frogs go

for beers after work? Hoppy hour!</p>");

Then, it’s up to the widget consumer to implement a

callback function responsible for displaying the content.

Here’s a simple example where our callback uses jQuery

to write the content into a target <div>:

<!-- Where widget content should appear -->

<div class="punoftheday"></div>

…

View Example 1

Even if the widget content appears at the top of the page,

our script can be included at the bottom so it’s non-

blocking: a slow response leaves page rendering

unaffected. It simply invokes the callback which, in turn,

writes the widget content to its display destination.

THE HACK

But what to do if your provider doesn’t support JSONP?

This was our case with The Deck. Returning to our

example, I’m reminded of computer scientist David

56 24 ways 2011 edition

http://media.24ways.org/2011/thornett/1.html
http://en.wikipedia.org/wiki/David_Wheeler_(computer_scientist)

Wheeler’s statement, “All problems in computer science

can be solved by another level of indirection… Except for

the problem of too many layers of indirection.”

In our case, the indirection is to move the widget content

into position after writing it to the page. This allows us to

place the widget <script> tag at the bottom of the page

so rendering won’t be blocked, but still display the widget

in the target. The strategy:

1. Load widget content into a hidden <div> at the bottom

of the page.

2. Move the loaded content from the hidden <div> to its

display location.

and the code:

<!-- Where widget content should appear -->

<div class="punoftheday"></div>

…

View Example 2

After the external punoftheday.js script has processed,

the rendered HTML will look as follows:

Defending the Perimeter Against Web Widgets

24 ways 2011 edition 57

http://en.wikipedia.org/wiki/David_Wheeler_(computer_scientist)
http://media.24ways.org/2011/thornett/2.html

<div class="loading-dock hidden">

<script src="http://widgetjonesdiary.com/

punoftheday.js"></script>

<h2>Pun of the Day</h2>

<p>Where do frogs go for beers after work? Hoppy

hour!</p>

</div>

The ‘loading-dock’ <div> now includes the widget

content, albeit hidden from view (if we’ve styled the

‘hidden’ class with display: none). There’s just one more

step: move the content to its display destination. This line

of jQuery (from above) does the trick:

$('.punoftheday').append($('.loading-dock').children(':gt(0)'));

This selects all child elements in the ‘loading-doc’ <div>

except the first – the widget <script> tag which generated

it – and moves it to the display destination. Worth noting

is the :gt(0) jQuery selector extension, which allows us

to exclude the first (in a 0-based array) child element – the

widget <script> tag – from selection.

Since all of this happens at the bottom of the page, just

before the </body> tag, no rendering has to wait on the

external widget script. The only thing that fails if our

widget hangs is… the widget itself. Our weakest link has

been strengthened and so has our site. DE-FENSE!

58 24 ways 2011 edition

ABOUT THE AUTHOR

Rich Thornett wanted to play pro basketball when he grew up,

but found himself trapped in the body of a software developer.

After working on his game for over a decade at software shops

large and small, he created Dribbble, a show and tell site for

designers. What was once a side project is now a small company

where he serves as lead developer and product designer.

He lives in Salem, MA with his witty, wonderful wife and two

kids, who are lost in bonkers. If you believe the pun is mightier

than the sword, you can follow him on Twitter.

Defending the Perimeter Against Web Widgets

24 ways 2011 edition 59

http://dribbble.com/
http://twitter.com/frogandcode

Anna Debenham 24ways.org/201107

7. Front-end Style Guides

We all know that feeling: some time after we
launch a site, new designers and developers
come in and make adjustments. They add
styles that don’t fit with the content, use
typefaces that make us cringe, or chuck in
bloated code. But if we didn’t leave behind
any documentation, we can’t really blame
them for messing up our hard work.

To counter this problem, graphic designers are often

commissioned to produce style guides as part of a

rebranding project. A style guide provides details such as

how much white space should surround a logo, which

typefaces and colours a brand uses, along with when and

where it is appropriate to use them.

DESIGN GUIDELINES

Some design guidelines focus on visual branding and

identity. The UK National Health Service (NHS) refer to

theirs as “brand guidelines”. They help any designer create

something such as a trustworthy leaflet for an NHS

doctor’s surgery. Similarly, Transport for London’s “design

60 24 ways 2011 edition

http://24ways.org/201107
http://www.nhsidentity.nhs.uk/
http://www.tfl.gov.uk/corporate/media/12523.aspx

standards” ensure the correct logos and typefaces are

used in communications, and that they comply with the

Disability Discrimination Act.

Some guidelines go further, encompassing a whole

experience, from the visual branding to the messaging,

and the icon sets used. The BBC calls its guidelines a

“Global Experience Language” or GEL. It’s essential for

maintaining coherence across multiple sites under the

same BBC brand.

Front-end Style Guides

24 ways 2011 edition 61

http://www.tfl.gov.uk/corporate/media/12523.aspx
http://www.bbc.co.uk/guidelines/gel/

The BBC’s Global Experience Language.

Design guidelines may be brief and loose to promote

creativity, like Mozilla’s “brand toolkit”, or be precise and

run to many pages to encourage greater conformity, such

as Apple’s “Human Interface Guidelines”.

62 24 ways 2011 edition

http://www.bbc.co.uk/guidelines/gel/
http://www.mozilla.org/en-US/firefox/brand/
http://developer.apple.com/library/mac/#documentation/UserExperience/Conceptual/AppleHIGuidelines/Intro/Intro.html

Whatever name or form they’re given, documenting

reusable styles is invaluable when maintaining a brand

identity over time, particularly when more than one

person (who may not be a designer) is producing material.

CODE STANDARDS DOCUMENTS

We can make a similar argument for code. For example, in

open source projects, where hundreds of developers are

submitting code, it makes sense to set some standards.

Drupal and Wordpress have written standards that make

editing code less confusing for users, and more

maintainable for contributors.

Each community has nuances: Drupal requests that

developers indent with two spaces, while Wordpress

stipulates a tab. Whatever the rules, good code standards

documents also explain why they make their

recommendations.

THE FRONT-END DEVELOPER’S STYLE GUIDE

Design style guides and code standards documents have

been a successful way of ensuring brand and code

consistency, but in between the code and the design

examples, web-based style guides are emerging. These

are maintained by front-end developers, and are more

dynamic than visual design guidelines, documenting every

component and its code on the site in one place.

Front-end Style Guides

24 ways 2011 edition 63

http://drupal.org/coding-standards
http://codex.wordpress.org/WordPress_Coding_Standards

Here are a few examples I’ve seen in the wild:

Natalie Downe’s pattern portfolio

Natalie created the pattern portfolio system while

working at Clearleft. The phrase describes a single HTML

page containing all the site’s components and styles that

can act as a deliverable.

64 24 ways 2011 edition

http://twitter.com/natbat
http://clearleft.com

Pattern portfolio by Natalie Downe for St Paul’s School, kept up
to date when new components are added. The entire page is
about four times the length shown.

Each different item within a pattern portfolio is a building

block or module. The components are decoupled from the

layout, and linearized so they can slot into anywhere on a

page.

The pattern portfolio expresses every
component and layout structure in the smallest
number of documents. It sets out how the
markup and CSS should be, and is used to
illustrate the project’s shared vocabulary.

Natalie Downe

By developing a system, rather than individual pages, the

result is flexible when the client wants to add more pages

later on.

Paul Lloyd’s style guide

Paul Lloyd has written an extremely comprehensive style

guide for his site. Not only does it feature every plausible

element, but it also explains in detail when it’s appropriate

to use each one.

Front-end Style Guides

24 ways 2011 edition 65

http://www.stpaulsschool.org.uk/
http://lanyrd.com/2008/barcamp-london-5/sg/
http://paulrobertlloyd.com/about/styleguide/
http://paulrobertlloyd.com/about/styleguide/

Paul’s style guide is also great educational material for people
learning to write code.

Oli Studholme’s style guide

Even though Oli’s style guide is specific to his site, he’s

written it as though it’s for someone else. It’s exhaustive

and gives justifications for all his decisions. In some

places, he links to browser bug tickets and makes

recommendations for cross-browser compatibility.

66 24 ways 2011 edition

http://paulrobertlloyd.com/about/styleguide/
http://oli.jp/2011/style-guide

Oli has released his style guide under a Creative Commons
Attribution Share-alike license, and encourages others to create
their own versions.

Jeremy Keith’s pattern primer

Front-end style guides may have comments written in the

code, annotations that appear on the page, or they may

list components alongside their code, like Jeremy’s

pattern primer.

Front-end Style Guides

24 ways 2011 edition 67

http://oli.jp/2011/style-guide/
http://adactio.com/journal/5028/
http://adactio.com/journal/5028/

You can watch or fork Jeremy’s pattern primer on Github.

68 24 ways 2011 edition

http://github.com/adactio/Pattern-Primer

Linearizing components like this resembles a kind of

mobile first approach to development, which Jeremy talks

about on the 5by5 podcast: The Web Ahead 3.

THE BENEFITS OF MAINTAINING A FRONT-END
STYLE GUIDE

If you still need convincing that producing documentation

like this for every project is worth the effort, here are a

few nice side-effects to working this way:

Front-end Style Guides

24 ways 2011 edition 69

https://plus.google.com/103751101313992876152/posts/4NC8gjGy517
http://5by5.tv/webahead/3

Easier to test

A unified style guide makes it easier to spot where your

design breaks. It’s simple to check how components adapt

to different screen widths, test for browser bugs and

develop print style sheets when everything is on the same

page. When I worked with Natalie, she’d resize the

browser window and bump the text size up and down

during development to see if anything would break.

Better workflow

The approach also forces you to think how something

works in relation to the whole site, rather than just a

specific page, making it easier to add more pages later on.

Starting development by creating a style guide makes a lot

more sense than developing on a page-by-page basis.

Shared vocabulary

Natalie’s pattern portfolio in particular creates a shared

vocabulary of names for components (teaser, global

navigation, carousel…), so a team can refer to different

regions of the site and have a shared understanding of its

meaning.

70 24 ways 2011 edition

Useful reference

A combined style guide also helps designers and writers

to see the elements that will be incorporated in the site

and, therefore, which need to be designed or populated. A

boilerplate list of components for every project can act as

a reminder of things that may get missed in the design,

such as button states or error messages.

CREATING YOUR FRONT-END STYLE GUIDE

As you’ve seen, there are plenty of variations on the web

style guide. Which method is best depends on your

project and workflow. Let’s say you want to show your

content team how blockquotes and asides look, when it’s

appropriate to use them, and how to create them within

the CMS. In this case, a combination of Jeremy’s pattern

primer and Paul’s descriptive style guide – with the styled

component alongside a code snippet and a description of

when to use it – may be ideal.

Start work on your style guide as soon as you can,

preferably during the design stage:

Front-end Style Guides

24 ways 2011 edition 71

Simply presenting flat image comps is by no
means enough - it’s only the start… As layouts
become more adaptable, flexible and context-
specific, so individual components will become
the focus of our design. It is therefore essential
to get the foundational aspects of our designs
right, and style guides allow us to do that.

Paul Lloyd on Style guides for the Web

1. Print out the designs and label the unique elements

and components you’ll need to add to your style guide.

Make a note of the purpose of each component. While

you’re doing this, identify the main colours used for things

like links, headings and buttons.

I draw over the print-outs on to tracing paper so I can make
more annotations. Here, I’ve started annotating the widths
from the designer’s mockup so I can translate these into
percentages.

72 24 ways 2011 edition

http://paulrobertlloyd.com/2010/12/styleguides_for_the_web/

2. Start developing your style guide with base styles that

target core elements: headings, links, tables, blockquotes,

ordered lists, unordered lists and forms. For these

elements, you could maintain a standard document to

reuse for every project.

3. Next, add the components that override the base

styles, like search boxes, breadcrumbs, feedback

messages and blog comments. Include interaction styles,

such as hover, focus and visited state on links, and hover,

focus and active states on buttons.

4. Now start adding layout and begin slotting the

components into place. You may want to present each

layout as a separate document, or you could have them all

on the same page stacked beneath one another.

Document code practices

Code can look messy when people use different

conventions, so note down a standard approach alongside

your style guide. For example, Paul Stanton has

documented how he writes CSS.

THE GIFT WRAPPING

Presenting this documentation to your client may be a

little overwhelming so, to be really helpful, create a simple

page that links together all your files and explains what

each of them do.

Front-end Style Guides

24 ways 2011 edition 73

http://coffeepowered.co.uk/2010/01/css-coding-standards/
http://coffeepowered.co.uk/2010/01/css-coding-standards/

This is an example of a contents page that Clearleft produce for
their clients. They’ve added date stamps, subversion revision
numbers and written notes for each file.

Encourage participation

There’s always a risk that the person you’re writing the

style guide for will ignore it completely, so make your

documentation as user-friendly as possible. Justify why

you do things a certain way to make it more approachable

and encourage similar behaviour.

74 24 ways 2011 edition

As always, good communication helps. Working with the

designer to put together this document will improve the

site. It’s often not practical for designers to provide a style

for everything, so drafting a web style guide and asking

for feedback gives designers a chance to make sure any

default styles fit in.

If you work in a team with other developers, documenting

your code and development decisions will not only be

useful as a deliverable, but will also force you to think

about why you do things a certain way.

FUTURE-FRIENDLY

The roles of designer and developer are increasingly

blurred, yet all too often we work in isolation. Working

side-by-side with designers on web style guides can vastly

improve the quality of our work, and the collaborative

approach can spark discussions like “how would this work

on a smaller screen?”

Sometimes we can be so focused on getting the site ready

and live, that we lose sight of what happens after it’s

launched, and how it’s going to be maintained. A simple

web style guide can make all the difference.

If you make your own style guide, I’d love to add it to my

stash of examples so please share a link to it in the

comments.

Front-end Style Guides

24 ways 2011 edition 75

https://gimmebar.com/collection/4ecd439c2f0aaad734000022/front-end-styleguides-and-pattern-libraries
https://gimmebar.com/collection/4ecd439c2f0aaad734000022/front-end-styleguides-and-pattern-libraries

ABOUT THE AUTHOR

Anna Debenham is a freelance front-end developer living in

Brighton in the UK.

She’s the author of Front-end Style Guides, and when she’s not

playing on them, she’s testing as many game console browsers

as she can get her hands on.

76 24 ways 2011 edition

http://www.fivesimplesteps.com/products/front-end-style-guides
http://console.maban.co.uk/

Jake Archibald 24ways.org/201108

8. Adaptive Images for
Responsive Designs…
Again

When I was asked to write an article for 24
ways I jumped at the chance, as I’d been
wanting to write about some fun hacks for
responsive images and related parsing
behaviours. My heart sank a little when Matt
Wilcox beat me to the subject, but it floated
back up when I realized I disagreed with his
method and still had something to write
about.

So, Matt Wilcox, if that is your real name (and I’m pretty

sure it is), I disagree. I see your dirty server-based hack

and raise you an even dirtier client-side hack. Evil laugh,

etc., etc.

You guys can stomach yet another article about

responsive design, right? Right?

Adaptive Images for Responsive Designs… Again

24 ways 2011 edition 77

http://24ways.org/201108
http://24ways.org/2011/adaptive-images-for-responsive-designs
http://24ways.org/2011/adaptive-images-for-responsive-designs

Half the room gets up to leave

Whoa, whoa… OK, I’ll cut to the chase…

TL;DR

In a previous episode, we were introduced to Debbie and

her responsive cat poetry page. Well, now she’s added

some reviews of cat videos and some images of cats.

Check out her new page and have a play around with the

browser window. At smaller widths, the images change

and the design responds. The benefits of this method are:

▪ it’s entirely client-side

▪ images are still shown to users without JavaScript

▪ your media queries stay in your CSS file

▪ no repetition of image URLs

▪ no extra downloads per image

▪ it’s fast enough to work on resize

▪ it’s pure filth

WHAT’S WRONG WITH THE SERVER-SIDE
SOLUTION?

Responsive design is a client-side issue; involving the

server creates a boatload of problems.

78 24 ways 2011 edition

http://24ways.org/2011/conditional-loading-for-responsive-designs
http://24ways.org/2011/conditional-loading-for-responsive-designs
http://jakearchibald.github.com/responsive-gallery/

▪ It sets a cookie at the top of the page which is read in

subsequent requests. However, the cookie is not

guaranteed to be set in time for requests on the same

page, so the server may see an old value or no value at all.

▪ Serving images via server scripts is much slower than

plain old static hosting.

▪ The URL can only cache with vary: cookie, so the

cache breaks when the cookie changes, even if the change

is unrelated. Also, far-future caching is out for devices

that can change width.

▪ It depends on detecting screen width, which is rather

messy on mobile devices.

▪ Responding to things other than screen width (such as

DPI) means packing more information into the cookie, and

a more complicated script at the top of each page.

SO, WHY ISN’T THIS STRAIGHTFORWARD ON
THE CLIENT?

Client-side solutions to the problem involve JavaScript

testing user agent properties (such as screen width),

looping through some images and setting their URLs

accordingly. However, by the time JavaScript has sprung

into action, the original image source has already started

downloading. If you change the source of an image via

JavaScript, you’re setting off yet another request.

Adaptive Images for Responsive Designs… Again

24 ways 2011 edition 79

http://tripleodeon.com/2011/12/first-understand-your-screen/
http://tripleodeon.com/2011/12/first-understand-your-screen/

Images are downloaded as soon as their DOM node is

created. They don’t need to be visible, they don’t need to

be in the document.

new Image().src = url

The above will start an HTTP request for url. This is a

handy trick for quick requests and preloading, but also

shows the browser’s eagerness to download images.

Here’s an example of that in action. Check out the

network tab in Web Inspector (other non-WebKit

development aids are available) to see the image requests.

Because of this, some client-side solutions look like this:

<img src="t.gif" data-src="real-image.jpg"

data-bigger-src="real-bigger-image.jpg">

where t.gif is a 1×1px tiny transparent GIF.

This results in no images if JavaScript isn’t available.

Dealing with the absence of JavaScript is still important,

even on mobile. I was recently asked to make a website

work on an old Blackberry 9000. I was able to get most of

the way there by preventing that OS parsing any

JavaScript, and that was only possible because the site

didn’t depend on it.

80 24 ways 2011 edition

http://jakearchibald.github.com/responsive-gallery/experiments/img-hiding.html

We need to delay loading images for JavaScript users, but

ensure they load for users without JavaScript. How can

we conditionally parse markup depending on JavaScript

support?

OH YEAH! <NOSCRIPT><NOSCRIPT>!

<noscript>

</noscript>

Whoa! First spacer GIFs and now <noscript>? This really

is the future! The image above will only load for users

without JavaScript support. Now all we need to do is send

JavaScript in there to get the textContent of the

<noscript> element, then we can alter the image source

before handing it to the DOM for parsing.

Here’s an example of that working … unless you’re using

Internet Explorer.

Internet Explorer doesn’t retain the content of

<noscript> elements. As soon as it’s parsed, it considers it

an empty element. FANKS INTERNET EXPLORER. This is

why some solutions do this:

<noscript data-src="image.jpg">

</noscript>

Adaptive Images for Responsive Designs… Again

24 ways 2011 edition 81

http://jakearchibald.github.com/responsive-gallery/experiments/noscript-parsing.html

so JavaScript can still get at the URL via the data-src

attribute. However, repeating stuff isn’t great. Surely we

can do better than that.

A DIRTY, DIRTY HACK

Thankfully, I managed to come up with a solution, and by

me, I mean someone cleverer than me. Pornel’s solution

uses <noscript>, but surely we don’t need that.

Now, before we look at this, I can’t stress how dirty it is.

It’s so dirty that if you’ve seen it, schools will refuse to

employ you.

<script>document.write('<' + '!--')</script>

<!---->

Phwoar! Dirty, isn’t it? I’ll stop for a moment, so you can go

have a wash.

Done? Excellent.

With this, the image is wrapped in a comment only for

users with JavaScript. Without JavaScript, we get the

image. Unlike the <noscript> example above, we can get

the text content of the comment pretty easily.

Hurrah! But wait… Some browsers are sometimes

downloading the image, even with JavaScript enabled.

Notably Firefox. Huh?

82 24 ways 2011 edition

https://twitter.com/pornelski/statuses/106402693471408130
http://jakearchibald.github.com/responsive-gallery/experiments/comment-parsing.html
http://jakearchibald.github.com/responsive-gallery/experiments/comment-parsing.html

IMAGES ARE DOWNLOADED IN COMMENTS
NOW? WHAT?

No. What we’re seeing here is the effect of speculative

parsing. Here’s what’s happening:

Adaptive Images for Responsive Designs… Again

24 ways 2011 edition 83

https://developer.mozilla.org/en/Optimizing_your_pages_for_speculative_parsing
https://developer.mozilla.org/en/Optimizing_your_pages_for_speculative_parsing

While the browser is parsing the script, it parses the rest

of the document. This is usually a good thing, as it can

download subsequent images and scripts without waiting

for the script to complete. The problem here is we create

an unbalanced tree.

An unbalanced tree, yesterday.

In this case, the browser must throw away its speculative

parsing and reparse from the end of the <script>

element, taking our document.write into consideration.

Unfortunately, by this stage it may have already

discovered the image and sent an HTTP request for it.

A DIRTY, DIRTY HACK… THAT WORKS

Pornel was right: we still need the <noscript> element to

cater for browsers with speculative parsing.

84 24 ways 2011 edition

<script>document.write('<' + '!--')</script><noscript>

</noscript -->

And there we have it. We can now prevent images loading

for users with JavaScript, but we can still get at the

markup.

We’re still creating an unbalanced tree and there’s a

performance impact in that. However, the parser won’t

have got far by the time our script executes, so the impact

is small. Unbalanced trees are more of a concern for

external scripts; a lot of parsing can happen by the time

the script has downloaded and parsed.

USING DIRTINESS TO CREATE RESPONSIVE
IMAGES

Now all we need to do is give each of our dirty scripts a

class name, then JavaScript can pick them up, grab the

markup from the comment and decide what to do with

the images.

This technique isn’t exclusively useful for responsive

images. It could also be used to delay images loading until

they’ve scrolled into view. But to do that you’ll need a

bulletproof way of detecting when elements are in view.

This involves getting the height of the viewport, which is

extremely unreliable on mobile devices.

Adaptive Images for Responsive Designs… Again

24 ways 2011 edition 85

http://jakearchibald.github.com/responsive-gallery/experiments/comment-noscript.html

Here’s a hastily thrown together example showing how it

can be used for responsive images.

I adjust the end of the image URLs conditionally

depending on the result of media queries. This is done on

page load, and on resize.

I’m using regular expressions to alter the URLs. Using

regex to deal with HTML is usually a sign of insanity, but

parsing it with the browser’s DOM parser would trigger

the download of images before we change the URLs. My

implementation currently requires double-quoted image

URLs, because I’m lazy. Wanna fight about it?

MEDIA QUERYING VIA JAVASCRIPT

Jeremy Keith used

document.documentElement.clientWidth in his example,

which is great as a proof of concept, but unfortunately is

rather unreliable across mobile devices.

Thankfully, standards are coming to the rescue with

window.matchMedia, which lets us provide a media query

string and get a boolean result. There’s even a great

polyfill for browsers that don’t support it (as long as they

support media queries in CSS).

I didn’t go with that for three reasons:

1. I’d like to keep media queries in the CSS file, if possible.

86 24 ways 2011 edition

http://jakearchibald.github.com/responsive-gallery/experiments/basic-example.html
http://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-tags#answer-1732454
http://24ways.org/2011/conditional-loading-for-responsive-designs
http://tripleodeon.com/2011/12/first-understand-your-screen/
https://developer.mozilla.org/en/DOM/window.matchMedia
https://github.com/paulirish/matchMedia.js/blob/master/matchMedia.js
https://github.com/paulirish/matchMedia.js/blob/master/matchMedia.js

2. I wanted something a little lighter to keep things

speedy while resizing.

3. It’s just not dirty enough yet.

To make things ultra-dirty, I add a test element to the page

with a specific class, let’s say media-test. Then, I control

the width of it using media queries in my CSS file:

@media all and (min-width: 640px) {

.media-test {

width: 1px;

}

}

@media all and (min-width: 926px) {

.media-test {

width: 2px;

}

}

The JavaScript part changes the URL suffix depending on

the width of media-test. I’m using a min-width media

query, but you can use others such as pixel-ratio to

detect high DPI displays. Basically, it’s a hacky way for

CSS to set a value that can be picked up by JavaScript. It

means the bit that signals changes to the images sits with

the rest of the responsive code, without duplication.

Also, phwoar, dirty!

Adaptive Images for Responsive Designs… Again

24 ways 2011 edition 87

THE API

I threw a script together to demonstrate the technique.

I’m not particularly attached to it, I’m not even sure I like

it, but here’s the API:

responsiveGallery({

// Class name of dirty script element(s) to target

scriptClass: 'dirty-gallery-script',

// Class name for our test element

testClass: 'dirty-gallery-test',

// The initial suffix of URLs, the bit that changes.

initialSuffix: '-mobile.jpg',

// A map of suffixes, for each width of

'dirty-gallery-test'

suffixes: {

'1': '-desktop.jpg',

'2': '-large-desktop.jpg',

'3': '-mobile-retina.jpg'

}

});

The API can cover individual images or multiple galleries

at once. In the example I gave at the start of the article I

make two calls to the API, one for both galleries, and one

for the single image above the video reviews. They’re

separate calls because they respond slightly differently.

88 24 ways 2011 edition

https://github.com/jakearchibald/responsive-gallery/blob/master/js/responsiveGallery.js
http://jakearchibald.github.com/responsive-gallery/

THE FUTURE

Hopefully, we’ll get a proper solution to this soon. My

favourite suggestion is the <picture> element that Bruce

Lawson covers.

<picture alt="Angry pirate">

<source src="hires.png" media="min-width:800px">

<source src="midres.png" media="min-width:480px">

<source src="lores.png">

<!-- fallback for browsers without support -->

</picture>

Unfortunately, we’re nowhere near that yet, and I’d still

rather have my media queries stay in CSS. Perhaps the

source elements could be skipped if they’re display:none;

then they could have class names and be controlled via

CSS. Sigh.

Well, I’m tired of writing now and I’m sure you’re tired of

reading. I realize what I’ve presented is a yet another dirty

hack to the responsive image problem (perhaps the

dirtiest?) and may be completely unfeasible in

professional situations. But isn’t that the true spirit of

Christmas?

No.

Adaptive Images for Responsive Designs… Again

24 ways 2011 edition 89

http://coding.smashingmagazine.com/2011/11/18/html5-semantics/
http://coding.smashingmagazine.com/2011/11/18/html5-semantics/

ABOUT THE AUTHOR

Jake Archibald is a developer at Lanyrd specialising in client-

side stuff, although dabbles in a bit of Django. He developed

Sprite Cow to help ease the pain of sprite sheets, and started a

blog way after blogs stopped being cool.

Outside of the web, he’s a Formula One fan and likes taking

photos of things. He tweets as @jaffathecake.

90 24 ways 2011 edition

http://www.lanyrd.com
http://www.spritecow.com
http://jaffathecake.posterous.com
http://jaffathecake.posterous.com
http://www.flickr.com/photos/jaffathecake/
http://www.flickr.com/photos/jaffathecake/
https://twitter.com/#!/jaffathecake

Owen Gregory 24ways.org/201109

9. Composing the New
Canon: Music, Harmony,
Proportion

Ohne Musik wäre das Leben ein Irrtum

—Friedrich NIETZSCHE, Götzen-Dämmerung, Sprüche
und Pfeile 33, 1889

Somehow, music is hardcoded in human beings. It is

something we understand and respond to without prior

knowledge. Music exercises the emotions and our

imaginative reflex, not just our hearing. It behaves so

much like our emotions that music can seem to symbolize

them, to bear them from one person to another. Not

surprisingly, it conjures memories: the word music derives

from Greek μουσική (mousike), art of the Muses, whose

mythological mother was Mnemosyne, memory. But it can

also summon up the blood, console the bereaved, inspire

fanaticism, bolster governments and dissenters alike, help

us learn, and make web designers dance. And what would

Christmas be without music?

Composing the New Canon: Music, Harmony, Proportion

24 ways 2011 edition 91

http://24ways.org/201109
http://vimeo.com/18817474
http://www.youtube.com/watch?v=ZoxQ4Ul_DME

Music moves us, often in ways we can’t explain. By some

kind of alchemy, music frees us from the elaborate

nuisance and inadequacy of words. Across the world and

throughout recorded history – and no doubt well before

that – people have listened and made (and made out to)

music.

[I]t appears probable that the progenitors of
man, either the males or females or both sexes,
before acquiring the power of expressing their
mutual love in articulate language,
endeavoured to charm each other with musical
notes and rhythm.

—Charles DARWIN, The Descent of Man, and Selection
in Relation to Sex, 1871

It’s so integral to humankind, we’ve sent it into space as a

totem for who we are. (Who knows? It might be

important.) Music is essential, a universal compulsion; as

Nietzsche wrote, without music life would be a mistake.

MUSIC, DESIGN AND WEB DESIGN

There are some obvious and notable similarities between

music and visual design. Both can convey mood and evoke

emotion but, even under close scrutiny, how they do that

remains to a great extent mysterious. Each has formal

qualities or parts that can be abstracted, analysed and

92 24 ways 2011 edition

http://en.wikipedia.org/wiki/Contents_of_the_Voyager_Golden_Record#Music
http://www.youtube.com/watch?v=tUcOaGawIW0
http://www.youtube.com/watch?v=tUcOaGawIW0

discussed, often using the same terminology:

composition, harmony, rhythm, repetition, form, theme;

even colour, texture and tone.

A possible reason for these shared aspects is that both

visual design and music are means to connect with people

in deep and lasting ways. Furthermore, I believe the

connections to be made can complement direct emotional

appeal. Certain aesthetic qualities in music work on an

unconscious and, it could be argued, universal level. Using

musical principles in our designs, then, can help provide

the connectedness between content, device and user that

we now seek as web designers.

Yet, when we talk about music and web design, the

conversation is almost always about the music designers

listen to while working, a theme finding its apotheosis in

Designers.MX. Sometimes, articles in that dreary list

format seek inspiration from music industry websites.

There’s even a service offering pre-templated web

designs for bands, and at least one book surveyed the

landscape back in 2006. Occasionally, discussions

broaden somewhat into whether and how different kinds

of music can inspire and influence the design work we

produce.

Such enquiries, it seems to me, are beside the point. Do I

really design differently when I listen to Bach rather than

Bacharach? Will the barely restrained energy of Count

Composing the New Canon: Music, Harmony, Proportion

24 ways 2011 edition 93

http://thinkvitamin.com/design/emotional-interface-design-the-gateway-to-passionate-users/
http://thinkvitamin.com/design/emotional-interface-design-the-gateway-to-passionate-users/
http://www.markboulton.co.uk/journal/comments/a-richer-canvas
http://www.gavinelliott.co.uk/2009/07/34-web-rockstars-1-question-what-do-you-listen-to/
http://www.gavinelliott.co.uk/2009/07/34-web-rockstars-1-question-what-do-you-listen-to/
http://designers.mx/
http://www.onextrapixel.com/2010/11/26/inspirational-web-design-within-the-music-industry/
http://bandzoogle.com/
http://bandzoogle.com/
http://books.google.co.uk/books/about/Web_design.html?id=G3PrHAAACAAJ
http://books.google.co.uk/books/about/Web_design.html?id=G3PrHAAACAAJ
http://thinkvitamin.com/design/designing-with-music/
http://thinkvitamin.com/design/designing-with-music/
http://www.adaptivepath.com/ideas/music-as-an-intangible-creative-influence

Basie’s The Kid from Red Bank mean I choose a lively colour

palette, and rural, autumnal shades when inspired by

Fleet Foxes? Mahler means a thirteen-column layout?

Gillian Welch leads to distressed black and white

photography? While reflecting the importance we place in

music and how it seems to help us in our work, surveys on

musical taste and lists of favourite artists fail to recognize

that some of the fundamental aesthetic characteristics of

music can be adapted and incorporated into modern web

design.

ANTIPHONAL GEOMETRY

Over recent years, web designers have embraced grid

systems as powerful tools to help create good-looking and

intuitive user experiences. With the advent of responsive

design, these grids and their contents must adapt to the

different screen sizes and properties of all kinds of user

devices. Finding and using grid values that can scale well

and retain or enhance their proportions and relationships

while making the user experience meaningful in several

different contexts is more important than ever.

In print, this challenge has always started with the

dimensions and proportions of the page. Content can

thereby be made to belong inside the page and be bound

to it. And music has been used for centuries to further this

aim. As Robert Bringhurst says in The Elements of

Typographical Style:

94 24 ways 2011 edition

http://open.spotify.com/track/00Xj5a1AANvD7snPt8h3gs
http://fleetfoxes.com/music
http://en.wikipedia.org/wiki/Gustav_Mahler
http://www.gillianwelch.com/

Indeed, one of the simplest of all systems of
page proportions is based on the familiar
intervals of the diatonic scale. Pages that
embody these basic musical proportions have
been in common use in Europe for more than a
thousand years.

Very well. But while he goes on to list (from the full

chromatic scale, rather than just diatonic) the proportions

and the musical intervals they’re based on, Bringhurst

fails to mention what they’re ratios of or their potential

effects. Shame. In his favour, however, he later touches on

how proportions in print might be considered to work:

The page is a piece of paper. It is also a visible
and tangible proportion, silently sounding the
thoroughbass of the book. On it lies the
textblock, which must answer to the page. The
two together – page and textblock – produce an
antiphonal geometry. That geometry alone can
bond the reader to the book. Or conversely, it
can put the reader to sleep, or put the reader’s
nerves on edge, or drive the reader away.

So what does Bringhurst mean by antiphonal geometry, a

phrase that marries the musical to the spatial? By stating

that the textblock “must answer to the page”, the

implication is that the relationship between the

Composing the New Canon: Music, Harmony, Proportion

24 ways 2011 edition 95

proportions of the page and the shape of the textblock

printed on it embodies a spatial (geometrical) call-and-

response (antiphony) that can be appealing or not.

BOULTON’S NEW CANON

But, as Mark Boulton has pointed out, on the web “there

are no edges. There are no ‘pages’. We’ve made them up.”

So, what is to be done? In January 2011 at the New

Adventures in Web Design conference, Boulton

presented his vision of a new canon of web design, a set of

principles to guide us as we design the web. There are

three overlapping tenets:

1. design from the content out

2. create connectedness between the different content

elements

3. bind the content to the web device

Rather than design from the edges in, we need to design

layout systems from the content out. To this end, Boulton

asserts that grid system design should begin with a

constraint, and he suggests we use the size of a fixed

content element, such as an advertising unit or image, as a

starting point for online grid calculations. Khoi Vinh

advocates the same approach in his book, Ordering

Disorder: Grid Principles for Web Design.

96 24 ways 2011 edition

http://2011.newadventuresconf.com/audio/mark.html
http://grids.subtraction.com/
http://grids.subtraction.com/

Boulton’s second and third tenets, however, are more

complex and overlap significantly with each other.

Connecting the different parts of the content and binding

the content to the device share many characteristics and

solutions:

▪ adopting ems and percentages as units of size for

layout elements

▪ altering text size, line length and line height for

different viewport dimensions

▪ providing higher resolution images for devices with

greater pixel densities

▪ fluid layout grids, flexible images and responsive design

All can help relate the presentation of the content to its

delivery in a certain context.

But how do we determine the relationship between one

element of a layout and another? How can we avoid

making arbitrary decisions about the relative sizes of

parts of our designs? What can we use to connect the

parts of our design to one another, and how can we bind

the presentation of the content to the user’s device?

Tim Brown’s application of modular typographic scales

hints at an answer. In the very useful tool he created for

calculating such scales, Brown includes two musical

ratios: the perfect fifth (2:3); and the perfect fourth (3:4).

Why? Where do they come from? And what do they

mean?

Composing the New Canon: Music, Harmony, Proportion

24 ways 2011 edition 97

http://www.alistapart.com/articles/more-meaningful-typography/
http://modularscale.com/

HARMONIES MUSICAL AND VISUAL

Fundamental to music are rhythm and harmony.

As any drummer will tell you, without rhythm there is no

music. Even when there’s no regular beat, any tune

follows a rhythm, however irregular, simply because a

change of note is a point of change in the music. Although

rhythm, timing and pacing are all relevant to interaction

design, right now it’s harmony we’re interested in.

Sometimes harmony is called the vertical aspect of music,

and melody the horizontal. But this conceit overlooks the

fact that harmony is both vertical and horizontal. A single

melodic line, as it is played, implies various sets of

harmonies on which it is grounded, whether or not those

harmonies are played. So, harmony doesn’t just sit

vertically beneath the horizontal melody, but moves

horizontally as well, through harmonic progression.

To stretch this arrangement pixel-thin, we could argue

that in onscreen design melody is the content, and the

layout and arrangement of the content is the harmony.

We sometimes say a design is harmonious when the

interplay of different elements of a design is pleasing or

balanced or in proportion, and the content (the melody) is

set off or conveyed well by or appropriate to the design.

We seem to know instinctively whether a layout is

harmonious…

98 24 ways 2011 edition

In the design of The Great Discontent, the relationships
between different elements combine to form a balanced whole.

…or not.

Composing the New Canon: Music, Harmony, Proportion

24 ways 2011 edition 99

http://thegreatdiscontent.com/

There’s no harmony in the Department for Education’s website
because the different parts of the content don’t feel related to
one another.

What is it that makes one design harmonious and another

dissonant? It’s not just whether things line up, though

that’s a start. I believe there are much deeper aesthetic

forces at work, forces we can tap into in our onscreen

designs. Now, I’m not going start a difficult discussion

about aesthetics. For our purposes, we just need to know

that it’s the branch of philosophy dealing with the nature

of beauty, and the creation and perception of beauty. And

among the key components in the perception of beauty

are harmony and proportion. These have been part of

traditional western aesthetics since Plato (about 2,500

years).

100 24 ways 2011 edition

http://www.education.gov.uk/

One of the ways we appreciate the beauty of music is

through the harmonic intervals we hear. A musical

interval is a combination of two notes and it describes the

distance between the two pitches. For example, the

distance between C and the G above it (if we take C as the

tonic or root) is called a perfect fifth.

Left: C to G, a perfect fifth. Right: C and G, not a perfect fifth.

And, to get superficially scientific for a moment, each

musical interval can be expressed as a ratio of the

wavelength frequencies of the notes; for our perfect fifth,

with every two wavelengths of C, there are three of G.

And what is a ratio, if not a proportion of one thing to

another?

Composing the New Canon: Music, Harmony, Proportion

24 ways 2011 edition 101

So, simple musical harmony (using what’s known as just

intonation1) affords us a set of proportions, expressed as

ratios. Where better to apply these ideas of harmony and

proportion from music in web design, than grid systems?

A digression: whither φ?

Quite often in our discussions of pure design and

aesthetics, we mention the golden ratio and regurgitate

the same justifications for its use: roots in antiquity;

embodied in classical and Renaissance architecture and

art; occurrence in nature; the New Twitter, and so forth

(oh, really?).

Yet the ratios of musical intervals from just intonation are

equally venerable and much more widespread: described

by Pythagorus; employed in Palladian architecture, and

printing, books and art from the Renaissance onwards; in

modern times, film and television dimensions; standard

international paper sizes (ISO 216, the A and B series);

and, again and again, screen dimensions – chances are

that screen you’re probably looking at right now has the

proportions 2:3 (iPhone and iPod Touch), 3:4 (iPad and

Kindle), 3:5 (many smartphones), 5:8 or 16:9 (many

widescreen monitors), all ratios of musical intervals.

Back to our theme…

102 24 ways 2011 edition

http://en.wikipedia.org/wiki/Golden_ratio
https://twitter.com/
http://naturography.com/the-golden-section-hypothesis-a-critical-look/

MUSICAL INTERVAL RATIOS

Let’s take a look at most of the ratios within a couple of

octaves and crunch some numbers to generate some

percentages and other values that we can use in our

designs. First, the intervals and their ratios in just

intonation and expressed as ratios of one:

Name Interval in CRatio Ratio (1:x)

unison C→C 1:1 1:1

minor second C→D♭ 15:161:1.067

major second C→D 8:9 1:1.125

minor third C→E♭ 5:6 1:1.2

major third C→E 4:5 1:1.25

perfect fourth C→F 3:4 1:1.333

augmented fourth

or diminished fifth

C→F♯/G♭ 1:√2 1:1.414

perfect fifth C→G 2:3 1:1.5

minor sixth C→A♭ 5:8 1:1.6

major sixth C→A 3:5 1:1.667

minor seventh C→B♭ 9:16 1:1.778

major seventh C→B 8:15 1:1.875

octave C→C↑ 1:2 1:2

major tenth C→E↑ 2:5 1:2.5

major eleventh C→F↑ 3:8 1:2.667

major twelfth C→G↑ 1:3 1:3

double octave C→C↑ 1:4 1:4

Name Interval in CRatio Ratio (1:x)

Composing the New Canon: Music, Harmony, Proportion

24 ways 2011 edition 103

And now as percentages, of both the larger and smaller

values in the ratios:

Name Ratio % of larger
value

% of smaller
value

unison 1:1 100% 100%

minor second 15:1693.75% 106.667%

major second 8:9 88.889% 112.5%

minor third 5:6 83.333% 120%

major third 4:5 80% 125%

perfect fourth 3:4 75% 133.333%

augmented

fourth

or diminished

fifth

1:√2 70.711% 141.421%

perfect fifth 2:3 66.667% 150%

minor sixth 5:8 62.5% 160%

major sixth 3:5 60% 166.667%

minor seventh 9:16 56.25% 177.778%

major seventh 8:15 53.333% 187.5%

octave 1:2 50% 200%

major tenth 2:5 40% 250%

major eleventh 3:8 37.5% 266.667%

major twelfth 1:3 33.333% 300%

double octave 1:4 25% 400%

Name Ratio % of larger
value

% of smaller
value

104 24 ways 2011 edition

As you can see, the simple musical intervals are expressed

as ratios of small whole numbers (integers). We can then

normalize them as ratios of one, as well as derive

percentage values, both in terms of the smaller value to

the larger, and vice versa. These are the numbers we can

incorporate into our designs. If you’ve ever written

something like body { font: 100%/1.5 "Museo Sans",

Helvetica, sans-serif; } in your CSS, you’re already

using a musical ratio: the perfect fifth.

Modular scales allow us to generate a set of numbers

based on a musical interval that can be used for all kinds

of typographic and layout decisions to create harmony in

a visual design for the web. As Tim Brown said at the 2010

Build conference:

I think that from that most atomic unit – type
– whole experiences can resonate, whole
experiences can be harmonious. And whole
experiences can have a purpose suited to our
design intentions.

ONCE MORE, WITH FEELING: CONNECTEDNESS

As well as modular scales, there are other methods of

incorporating musical interval ratios into our work.

Setting the ratio of font size to line height in CSS is one

Composing the New Canon: Music, Harmony, Proportion

24 ways 2011 edition 105

http://vimeo.com/17079380

such example. We could also create a typographic

hierarchy using the same principle and combining several

ratios that we know harmonize well musically in a chord:

body { font-size: 75%; } /* =12px = base size or tonic */

h1 { font-size: 32px; font-size: 2.667rem; }

/* =32px = 3:8 = major eleventh (C→F↑) */

h2 { font-size: 24px; font-size: 2rem; }

/* =24px = 1:2 = octave (C→C↑) */

h3 { font-size: 20px; font-size: 1.667rem; }

/* =20px = 3:5 = major sixth (C→A) */

figcaption, small { font-size: 9px; font-size : 0.75rem }

/* =9px = 3:4 = perfect fourth (C→F) */

Whoa! Hold your reindeer, Santa! How can we know what

interval combinations work well together to form chords?

Well, I’m a classically trained musician, so perhaps I have

an advantage. To avoid a long, technically complex

digression into musical harmony, here are a few basic

combinations of intervals that are harmonious in one way

or another:

▪ unison; major third; perfect fifth; octave

▪ unison; perfect fourth; major sixth; octave

▪ unison; minor third; minor sixth; octave

▪ unison; minor third; diminished fifth; major sixth;

octave

106 24 ways 2011 edition

This isn’t to say that other combinations can’t be used to

interesting effect and particular purpose – they surely can

– but I have to make sure there’s something left for you to

experiment with in the wee small hours over the holiday.

Bear in mind, though, were I to play you two notes from

the same scale to form a minor second, for example, you’d

probably say it was dissonant and maybe that quality of

the 15:16 ratio would be translated to the design.

In the typographic hierarchy above, you’ll notice I used an

interval in the higher octave, which affords a broader

range of ratios while retaining the harmony. Thus, a

perfect fifth (2:3) becomes a major twelfth (1:3), or a

major sixth (3:5) becomes a major thirteenth (3:10).

The harmonic ratios can obviously be used as proportions

for layout as well, in several different ways:

▪ image width and height (for example, 450×800px =

9:16 = minor seventh)

▪ main content to page width (67%:100% = 2:3 = perfect

fifth)

▪ page width to viewport width (80%:100% = 4:5 = major

third)

One great benefit of using such ratios in web design work

is that they can be applied in responsive web design.

Proportional values, based on percentages or equivalent

Composing the New Canon: Music, Harmony, Proportion

24 ways 2011 edition 107

em units, will scale with changing viewports, so your

layout and image proportions can be maintained or

deliberately changed, as we’re about to find out, across

devices.

SMALL SPEAKERS, TALL SPEAKERS: BINDING
TO THE DEVICE

The musical interval ratios also provide an opportunity,

not only to create connectedness between the parts of a

layout, but to bind the content to a device – that elusive

antiphonal geometry. Just as a textblock and page resonate

together, so too can web content and the screen. Earlier, I

mentioned that several common screen aspect ratios

match musical interval ratios. It would seem, then, that we

have a set of proportions that we can use in different

ways to establish and retain a sense of harmony that can

be based on and change with those contexts. Using

musical interval ratios, we can bind the display of our

content to the device it’s displayed on.

If you haven’t met already, let me introduce you to the

device-aspect-ratio property of CSS media queries.

@media only screen and (device-aspect-ratio: 3/4) { }

@media only screen and (device-aspect-ratio: 480/640) { }

@media only screen and (device-aspect-ratio: 600/800) { }

@media only screen and (device-aspect-ratio: 768/1024) {

}

108 24 ways 2011 edition

Regardless of the precise pixel values, each of these media

queries would apply to devices whose display area has an

aspect ratio of 3:4. It works by comparing the device-

width with the device-height. (It’s not to be confused

with aspect-ratio, which is defined by the width and

height of the browser within the device.) The values in

the media query are always presented as width/height,

with portrait being the default orientation for

smartphones and tablets; that is, to match an iPhone

screen, you’d use device-aspect-ratio: 2/3, not 3/2,

which won’t work.

Here’s a table of the musical intervals with their

corresponding screens.

Composing the New Canon: Music, Harmony, Proportion

24 ways 2011 edition 109

Name device-device-

aspect-aspect-

ratioratio

Screens Common resolutions
(pixels)

major

third

5/4 TFT LCD

computer screens

1,280×1,024

perfect

fourth

3/4 or 4/

3

iPad, Kindle and

other tablets,

PDAs

320×240, 768×1,024

perfect

fifth

2/3 iPhone, iPod

Touch

320×480, 640×960

minor

sixth

8/5 (16/

10)

Many widescreens1,152×720,

1,440×900,

1,920×1,200

major

sixth

3/5 Many

smartphones

240×400, 480×800

minor

seventh

16/9 or

9/16

Many widescreens

and some

smartphones

720×1,280,

1,366×768,

1,920×1,080,

2,560×1,440

[You might argue that I’m playing fast and loose with the ratios. I

suppose, mathematically speaking, 9:16 is not the same as 16:9: I’m no

expert. But let’s not throw the baby out with the bath water, particularly

at Christmas.]

110 24 ways 2011 edition

With this in mind, we can begin to write media queries

that will influence various typographic and layout values

in line with the aspect ratios of specific screens and in

combination with em-based min-width queries that work

from smaller, mobile screens to larger, desktop screens.

Here’s a very simple demo page with only some text, an

image with a caption and a little basic layout: no seasonal

overindulgence here.

Demo: Sample page using device-aspect-ratio media

queries based on musical interval ratios

Our initial styles for all devices are based on the perfect

fifth, with the major third and octave rounding things out

into a harmonious whole, whether or not media queries

are supported. For example:

html { font-size: 100%; line-height: 1.5; }

/* font-size:line-height = 16:24 = 2:3 = perfect

fifth */

h1 { font-size: 32px; font-size: 2rem; line-height:

1.25; }

/* font-size:line-height = 32:40 = 4:5 = major third

body:h1 = 16:32 = 1:2 = octave */

While we should really consider methods of delivering

images appropriate to the screen size, let’s just stick to a

single image for all devices. But why don’t we change its

aspect ratio from 4:3 to 3:2, to fit with our harmonic

Composing the New Canon: Music, Harmony, Proportion

24 ways 2011 edition 111

http://media.24ways.org/2011/gregory/example/index.html
http://media.24ways.org/2011/gregory/example/index.html
http://24ways.org/2011/adaptive-images-for-responsive-designs
http://24ways.org/2011/adaptive-images-for-responsive-designs
http://24ways.org/2011/adaptive-images-for-responsive-designs-again

scheme? It’s easy enough to do with overflow:hidden on

the <figure> element to hide a part of the image, and a

negative margin fudge:

figure img { margin: -8.5% 0 0 0; width: 100%;

max-width: 100%; }

Our first break point targets devices 320 pixels wide with

an aspect ratio of 2:3, namely the iPhone and iPod Touch:

/* 320px = 20×16 */

@media only screen and (min-width: 20em) and

(device-aspect-ratio: 2/3) { }

We’re actually already there, of course, as the intervals

we’ve chosen resonate with this aspect ratio – the content

is already bound to the device.

Our next media query, then, will make some changes to

match a different ratio, the major sixth (3:5), which is

same as that of many smartphones:

/* 480px = 30×16 */

@media only screen and (min-width: 30em) and

(device-aspect-ratio: 3/5) { }

A different aspect ratio might require a change in

harmony. For devices with these proportions, we’ll now

use the perfect fourth (3:4) and the major sixth (3:5) along

with the octave we already have to create a new

112 24 ways 2011 edition

resonating harmony. For instance, a slightly wider screen

means we can increase the line-height to aid the

legibility of longer lines:

html { line-height: 1.667; }

/* font-size:line-height = 16:26.672 = 3:5 = major

sixth */

h1 { font-size: 32px; font-size: 2rem; line-height:

1.667; }

/* font-size:line-height = 32:53.333 = 3:5 = major

sixth

body:h1 = 16:32 = 1:2 = octave */

and we can remove the negative margin to display our 4:3

image in its entirety.

Composing the New Canon: Music, Harmony, Proportion

24 ways 2011 edition 113

Each screen displays content styled using relationships related
to its own proportions. On the left, an iPhone 4 (2:3); on the
right, a Samsung Nexus S (3:5). Your mileage may vary.

Another device, another media query. At 768 pixels,

screens are wide enough to add columns. The ratios we’ve

used for the 3:5 screens include the perfect fourth (3:4) so

we don’t need to change any of the font measurements,

but we can base the proportions of the columns on the

major sixth interval:

114 24 ways 2011 edition

article { float: left; width: 56%; }

/* width of main column 3:5 (60% of 100%, major sixth)

incorporating gutter width */

aside { float : right; width : 36%; }

On devices with a 3:4 aspect ratio, this works even better in
landscape orientation.

While not every screen over 768 pixels wide will have 3:4

proportions, the range of intervals informing the design

ensure harmonious relationships between the different

parts of the layout.

Composing the New Canon: Music, Harmony, Proportion

24 ways 2011 edition 115

For wide screens proper (break point at 1,280 pixels) we

can employ a new set of harmonious intervals. Many

laptop and desktop screens have a 16:10 aspect ratio,

which boils down to 8:5, equivalent to the minor sixth

(5:8). Combined with a minor third (5:6) and the octave

(1:2), this creates a new harmony appropriate to these

devices. Let’s increase the font size and change the

image’s aspect ratio to match:

html { font-size: 120%; line-height: 1.6; }

/* font-size increased for wider screens from 16px to

19.2px

(5:6 = minor third)

font-size:line-height = 19.2:30.72 = 5:8 = minor

sixth */

figure img { margin: -12.5% 0 0 ; }

/* using -ve margin combined with overflow:hidden

on the figure element

to crop the image from 4:3 to 8:5 = minor sixth */

116 24 ways 2011 edition

A wide screen with a 8:5 (16:10) aspect ratio and an image to
match.

With more pixels at our disposal, we can also now use the

musical interval ratios to determine the width of the

layout, and change the column proportions as well:

section { margin: 0 auto; width: 83.333%; }

/* content width:screen width = 5:6 = minor third */

article { width: 60%; }

/* width of main column 5:8 (62.5% of 100%, minor

sixth)

incorporating gutter width */

aside { width: 35%; }

With some carefully targeted media queries, we can begin

to reach towards fulfilling the second and third tenets of

Boulton’s new canon for web design: connecting the parts

Composing the New Canon: Music, Harmony, Proportion

24 ways 2011 edition 117

of content through relationships embodied in the layout

design; and binding the content to the devices people use

to access it.

CODA

Musical interval ratios and screen aspect ratios reveal

more than convenient correspondence. These

proportions work on a deep aesthetic level. Much is

claimed for the golden ratio φ, but none of the screens

pervading our lives use it. Perhaps that’s an accident of

technology, but can making screens to φ’s proportions be

more difficult or expensive than 2:3 or 3:4 or 16:10? Here,

then, is not just one but a set of proportions with a

uniquely human focus, originating in nature, recognized in

antiquity, fundamental still.

We find music to be an art steeped with meaning, yet,

unlike literary and representational arts, purely

instrumental music has no obvious semantic content. It

boasts an ability to express emotions while remaining an

abstract art in some sense, which makes it very like

design. These days, we’re rightly encouraged to design for

emotion, to make our users’ experience meaningful,

seductive, delightful. Using musical ideas and principles in

our designs can help achieve those ends.

118 24 ways 2011 edition

http://uxmag.com/design/beyond-emotion
http://uxmag.com/design/beyond-emotion
http://24ways.org/2010/beyond-web-mechanics-creating-meaningful-web-design
http://vimeo.com/7730620
http://aralbalkan.com/ux-video
http://schedule.sxsw.com/events/event_IAP6643
http://schedule.sxsw.com/events/event_IAP6643

Let’s not be naïve, of course; designing web pages is even

less like composing music than it’s like designing for print.

In visual design, the eye will always be sovereign to the

ear; following these principles will only get us so far. We

cannot truly claim that a carefully composed web page

layout will have the same qualities and effect as any

musical patterns that inform it. In music, a set of intervals

is always harmonious in relation to other sets of intervals:

music rarely stands still. What aspect ratios will future

screens take? Already today there is great variation in

devices and support for media queries (and within that,

support for device-aspect-ratio). And what of non-

western musical traditions? Or rhythm, form, tempo and

dynamics? What I’ve demonstrated above is only a

suggestion, a tentative exploration of one possible way

forward.

But as our discipline matures and we become more

articulate about what we do, we must look longer and

deeper into areas of human endeavour already rich with

value. Music is a fertile ground to explore and has the

potential to yield up new approaches for web design.

Footnotes

1. Just intonation is a system of tuning that uses small

integers to describe the musical intervals, based initially

on the perfect fifth, that most consonant of intervals.

Composing the New Canon: Music, Harmony, Proportion

24 ways 2011 edition 119

http://24ways.org/2010/the-articulate-web-designer-of-tomorrow
http://24ways.org/2010/the-articulate-web-designer-of-tomorrow

Simple instruments such as vibrating strings and natural

horns, as well as unaccompanied voices, tend to fall into

just intonation naturally.

ABOUT THE AUTHOR

Owen Gregory is an editor, website designer and musician

living in Birmingham, UK. He started designing for the web in

1998 and established his small business Full Cream Milk in

2006. Prior to that, Owen studied English and writing to

master’s level, and he now brings these two interests together

120 24 ways 2011 edition

http://www.fullcreammilk.co.uk/

for your friendly neighbourhood web book publishers, like Five

Simple Steps. He tweets as @FullCreamMilk because

FullCreamMilkMan is too long for Twitter.

Owen is what is sometimes called a classically trained musician,

and he plays oboe and cor anglais (neither English nor a horn) in

a number of non-professional orchestras.

Oh, and Andy Clarke once thanked Owen for “being Lewis to my

Morse”. Which is better than being Robin to his Batman.

Composing the New Canon: Music, Harmony, Proportion

24 ways 2011 edition 121

http://twitter.com/#!/fullcreammilk

Alex Morris 24ways.org/201110

10. Context First: Web
Strategy in Four Handy
Ws

Many, many years ago, before web design
became my proper job, I trained and worked
as a journalist. I studied publishing in
London and spent three fun years learning
how to take a few little nuggets of
information and turn them into a story. I
learned a bunch of stuff that has all been a
huge help to my design career. Flatplanning,
layout, typographic theory. All of these
disciplines have since translated really well
to web design, but without doubt the most
useful thing I learned was how to ask
difficult questions.

Pretty much from day one of journalism school they

hammer into you the importance of the Five Ws. Five

disarmingly simple lines of enquiry that eloquently

122 24 ways 2011 edition

http://24ways.org/201110

manage to provide the meat of any decent story. And with

alliteration thrown in too. For a young journo, it’s almost

too good to be true.

Who? What? Where? When? Why? It seems so obvious to

almost be trite but, fundamentally, any story that

manages to answer those questions for the reader is

doing a pretty good job. You’ll probably have noticed

feeling underwhelmed by certain news pieces in the past

– disappointed, like something was missing. Some

irritating oversight that really lets the story down. No

doubt it was one of the Ws – those innocuous little

suckers are generally only noticeable by their absence,

but they sure get missed when they’re not there.

QUESTION EVERYTHING

I’ve always been curious. An inveterate tinkerer with

things and asker of dopey questions, often to the point of

abject annoyance for anyone unfortunate enough to have

ended up in my line of fire. So, naturally, the Five Ws

started drifting into other areas of my life. I’d scrutinize

everything, trying to justify or explain my rationale using

these Ws, but I’d also find myself ripping apart the stuff

that clearly couldn’t justify itself against the same criteria.

So when I started working as a designer I applied the same

logic and, sure enough, the Ws pretty much mapped to the

exact same needs we had for gathering requirements at

Context First: Web Strategy in Four Handy Ws

24 ways 2011 edition 123

the start of a project. It seemed so obvious, such a simple

way to establish the purpose of a product. What was it

for? Why we were making it? And, of course, who were we

making it for? It forced clients to stop and think, when

really what they wanted was to get going and see

something shiny. Sometimes that was a tricky

conversation to have, but it’s no coincidence that those

who got it also understood the value of strategy and went

on to have good solid products, while those that didn’t

often ended up with arrogantly insular and very shiny but

ultimately unsatisfying and expendable products. Empty

vessels make the most noise and all that…

CONTENT FIRST

I was both surprised and pleased when the whole content

first idea started to rear its head a couple of years back.

Pleased, because without doubt it’s absolutely the right

way to work. And surprised, because personally it’s

always been the way I’ve done it – I wasn’t aware there

was even an alternative way. Content in some form or

another is the whole reason we were making the things

we were making. I can’t even imagine how you’d start

figuring out what a site needs to do, how it should be

structured, or how it should look without a really good

idea of what that content might be. It baffles me still that

124 24 ways 2011 edition

this was somehow news to a lot of people. What on earth

were they doing? Design without purpose is just folly,

surely?

It’s great to see the idea gaining momentum but, having

watched it unfold, it occurred to me recently that

although it’s fantastic to see a tangible shift in thinking –

away from those bleak times, where making things up was

somehow deemed an appropriate way to do things –

there’s now a new bad guy in town.

With any buzzword solution of the moment, there’s

always a catch, and it seems like some have taken the

content first approach a little too literally. By which I

mean, it’s literally the first thing they do. The project

starts, there’s a very cursory nod towards gathering

requirements, and off they go, cranking content. Writing

copy, making video, commissioning illustrations.

All that’s happened is that the ‘making stuff up’ part has

shifted along the line, away from layout and UI, back to

the content.

STARTING IS TOO EASY

I can’t remember where I first heard that phrase, but it’s a

great sentiment which applies to so much of what we do

on the web. The medium is so accessible and to an extent

disposable; throwing things together quickly carries far

less burden than in any other industry. We’re used to

Context First: Web Strategy in Four Handy Ws

24 ways 2011 edition 125

tweaking as we go, changing bits, iterating things into

shape. The ubiquitous beta tag has become the ultimate

caveat, and has made the unfinished and unpolished

acceptable. Of course, that can work brilliantly in some

circumstances. Occasionally, a product offers such a

paradigm shift it’s beyond the level of deep planning and

prelaunch finessing we’d ideally like. But, in the main, for

most client sites we work on, there really is no excuse not

to do things properly. To ask the tricky questions, to

challenge preconceptions and really understand the Ws

behind the products we’re making before we even start.

THE FOUR WS

For product definition, only four of the five Ws really

apply, although there’s a lot of discussion around the idea

of when being an influencing factor. For example, the

context of a user’s engagement with your product is

something you can make a call on depending on the

specifics of the project.

So, here’s my take on the four essential Ws. I’ll point out

here that, of course, these are not intended to be

autocratic dictums. Your needs may differ, your clients’

needs may differ, but these four starting points will get

you pretty close to where you need to be.

126 24 ways 2011 edition

Who

It’s surprising just how many projects start without a real

understanding of the intended audience. Many clients

think they have an idea, but without really knowing – it’s

presumptive at best, and we all know what presumption is

the mother of, right? Of course, we can’t know our

audiences in the same way a small shop owner might

know their customers. But we can at least strive to find

out what type of people are likely to be using the product.

I’m not talking about deep user research. That should

come later.

These are the absolute basics. What’s the context for

their visit? How informed are they? What’s their level of

comprehension? Are they able to self-identify and relate

to categories you have created? I could go on, and it

changes on a per-project basis. You’ll only find this out by

speaking to them, if not in person, then indirectly through

surveys, questionnaires or polls. The mechanism is less

important than actually reaching out and engaging with

them, because without that understanding it’s impossible

to start to design with any empathy.

What

Once you become deeply involved directly with a product

or service, it’s notoriously difficult to see things as an

outsider would. You learn the thing inside and out, you

Context First: Web Strategy in Four Handy Ws

24 ways 2011 edition 127

develop shortcuts and internal phraseology.

Colloquialisms creep in. You become too close. So it’s no

surprise when clients sometimes struggle to explain what

it is their product actually does in a way that others can

understand.

Often products are complex but, really, the core reasons

behind someone wanting to use that product are very

simple. There’s a value proposition for the customer and,

if they choose to engage with it, there’s a value exchange.

If that proposition or exchange isn’t transparent, then

people become confused and will likely go elsewhere.

Make sure both your client and you really understand

what that proposition is and, in turn, what the expected

exchange should be. In a nutshell: what is the intended

outcome of that engagement? Often the best way to do

this is strip everything back to nothing. Verbosity is rife on

the web. Just because it’s easy to create content, that

shouldn’t be a reason to do so. Figure out what the value

proposition is and then reintroduce content elements that

genuinely help explain or present that to a level that is

appropriate for the audience.

Why

In advertising, they talk about the truths behind a product

or service. Truths can be both tangible or abstract, but the

most important part is the resonance those truths hit with

a customer. In a digital product or service those truths are

128 24 ways 2011 edition

often exposed as benefits. Why is this what I need? Why

will it work for me? Why should I trust you? The why is

one of the more fluffy Ws, yet it’s such an important one

to nail. Clients can get prickly when you ask them to

justify the why behind their product, but it’s a fantastic

way to make sure the value proposition is clear, realistic

and meets with the expectations of both client and

customer.

It’s our job as designers to question things: we’re not just

a pair of hands for clients. Just recently I spoke to a

potential client about a site for his business. I asked him

why people would use his product and also why his

product seemed so fractured in its direction. He couldnt

answer that question so, instead of ploughing on

regardless, he went back to his directors and is now re-

evaluating that business. It was awkward but he thanked

me and hopefully he’ll have a better product as a result.

Where

In this instance, where is not so much a geographical

thing, although in some cases that level of context may

indeed become a influencing factor… The where we’re

talking about here is the position of the product in

relation to others around it. By looking at competitors or

similar services around the one you are designing, you can

start to get a sense for many of the things that are

otherwise hard to pin down or have yet to be defined. For

Context First: Web Strategy in Four Handy Ws

24 ways 2011 edition 129

example, in a collection of sites all selling cars, where does

yours fit most closely? Where are the overlaps? How are

they communicating to their customers? How is the

product range presented or categorized?

It’s good to look around and see how others are doing it.

Not in a quest for homogeneity but more to reference or

to avoid certain patterns that may or may not make sense

for your own particular product. Clients often strive to be

different for the sake of it. They feel they need to provide

distinction by going against the flow a bit. We know

different. We know users love convention. They embrace

familiar mental models. They’re comfortable with things

that they’ve experienced elsewhere. By showing your

client that position is a vital part of their strategy, you can

help shape their product into something great.

TO CONCLUDE

So there we have it – the four Ws. Each part tells a

different and vital part of the story you need to be able to

make a really good product. It might sound like a lot of

work, particularly when the client is breathing down your

neck expecting to see things, but without those pieces in

place, the story you’re building your product on, and the

content that you’re creating to form that product can only

ever fit into one genre. Fiction.

130 24 ways 2011 edition

ABOUT THE AUTHOR

Alex Morris is an Interaction Designer with over 15 years

experience designing and building websites, games and

applications for clients ranging from small startups to

multinational news networks (and pretty much everything in

between). Now working as User Experience Director for Mark

Boulton Design.

An obsessive tinkerer, Alex likes to get his hands dirty taking

things apart and then re-building them. Alex has hand rolled his

own CMS, written a bespoke ecommerce platform, released a

number of iOS apps and is hell bent on creating a better way to

design websites. The first part of that quest launched in

November 2011 with Alex’s first Macintosh application. CSS3

Toolkit is a simple utility tool that allows designers and

developers to create complex CSS3 effects without writing a

Context First: Web Strategy in Four Handy Ws

24 ways 2011 edition 131

http://www.markboultondesign.com
http://www.markboultondesign.com
http://itunes.apple.com/gb/app/css3-toolkit/id479856901?mt=12
http://itunes.apple.com/gb/app/css3-toolkit/id479856901?mt=12

single line of code. The plan is to build on the custom webkit

engine that runs Toolkit, to create a tool to design in the

browser without needing to know any HTML or CSS.

Alex learned HTML whilst studying publishing back in 1996 and

has since used it daily for everything from quick and dirty

prototypes through to large scale applications.

With a firm focus on UX since the beginning of his career, Alex

considers himself a multi-disciplined designer combining

Interface Design with the ability to execute technical solutions

when the need arises.

Alex contributes to Net magazine, blogs at

mistermorris.tumblr.com and can be found on Twitter as

@aexmo

132 24 ways 2011 edition

http://mistermorris.tumblr.com
http://twitter.com/aexmo

Mike Kus 24ways.org/201111

11. Nine Things I've
Learned

I’ve been a professional graphic designer for
fourteen years and for just under four of
those a professional web designer. Like
most designers I’ve learned a lot in my time,
both from a design point of view and in
business as freelance designer. A few of the
things I’ve learned stick out in my mind, so I
thought I’d share them with you. They’re
pretty random and in no particular order.

1. BECOMING THE DESIGNER YOU WANT TO BE

When I started out as a young graphic designer, I wanted

to design posters and record sleeves, pretty much like

every other young graphic designer. The problem is that

the reality of the world means that when you get your

first job you’re designing the back of a paracetamol packet

or something equally weird. I recently saw a tweet that

went something like this: “You’ll never become the

Nine Things I've Learned

24 ways 2011 edition 133

http://24ways.org/201111

designer you always dreamt of being by doing the work

you never wanted to do”. This is so true; to become the

designer you want to be, you need to be designing the

things you’re passionate about designing. This probably

this means working in the evenings and weekends for

little or no money, but it’s time well spent. Doing this will

build up your portfolio with the work that really shows

what you can do! Soon, someone will ask you to design

something based on having seen this work. From this

point, you’re carving your own path in the direction of

becoming the designer you always wanted to be.

2. COMPETE ON YOUR OWN TERMS

As well as all being friends, we are also competitors. In

order to win new work we need a selling point, preferably

a unique selling point. Web design is a combination of

design disciplines – user experience design, user interface

Design, visual design, development, and so on. Some

companies will sell themselves as UX specialists, which is

fine, but everyone who designs a website from scratch

does some sort of UX, so it’s not really a unique selling

point. Of course, some people do it better than others.

One area of web design that clients have a strong opinion

on, and will judge you by, is visual design. It’s an area in

which it’s definitely possible to have a unique selling point.

Designing the visual aesthetic for a website is a

combination of logical decision making and a certain

134 24 ways 2011 edition

amount of personal style. If you can create a unique visual

style to your work, it can become a selling point that’s

unique to you.

3. HOW MUCH TO CHARGE AND STAYING
MOTIVATED

When you’re a freelance designer one of the hardest

things to do is put a price on your work and skills. Finding

the right amount to charge is a fine balance between

supplying value to your customer and also charging

enough to stay motivated to do a great job. It’s always

tempting to offer a low price to win work, but it’s often

not the best approach: not just for yourself but for the

client as well.

A client once asked me if I could reduce my fee by £1,000

and still be motivated enough to do a good job. In this case

the answer was yes, but it was the question that

resonated with me. I realized I could use this as a gauge to

help me price projects. Before I send out a quote I now

always ask myself the question “Is the amount I’ve quoted

enough to make me feel motivated to do my best on this

project?” I never send out a quote unless the answer is

yes. In my mind there’s no point in doing any project half-

heartedly, as every project is an opportunity to build your

reputation and expand your portfolio to show potential

Nine Things I've Learned

24 ways 2011 edition 135

clients what you can do. Offering a client a good price but

not being prepared to put everything you have into it, isn’t

value for money.

4. SUPPLYING THE RIGHT DESIGN

When I started out as a graphic designer it seemed to be

the done thing to supply clients with a ton of options for

their logo or brochure designs. In a talk given by Dan

Rubin, he mentioned that this was a legacy of agencies

competing with each other in a bid to create the illusion of

offering more value for money. Over the years, I’ve

realized that offering more than one solution makes no

sense. The reason a client comes to you as a designer is

because you’re the person than can get it right. If I were to

supply three options, I’d be knowingly offering my client

at least two options that I didn’t think worked.

To this day I still get asked how many homepage design

options I’ll supply for the quoted amount. The answer is

one. Of course, I’m more than happy to iterate upon the

design to fine-tune it and, on the odd occasion, I do revisit

a design concept if I just didn’t nail the design first time

around. Your time is much better spent refining the right

design option than rushing out three substandard designs

in the same amount of time.

136 24 ways 2011 edition

5. COLOUR IS KEY

There are many contributing factors that go into making a

good visual design, but one of the simplest ways to do this

is through the use of colour. The colour palette used in a

design can have such a profound effect on a visual design

that it almost feels like you’re cheating. It’s easy to add

more and more subtle shades of colour to add a sense of

sophistication and complexity to a design, but it dilutes

the overall visual impact. When I design, I almost have a

rule that only allows me to use a very limited colour

palette. I don’t always stick to it, but it’s always in mind

and something I’m constantly reviewing through my

design process.

6. CREATIVE THINKING IS CENTRAL TO GOOD
OR BOUNDARY-PUSHING WEB DESIGN

When we think of creativity in web design we often link

this to the visual design, as there is an obvious

opportunity to be creative in this area if the brief allows it.

Something that I’ve learnt in my time as a web designer is

that there’s a massive need for creative thinking in the

more technical aspects of web design. The tools we use

for building websites are there to be manipulated and

used in creative ways to design exciting and engaging user

experiences. Great developers are constantly using their

creativity to push the boundaries of what can be done

with CSS, jQuery and JavaScript.

Nine Things I've Learned

24 ways 2011 edition 137

Being creative and creative thinking are things we should

embrace as an industry and they are qualities that can be

found in anyone, whether they be a visual designer or

Rails developer.

7. CREATIVE BLOCK: DON’T BE AFRAID TO GET
THINGS WRONG

Creative block can be a killer when designing. It’s often

applied to visual design, which is more subjective. I suffer

from creative block on a regular basis. It’s hugely

frustrating and can screw up your schedule. Having

thought about what creative block actually is, I’ve come to

the conclusion that it’s actually more of a lack of direction

than a lack of ideas. You have ideas and solutions in mind

but don’t feel committed to any of them. You’re scared

that whatever direction you take, it’ll turn out to be

wrong. I’ve found that the best remedy for this is to work

through this barrier. It’s a bit like designing with a

blindfold on – you don’t really know where you’re going. If

you stick to your guns and keep pressing forward I find

that, nine times out of ten, this process leads to a solution.

As the page begins to fill, the direction you’re looking for

slowly begins to take shape.

138 24 ways 2011 edition

8. YOU GET BETTER AT DESIGNING BY
DESIGNING

I often get emails asking me what books someone can

read to help them become a better designer. There are a

lot of good books on subjects like HTML5, CSS,

responsive web design and the like, that will really help

improve anyone’s web design skills. But, when it comes to

visual design, the best way to get better is to design as

much as possible. You can’t follow instructions for these

things because design isn’t following instructions. A large

part of web design is definitely applying a set of widely

held conventions, but there’s another part to it that is

invention and the only way to get better at this is to do it

as much as possible.

9. SELF-BELIEF IS OVERRATED

Throughout our lives we’re told to have self-belief. Self-

belief and confidence in what we do, whatever that may

be. The problem is that some people find it easier than

others to believe in themselves. I’ve spent years trying to

convince myself to believe in what I do but have always

found it difficult to have complete confidence in my design

skills. Self-doubt always creeps in.

I’ve realized that it’s ok to doubt myself and I think it

might even be a good thing! I’ve realized that it’s my self-

doubt that propels me forward and makes me work

harder to achieve the best results. The reason I’m sharing

Nine Things I've Learned

24 ways 2011 edition 139

this is because I know I’m not the only designer that feels

this way. You can spend a lot of time fighting self-doubt

only to discover that it’s your body’s natural mechanism

to help you do the best job possible.

ABOUT THE AUTHOR

Mike Kus is a web/graphic designer & illustrator. He’s based in

UK and works for clients worldwide. You can see his work at

mikekus.com.

140 24 ways 2011 edition

http://www.mikekus.com

Jon Hicks 24ways.org/201112

12. Displaying Icons with
Fonts and Data-
Attributes

Traditionally, bitmap formats such as PNG
have been the standard way of delivering
iconography on websites. They’re quick and
easy, and it also ensures they’re as pixel
crisp as possible. Bitmaps have two
drawbacks, however: multiple HTTP
requests, affecting the page’s loading
performance; and a lack of scalability,
noticeable when the page is zoomed or
viewed on a screen with a high pixel density,
such as the iPhone 4 and 4S.

The requests problem is normally solved by using CSS

sprites, combining the icon set into one (physically) large

image file and showing the relevant portion via

background-position. While this works well, it can get a

bit fiddly to specify all the positions. In particular,

Displaying Icons with Fonts and Data- Attributes

24 ways 2011 edition 141

http://24ways.org/201112

scalability is still an issue. A vector-based format such as

SVG sounds ideal to solve this, but browser support is still

patchy.

142 24 ways 2011 edition

The rise and adoption of web fonts have given us another

alternative. By their very nature, they’re not only scalable,

but resolution-independent too. No need to specify

higher resolution graphics for high resolution screens!

That’s not all though:

▪ Browser support: Unlike a lot of new shiny techniques,

they have been supported by Internet Explorer since

version 4, and, of course, by all modern browsers. We do

need several different formats, however!

▪ Design on the fly: The font contains the basic graphic,

which can then be coloured easily with CSS – changing

colours for themes or :hover and :focus styles is done

with one line of CSS, rather than requiring a new graphic.

You can also use CSS3 properties such as text-shadow to

add further effects. Using -webkit-background-clip:

text;, it’s possible to use gradient and inset shadow

effects, although this creates a bitmap mask which spoils

the scalability.

▪ Small file size: specially designed icon fonts, such as

Drew Wilson’s Pictos font, can be as little as 12Kb for the

.woff font. This is because they contain fewer characters

than a fully fledged font. You can see Pictos being used in

the wild on sites like Garrett Murray’s Maniacal Rage.

As with all formats though, it’s not without its

disadvantages:

Displaying Icons with Fonts and Data- Attributes

24 ways 2011 edition 143

http://pictos.drewwilson.com/
http://log.maniacalrage.net

▪ Icons can only be rendered in monochrome or with a

gradient fill in browsers that are capable of rendering

CSS3 gradients. Specific parts of the icon can’t be a

different colour.

▪ It’s only appropriate when there is an accompanying

text to provide meaning. This can be alleviated by

wrapping the text label in a tag (I like to use rather

than , due to the fact that it’s smaller and isn’ t

being used elsewhere) and then hiding it from view with

text-indent:-999em.

▪ Creating an icon font can be a complex and time-

consuming process. While font editors can carry out

hinting automatically, the best results are achieved

manually.

▪ Unless you’re adept at creating your own fonts, you’re

restricted to what is available in the font. However, fonts

like Pictos will cover the most common needs, and icons

are most effective when they’re using familiar

conventions.

The main complaint about using fonts for icons is that it

can mean adding a meaningless character to our markup.

The good news is that we can overcome this by using one

of two methods – CSS generated content or the data-

icon attribute – in combination with the :before and

:after pseudo-selectors, to keep our markup minimal and

meaningful.

Our simple markup looks like this:

144 24 ways 2011 edition

View Basket

Note the multiple class attributes. Next, we’ll import the

Pictos font using the @font-face web fonts property in

CSS:

@font-face {

font-family: 'Pictos';

src: url('pictos-web.eot');

src: local('☺'),

url('pictos-web.woff') format('woff'),

url('pictos-web.ttf') format('truetype'),

url('pictos-web.svg#webfontIyfZbseF') format('svg');

}

This rather complicated looking set of rules is (at the time

of writing) the most bulletproof way of ensuring as many

browsers as possible load the font we want. We’ll now use

the content property applied to the :before pseudo-class

selector to generate our icon. Once again, we’ll use those

multiple class attribute values to set common icon styles,

then specific styles for .basket. This helps us avoid

repeating styles:

.icon {

font-family: 'Pictos';

font-size: 22px:

}

.basket:before {

content: "$";

}

Displaying Icons with Fonts and Data- Attributes

24 ways 2011 edition 145

What does the :before pseudo-class do? It generates the

dollar character in a browser, even when it’s not present

in the markup. Using the generated content approach

means our markup stays simple, but we’ll need a new line

of CSS, defining what letter to apply to each class

attribute for every icon we add.

data-icon is a new alternative approach that uses the

HTML5 data- attribute in combination with CSS attribute

selectors. This new attribute lets us add our own

metadata to elements, as long as its prefixed by data- and

doesn’t contain any uppercase letters. In this case, we

want to use it to provide the letter value for the icon. Look

closely at this markup and you’ll see the data-icon

attribute.

View

Basket

We could add others, in fact as many as we like.

Favourites

History

Location

146 24 ways 2011 edition

Then, we need just one CSS attribute selector to style all

our icons in one go:

.icon:before {

content: attr(data-icon);

/* Insert your fancy colours here */

}

By placing our custom attribute data-icon in the selector

in this way, we can enable CSS to read the value of that

attribute and display it before the element (in this case,

the anchor tag). It saves writing a lot of CSS rules. I can

imagine that some may not like the extra attribute, but it

does keep it out of the actual content – generated or not.

Displaying Icons with Fonts and Data- Attributes

24 ways 2011 edition 147

This could be used for all manner of tasks, including a

media player and large simple illustrations. See the demo

for live examples. Go ahead and zoom the page, and the

icons will be crisp, with the exception of the examples that

use -webkit-background-clip: text as mentioned

earlier.

Finally, it’s worth pointing out that with both generated

content and the data-icon method, the letter will be

announced to people using screen readers. For example,

with the shopping basket icon above, the reader will say

“dollar sign view basket”. As accessibility issues go, it’s not

exactly the worst, but could be confusing. You would need

to decide whether this method is appropriate for the

audience. Despite the disadvantages, icon fonts have

huge potential.

148 24 ways 2011 edition

http://iconhandbook.co.uk/examples/pictos/
http://iconhandbook.co.uk/examples/pictos/

ABOUT THE AUTHOR

Jon Hicks is one half of the creative partnership Hicksdesign,

designing for a variety of mediums, but with a particular

fondness for icon and logo design. In fact he’s written a book,

about it called The Icon Handbook, released in January 2012.

His recent clients include Skype, Mailchimp, Shopify and Opera

Software, but is best known for his uncanny impression of

Lucius Malfoy singing “I only want to be with you”.

He blogs about design and personal interests (mainly Dr Who

and Cycling) at hicksdesign.co.uk/journal

Displaying Icons with Fonts and Data- Attributes

24 ways 2011 edition 149

http://www.hicksdesign.co.uk
http://iconhandbook.co.uk
http://www.hicksdesign.co.uk/journal/

Scott Kosman 24ways.org/201113

13. Your jQuery: Now
With 67% Less Suck

Fun fact: more websites are now using
jQuery than Flash.

jQuery is an amazing tool that’s made JavaScript

accessible to developers and designers of all levels of

experience. However, as Spiderman taught us, “with great

power comes great responsibility.” The unfortunate

downside to jQuery is that while it makes it easy to write

JavaScript, it makes it easy to write really really f*&#ing

bad JavaScript. Scripts that slow down page load,

unresponsive user interfaces, and spaghetti code knotted

so deep that it should come with a bottle of whiskey for

the next sucker developer that has to work on it.

This becomes more important for those of us who have

yet to move into the magical fairy wonderland where

none of our clients or users view our pages in Internet

Explorer. The IE JavaScript engine moves at the speed of

an advancing glacier compared to more modern browsers,

so optimizing our code for performance takes on an even

higher level of urgency.

150 24 ways 2011 edition

http://24ways.org/201113
http://appendto.com/jquery-overtakes-flash
http://appendto.com/jquery-overtakes-flash

Thankfully, there are a few very simple things anyone can

add into their jQuery workflow that can clear up a lot of

basic problems. When undertaking code reviews, three of

the areas where I consistently see the biggest problems

are: inefficient selectors; poor event delegation; and

clunky DOM manipulation. We’ll tackle all three of these

and hopefully you’ll walk away with some new jQuery

batarangs to toss around in your next project.

SELECTOR OPTIMIZATION

Selector speed: fast or slow?

Saying that the power behind jQuery comes from its

ability to select DOM elements and act on them is like

saying that Photoshop is a really good tool for selecting

pixels on screen and making them change color – it’s a bit

of a gross oversimplification, but the fact remains that

jQuery gives us a ton of ways to choose which element or

elements in a page we want to work with. However, a

surprising number of web developers are unaware that all

selectors are not created equal; in fact, it’s incredible just

how drastic the performance difference can be between

two selectors that, at first glance, appear nearly identical.

For instance, consider these two ways of selecting all

paragraph tags inside a <div> with an ID.

$("#id p");

Your jQuery: Now With 67% Less Suck

24 ways 2011 edition 151

http://en.wikipedia.org/wiki/Batarang

$("#id").find("p");

Would it surprise you to learn that the second way can be

more than twice as fast as the first? Knowing which

selectors outperform others (and why) is a pretty key

building block in making sure your code runs well and

doesn’t frustrate your users waiting for things to happen.

There are many different ways to select elements using

jQuery, but the most common ways can be basically

broken down into five different methods. In order,

roughly, from fastest to slowest, these are:

▪ $("#id");

This is without a doubt the fastest selector jQuery

provides because it maps directly to the native

document.getElementbyId() JavaScript method. If

possible, the selectors listed below should be prefaced

with an ID selector in conjunction with jQuery’s .find()

method to limit the scope of the page that has to be

searched (as in the $("#id").find("p") example shown

above).

▪ $("p");, $("input");, $("form"); and so on

Selecting elements by tag name is also fast, since it maps

directly to the native document.getElementsByTagname()

method.

▪ $(".class");

Selecting by class name is a little trickier. While still

performing very well in modern browsers, it can cause

152 24 ways 2011 edition

http://api.jquery.com/find/

some pretty significant slowdowns in IE8 and below.

Why? IE9 was the first IE version to support the native

document.getElementsByClassName() JavaScript method.

Older browsers have to resort to using much slower

DOM-scraping methods that can really impact

performance.

▪ $("[attribute=value]");

There is no native JavaScript method for this selector to

use, so the only way that jQuery can perform the search is

by crawling the entire DOM looking for matches. Modern

browsers that support the querySelectorAll() method

will perform better in certain cases (Opera, especially,

runs these searches much faster than any other browser)

but, generally speaking, this type of selector is Slowey

McSlowersons.

▪ $(":hidden");

Like attribute selectors, there is no native JavaScript

method for this one to use. Pseudo-selectors can be

painfully slow since the selector has to be run against

every element in your search space. Again, modern

browsers with querySelectorAll() will perform slightly

better here, but try to avoid these if at all possible. If you

must use one, try to limit the search space to a specific

portion of the page: $("#list").find(":hidden");

But, hey, proof is in the performance testing, right? It just

so happens that said proof is sitting right here. Be sure to

notice the class selector numbers beside IE7 and 8

Your jQuery: Now With 67% Less Suck

24 ways 2011 edition 153

http://jsperf.com/id-vs-class-vs-tag-selectors/2

compared to other browsers and then wonder how the

people on the IE team at Microsoft manage to sleep at

night. Yikes.

Chaining

Almost all jQuery methods return a jQuery object. This

means that when a method is run, its results are returned

and you can continue executing more methods on them.

Rather than writing out the same selector multiple times

over, just making a selection once allows multiple actions

to be run on it.

WITHOUT CHAINING

$("#object").addClass("active");

$("#object").css("color","#f0f");

$("#object").height(300);

WITH CHAINING

$("#object").addClass("active").css("color",

"#f0f").height(300);

This has the dual effect of making your code shorter and

faster. Chained methods will be slightly faster than

multiple methods made on a cached selector, and both

ways will be much faster than multiple methods made on

non-cached selectors. Wait… “cached selector”? What is

this new devilry?

154 24 ways 2011 edition

Caching

Another easy way to speed up your code that seems to be

a mystery to developers is the idea of caching your

selectors. Think of how many times you end up writing the

same selector over and over again in any project. Every

$(".element") selector has to search the entire DOM

each time, regardless of whether or not that selector had

been previously run. Running the selection once and then

storing the results in a variable means that the DOM only

has to be searched once. Once the results of a selector

have been cached, you can do anything with them.

First, run your search (here we’re selecting all of the

elements inside <ul id="blocks">):

var blocks = $("#blocks").find("li");

Now, you can use the blocks variable wherever you want

without having to search the DOM every time.

$("#hideBlocks").click(function() {

blocks.fadeOut();

});

$("#showBlocks").click(function() {

blocks.fadeIn();

});

My advice? Any selector that gets run more than once

should be cached. This jsperf test shows just how much

faster a cached selector runs compared to a non-cached

one (and even throws some chaining love in to boot).

Your jQuery: Now With 67% Less Suck

24 ways 2011 edition 155

http://jsperf.com/ns-jq-cached/3

EVENT DELEGATION

Event listeners cost memory. In complex websites and

apps it’s not uncommon to have a lot of event listeners

floating around, and thankfully jQuery provides some

really easy methods for handling event listeners

efficiently through delegation.

In a bit of an extreme example, imagine a situation where

a 10×10 cell table needs to have an event listener on each

cell; let’s say that clicking on a cell adds or removes a class

that defines the cell’s background color. A typical way that

this might be written (and something I’ve often seen

during code reviews) is like so:

$('table').find('td').click(function() {

$(this).toggleClass('active');

});

jQuery 1.7 has provided us with a new event listener

method, .on(). It acts as a utility that wraps all of jQuery’s

previous event listeners into one convenient method, and

the way you write it determines how it behaves. To

rewrite the above .click() example using .on(), we’d

simply do the following:

$('table').find('td').on('click',function() {

$(this).toggleClass('active');

});

156 24 ways 2011 edition

http://api.jquery.com/on

Simple enough, right? Sure, but the problem here is that

we’re still binding one hundred event listeners to our

page, one to each individual table cell. A far better way to

do things is to create one event listener on the table itself

that listens for events inside it. Since the majority of

events bubble up the DOM tree, we can bind a single

event listener to one element (in this case, the <table>)

and wait for events to bubble up from its children. The

way to do this using the .on() method requires only one

change from our code above:

$('table').on('click','td',function() {

$(this).toggleClass('active');

});

All we’ve done is moved the td selector to an argument

inside the .on() method. Providing a selector to .on()

switches it into delegation mode, and the event is only

fired for descendants of the bound element (table) that

match the selector (td). With that one simple change,

we’ve gone from having to bind one hundred event

listeners to just one. You might think that the browser

having to do one hundred times less work would be a

good thing and you’d be completely right. The difference

between the two examples above is staggering.

(Note that if your site is using a version of jQuery earlier

than 1.7, you can accomplish the very same thing using

the .delegate() method. The syntax of how you write the

Your jQuery: Now With 67% Less Suck

24 ways 2011 edition 157

http://jsperf.com/jquery-event-delegation
http://jsperf.com/jquery-event-delegation
http://api.jquery.com/delegate/

function differs slightly; if you’ve never used it before, it’s

worth checking the API docs for that page to see how it

works.)

DOM MANIPULATION

jQuery makes it very easy to manipulate the DOM. It’s

trivial to create new nodes, insert them, remove other

ones, move things around, and so on. While the code to do

this is simple to write, every time the DOM is

manipulated, the browser has to repaint and reflow

content which can be extremely costly. This is no more

evident than in a long loop, whether it be a standard for()

loop, while() loop, or jQuery $.each() loop.

In this case, let’s say we’ve just received an array full of

image URLs from a database or Ajax call or wherever, and

we want to put all of those images in an unordered list.

Commonly, you’ll see code like this to pull this off:

var arr = [reallyLongArrayOfImageURLs];

$.each(arr, function(count, item) {

var newImg = '';

$('#imgList').append(newImg);

});

There are a couple of problems with this. For one (which

you should have already noticed if you’ve read the earlier

part of this article), we’re making the $("#imgList")

selection once for each iteration of our loop. The other

158 24 ways 2011 edition

problem here is that each time the loop iterates, it’s

adding a new to the DOM. Each of those insertions is

going to be costly, and if our array is quite large then this

could lead to a massive slowdown or even the dreaded ‘A

script is causing this page to run slowly’ warning.

var arr = [reallyLongArrayOfImageURLs],

tmp = '';

$.each(arr, function(count, item) {

tmp += '';

});

$('#imgList').append(tmp);

All we’ve done here is create a tmp variable that each

is added to as it’s created. Once our loop has finished

iterating, that tmp variable will contain all of our list items

in memory, and can be appended to our all in one go.

Browsers work much faster when working with objects in

memory rather than on screen, so this is a much faster,

more CPU-cycle-friendly method of building a list.

WRAPPING UP

These are far from being the only ways to make your

jQuery code run better, but they are among the simplest

ones to implement. Though each individual change may

only make a few milliseconds of difference, it doesn’t take

long for those milliseconds to add up. Studies have shown

that the human eye can discern delays of as few as 100ms,

so simply making a few changes sprinkled throughout

Your jQuery: Now With 67% Less Suck

24 ways 2011 edition 159

your code can very easily have a noticeable effect on how

well your website or app performs. Do you have other

jQuery optimization tips to share? Leave them in the

comments and help make us all better.

Now go forth and make awesome!

ABOUT THE AUTHOR

A 35 year old Canadian expat currently plying his trade as

Associate Director of Standards Architecture at Crispin Porter

+ Bogusky in Göteborg, Sweden, Scott Kosman can also be

found on the Twitters and some of his other work can even be

found on the internet. He likes JavaScript, bicycles, cats, bacon,

and thinks you’re pretty awesome.

160 24 ways 2011 edition

http://cpbeurope.com/
http://cpbeurope.com/
http://twitter.com/humantorch
http://prayingmadness.com/

Robert Mills 24ways.org/201114

14. Design the Invisible to
Tell Better Stories on the
Web

For design to be meaningful we need to tell
stories. We need to design the invisible, the
cues, the messages and the extra detail
hidden beneath the aesthetics. It’s all about
the story.

Design the Invisible to Tell Better Stories on the Web

24 ways 2011 edition 161

http://24ways.org/201114

From verbal exchanges around the campfire to books, the

web and everything in between, storytelling allows us to

share, organize and process information more efficiently.

It helps us understand our surroundings and make

emotional connections to people, places and experiences.

Web design lends itself perfectly to the conventions of

storytelling, a universal process. However, the stories

vary because they’re defined by culture, society, politics

and religion. All of which need considering if you are to

design stories that are relevant to your target audience.

The benefits of approaching design with storytelling in

mind from the very start of the project is that we are

creating considered design that allows users to quickly

gather meaning from the website. They do this by reading

between the lines and drawing on the wealth of

knowledge they have acquired about the associations

between colours, typyefaces and signs.

With so much recognition and analysis happening

subconsciously you have to consider how design

communicates on this level. This invisible layer has a

significant impact on what you say, how you say it and

who you say it to.

162 24 ways 2011 edition

HOW CAN WE DESIGN SOMETHING THAT’S
INVISIBLE?

By researching and making conscious decisions about

exactly what you are communicating, you can make the

invisible visible. As is often quoted, good design is like air,

you only notice it when it’s bad. So by designing the

invisible the aim is to design stories that the audience

receive subliminally, so that they go somewhat unnoticed,

like good air.

STORYTELLING STRANDS

To share these stories through design, you can break it

down into several strands. Each strand tells a story on its

own, but when combined they may start to tell a different

story altogether. These strands are colour, typefaces,

branding, tone of voice and symbols. All are literal and

visible but the invisible element is the meaning behind

them – meaning that you can extract and share. In this

article I want to focus on colour, typefaces and tone of

voice and on how combining story strands can change the

meaning.

Colour

Let’s start with colour. Red represents emotions such as

love but can also signify war. Green is commonly used for

all things environmental and purple is a colour that

Design the Invisible to Tell Better Stories on the Web

24 ways 2011 edition 163

connotes wealth and royalty. These associations between

colour and emotion or value have been learned over time

and are continually reinforced through media and culture.

With this knowledge come expectations from your users.

For example, they will expect Valentine’s Day sites to be

red and kids’ sites to be bright and colourful. This is true in

the same way audiences have expectations of certain

genres of film or music. These conventions help savvy

audiences decode texts and read between the lines or,

rather, to draw meaning from the invisible. It’s practically

an innate skill. This is why you need to design the invisible:

because users will quickly deduce meaning from your site

and fill in the story’s gaps, it’s important to give them as

much of that story to begin with. A story relevant to their

culture.

164 24 ways 2011 edition

Of all the ways you can tell stories through web design,

colour is the most fascinating and important. Not only

does it evoke emotions in users but its meaning varies

significantly between cultures. In the west, for example,

white is a colour associated with weddings, and black is

the colour of mourning. This is signified by the traditions

of brides wearing white and those in mourning wearing

black. In other cultures the meanings are reversed, as

black is a colour that represents good luck and white is a

colour that signifies mourning. If you assume the same

values are true in all cultures then you risk offending the

very people you are targeting.

When colours combine, the story being told can change. If

you design using red, white and blue then it’s going to be

difficult to shake off patriotic connotations because this

colour combination is so ingrained as being American or

British or French thanks largely to their flags. This

extends to politics too. Each party has its own

representative colour. In the UK, the Conservatives are

Design the Invisible to Tell Better Stories on the Web

24 ways 2011 edition 165

blue and Labour is red so it would be inappropriate

storytelling to design a Labour-related website in blue as

there would be a conflict between the content and the

design, a conflict that would result in a poor user

experience.

Conflicts become more of an issue when you start to

combine story strands. I once saw a No VAT advert use

the symbol on the left:

There’s a complete conflict in storytelling here between

the sign and its colour. The prohibition sign was used over

the word VAT to mean no VAT; that makes sense. But this

is a symbol that is used to communicate to people that

something is being prohibited or prevented, it mustn’t

continue. So to use green contradicts the message of the

sign itself; green is used as a colour to say yes, go,

proceed, enter. The same would be true if we had a tick in

red and a cross in green. Bad design here means the story

is flawed and the user experience is compromised.

166 24 ways 2011 edition

Typefaces

Typefaces also tell stories. They are so much more than

the words that are written with them because they

connote different values. Here are a few:

Serif fonts are more formal and are associated with

tradition, sophistication and high-end values. Sans serif

fonts, on the other hand, are synonymous with modernity,

informality and friendliness. These perceptions are again

reinforced through more traditional media such as

newspaper mastheads, where the serious news-focused

broadsheets have serif titles, and the showbiz and gossip-

led tabloids have sans serif titles. This translates to the

web as well. With these associations already familiar to

users, they may see copy and focus on the words, but if

the way that copy is displayed jars with the context then

we are back to having conflicting stories like the No VAT

sign earlier.

Let’s take official institutions, for example. The White

House, the monarchy, 10 Downing Street and other

government departments are formal, traditional and

Design the Invisible to Tell Better Stories on the Web

24 ways 2011 edition 167

important organisations. If the copy on their websites

were written in a typeface like Cooper Black, it would

erase any authority and respect that they were due. They

need people to take them seriously and trust them, and

part of the way to do this is to have a typeface that

represents those values.

It works both ways though. If Innocent, Threadless or

other fun companies used traditional typefaces, they

wouldn’t be accurate reflections of their core values,

brand and personality. They are better positioned to use

friendly, informal and modern typefaces. But still never

Comic Sans.

Tone of voice

Closely tied to this is tone of voice, my absolute bugbear

on the web. Tone of voice isn’t what is said but, rather,

how it is said. When we interact with others in person we

don’t just listen to the words they say, but we also draw

meaning from their body language, and pitch and tone of

voice. Just because the web removes that face-to-face

interaction with your audience it doesn’t mean you can’t

have a tone of voice.

168 24 ways 2011 edition

Innocent pioneered the informal chatty tone of voice that

so many others have since emulated, but unless it is

representative of your company, then it’s not appropriate.

It works for Innocent because the tone of voice is

consistent across all the company’s materials, both online

and offline. Ben and Jerry’s takes the same approach, as

does Threadless, but maybe you need a more formal or

corporate tone of voice. It really depends on what your

business or service is and who it is for, and that is why I

think LoveFilm has it all wrong.

LoveFilm offers a film and game rental service, something

fun for people in their downtime. While they aren’t

particularly stuffy, neither is their tone of voice very

friendly or informal, which is what I would expect from a

service like theirs. The reason they have it wrong is in the

language they use and the way their sentences are

constructed.

Design the Invisible to Tell Better Stories on the Web

24 ways 2011 edition 169

This is the first time we’ve discussed language because, on

the whole, designing the invisible isn’t concerned with

language at all. But that doesn’t mean that these strands

can’t still elicit an emotional response in users. Jon Tan

quoted Dr Mazviita Chirimuuta in his New Adventures in

Web Design talk in January 2011:

Although there is no absolute separation
between language and emotion, there will still
be countless instances where you have
emotional response without verbal input or
linguistic cognition. In general language is not
necessary for emotion.

This is even more pertinent when the emotions evoked

are connected to people’s culture, surroundings and way

of life. It makes design personal, something that audiences

can connect with at more than just face value but, rather,

on a subliminal or, indeed, invisible level.

It also means that when you are asked the inevitable

question of why – why is blue the dominant colour? why

have you used that typeface? why don’t we sound like

Innocent? – you will have a rationale behind each design

decision that can explain what story you are telling, how

you discovered the story and how it is targeted at the core

audience.

170 24 ways 2011 edition

RESEARCH

This is where research plays a vital role in the project

cycle. If you don’t know and understand your audience

then you don’t know what story to design. Every project

lends itself to some level of research, but how in-depth

and what methods are most appropriate will be dictated

by project requirements and budget restrictions – but do

your research.

Even if you think you know your audience, it doesn’t hurt

to research and reaffirm that because cultures and

society do change, albeit slowly, but they can change. So

ask questions at the start of the project during the

research phase:

▪ What do different colours mean for your audience’s

culture?

▪ Do the typeface and tone of voice appeal to the

demographic?

▪ Does the brand identity represent the values and

personality of your service?

▪ Are there any social, political or religious significances

associated with your audience that you need to take into

consideration so you don’t offend them?

Ask questions, understand your audience, design your

story based on these insights, and create better user

experiences in context that have good, solid storytelling

at their heart.

Design the Invisible to Tell Better Stories on the Web

24 ways 2011 edition 171

Major hat tip to Gareth Strange for the beautiful graphics

used within this article.

ABOUT THE AUTHOR

Robert Mills is Studio Manager at Bluegg and author of

Designing the Invisible from Five Simple Steps. As a journalism

graduate and former BBC Audience Researcher he likes words

and data but mainly words.

In the day job Rob shares design decisions with clients and

explains the rationale behind them. Aside from the general

tasks needed to keep a studio ticking over he’s also chief proof

reader and content ambassador for internal work and client

work.

172 24 ways 2011 edition

http://www.garethstrange.com
http://www.bluegg.co.uk/
http://www.fivesimplesteps.com/products/a-practical-guide-to-designing-the-invisible

You might also spot him in .Net Magazine as part of their big

question panel, opinion piece writer or awards judge. You can

also find him on Twitter. He will write for coffee or Monster

Munch but never for raisins or yoghurts with bits in.

Design the Invisible to Tell Better Stories on the Web

24 ways 2011 edition 173

http://twitter.com/robertmills

Relly Annett-Baker 24ways.org/201115

15. Extracting the
Content

As we throw away our canvas in approaches
and yearn for a content-out process, there
remains a pain point: the Content. It is
spoken of in the hushed tones usually
reserved for Lord Voldemort. The-thing-
that-someone-else-is-responsible-for-
that-must-not-be-named.

Designers and developers have been burned before by

not knowing what the Content is, how long it is, what style

it is and when the hell it’s actually going to be delivered, in

internet eons past. Warily, they ask clients for it. But

clients don’t know what to make, or what is good, because

no one taught them this in business school. Designers

struggle to describe what they need and when, so the

conversation gets put off until it’s almost too late, and

then everyone is relieved that they can take the cop-out

of putting up a blog and maybe some product descriptions

from the brochure.

174 24 ways 2011 edition

http://24ways.org/201115

THE CONTENT IN CONTENT OUT.

I’m guessing, as a smart, sophisticated, and, may I say,

nicely-scented reader of the honourable and venerable

tradition of 24 ways, that you sense something better is

out there. Bunches of boxes to fill in just don’t cut it any

more in a responsive web design world. The first question

is, how are you going to design something to ensure users

have the easiest access to the best Content, if you haven’t

defined at the beginning what that Content is? Of course,

it’s more than possible that your clients have done lots of

user research before approaching you to start this

project, and have a plethora of finely tuned Content for

you to design with.

Have you finished laughing yet? Alright then. Let’s just

assume that, for whatever reason of gross oversight, this

hasn’t happened. What next?

Bringing up Content for the first time with a client is like

discussing contraception when you’re in a new

relationship. It might be awkward and either party would

probably rather be doing something else, but it needs to

be broached before any action happens (that, and it’s

disastrous to assume the other party has the matter in

hand). If we can’t talk about it, how can we expect people

to be doing it right and not making stupid mistakes? That

being the case, how do we talk about Content? Let’s start

Extracting the Content

24 ways 2011 edition 175

by finding a way to talk about it without blushing and

scuffing our shoes. And there’s a reason I’ve been treating

Content as a Proper Noun.

The first step, and I mean really-first-step-way-back-at-

the-beginning-of-the-project-while-you-are-still-scoping-

out-what-the-hell-you-might-do-for-each-other-and-it’s-

still-all-a-bit-awkward-like-a-first-date, is for you to

explain to the client how important it is that you, together,

work out what is important to your users as part of the

user experience design, so that your users get the best

user experience. The trouble is that, in most cases, this

would lead to blank stares, possibly followed by a light

cough and a query about using Comic Sans because it

seems friendly.

Let’s start by ensuring your clients understand the task

ahead. You see, all the time we talk about the Content we

do our clients a big disservice. Content is poorly defined.

It looms over a project completion point like an unscalable

(in the sense of a dozen stacked Kilimanjaros), seething,

massive, singular entity. The Content.

DEFINING THE PROBLEM.

We should really be thinking of the Content as ‘contents’;

as many parts that come together to form a mighty

experience, like hit 90s kids’ TV show Mighty Morphin

Power Rangers*.

176 24 ways 2011 edition

*For those of you who might have missed the Power Rangers, they were

five teenagers with attitude, each given crazy mad individual skillz and a

coloured lycra suit from an alien overlord. In return, they had to fight a

new monster of the week using their abilities and weaponry in sync

(even if the audio was not) and then, finally, in thrilling combination as a

Humongous Mechanoid Machine of Awesome. They literally joined their

individual selves, accessories and vehicles into a big robot. It was a toy

manufacturer’s wet dream.

So, why do I say Content is like the Power Rangers?

Because Content is not just a humongous mecha. It is a

combination of well-crafted pieces of contents that come

together to form a well-crafted humongous mecha. Of

Content.

The Red Power Ranger was always the leader. You can

imagine your text contents, found on about pages,

product descriptions, blog articles, and so on, as being

your Red Power Ranger.

Maybe your pictures are your Yellow Power Ranger; video

is Blue (not used as much as the others, but really

impressive when given a good storyline); maybe Pink is

your infographics (it’s wrong to find it sexier than the

other equally important Rangers, but you kind of do

anyway). And so on.

These bits of content – Red Text Ranger, Yellow Picture

Ranger and others – often join together on a page, like

they are teaming up to fight the bad guy in an action

Extracting the Content

24 ways 2011 edition 177

scene, and when they all come together (your standard

workaday huge mecha) in a launched site, that’s when

Content becomes an entity.

While you might have a vision for the whole site, Content

rarely works that way. Of course, you keep your eye on

the bigger prize, the completion of your mega robot, but

to get there you need to assemble your working parts, the

cogs and springs of contents that will mesh together to

finally create your Humongous Mecha of Content. You

create parts and join them to form a whole. (It’s rarely

seamless; often we need to adjust as we go, but we can

create our Mecha’s blueprint by making sure we have all

the requisite parts.)

The point here is the order these parts were created. No

alien overlord plans a Humongous Mechanoid and then

thinks, “Gee, how can I split this into smaller fighting units

powered by teenagers in snazzy shiny suits?” No toy

manufacturer goes into production of a mega robot, made

up of model mecha vehicles with detachable arsenal,

without thinking how they will easily fit back together to

form the ‘Buy all five now to create the mega robot’ set.

No good contents are created as a singular entity and

chunked up to be slotted in to place any which way, into

the body of a site.

178 24 ways 2011 edition

Think contents, not the Content. Think of contents as

smaller units, or as a plural. The Content is what you have

at the end. The contents are what you are creating and

they are easy to break down. You are no longer scaling the

unscalable. You can draw the map and plot the path, page

by page, section by section.

THE PAGE TABLE IS YOUR FRIEND

To do this, I use a page table. A page table is a simple table

template you can create in the word processor of your

choice, that you use to tell you everything about the

contents of a page – everything except the contents itself.

Here’s a page table I created for an employee’s guide to

redundancy in the alpha.gov.uk website:

Guide to redundancy for employees

▪ Page objective: Provide specific information for

employees who are facing redundancy about the process,

their options and next steps.

▪ Source content: directgov page on Redundancy.

▪ Scope: In scope

Extracting the Content

24 ways 2011 edition 179

http://alpha.gov.uk/guides-redundancy/redundancy-consultation/
http://alpha.gov.uk/guides-redundancy/redundancy-consultation/
http://alpha.gov.uk/

Page title An employee’s guide to redundancy

Priority
content

Message: You have rights as an employee facing

redundancy Method: A guide written in plain

English, with links to appropriate additional

content.

A video guide (out of scope).

Covers the stages of redundancy and rights for

those in trade unions and not in trade unions.

Glossary of unfamiliar terms. Call to action:

Read full guide, act to explore redundancy

actions, benefits or new employment. Assets:

link to redundancy calculator.

SecondaryRelated items, or popular additional links.

Additional tools, such as search and

suggestions.

▪ location set v not set states

▪ microcopy encouraging location set

where location may make a difference to the

content – ie, Scotland/Northern Ireland.

Tertiary Footer and standard links.

▪ Content creation: Content exists but was created

within the constraints of the previous CMS. Review,

correct and edit where necessary.

▪ Maintenance: should be flagged for review upon advice

from Department of Work and Pensions, and annually.

180 24 ways 2011 edition

▪ Technology/Publishing/Policy implications: Should be

reviewed once the glossary styles have been decided. No

video guide in scope at this time, so languages should be

simple and screen reader friendly.

▪ Reliance on third parties: None, all content and source

exists in house.

▪ Outstanding questions: None.

Download a copy of this page table

This particular page table template owes a lot to Brain

Traffic’s version found in Kristina Halvorson’s book

Content Strategy for the Web. With smaller clients than, say,

the government, I might use something a bit more casual.

With clients who like timescales and deadlines, I might

turn it into a covering sheet, with signatures and

agreements from two departments who have to work

together to get the piece done on time.

I use page tables, and the process of working through

them, to reassure clients that I understand the task they

face and that I can help them break it down section by

section, page stack to page, down to product descriptions

and interaction copy. About 80% of my clients break into

relieved smiles. Most clients want to work with you to

produce something good, they just don’t understand how,

and they want you to show them the mountain path on

the map. With page tables, clients can understand that

with baby steps they can break down their content

Extracting the Content

24 ways 2011 edition 181

http://media.24ways.org/2011/annett-baker/page-table.rtf
http://www.contentstrategy.com/

requirements and commission content they need in time

for the designers to work with it (as opposed to around it).

If I was Santa, these clients would be on my nice list for

sure.

My own special brand of Voldemort-content-evilness

comes in how I wield my page tables for the other 20%.

Page tables are not always thrilling, I’ll admit. Sometimes

they get ignored in favour of other things, yet they are

crucial to the continual growth and maintenance of a truly

content-led site. For these naughty list clients who, even

when given the gift of the page table, continually say

“Ooh, yes. Content. Right”, I have a special gift. I have a

stack of recycled paper under my desk and a cheap black

and white laser printer. And I print a blank page table for

every conceivable page I can find on the planned redesign.

If I’m feeling extra nice, I hole punch them and put them in

a fat binder.

There is nothing like saying, “This is all the contents you

need to have in hand for launch”, and the satisfying thud

the binder makes as it hits the table top, to galvanize even

the naughtiest clients to start working with you to create

the content you need to really create in a content-out

way.

182 24 ways 2011 edition

ABOUT THE AUTHOR

Relly Annett-Baker lives in the Home Counties with her

husband, Paul Annett, and their two small sons. As a result, she

thrives on the country air and can be guaranteed to stand on

Lego at least once a day. Her principle employment is as live-in

domestic staff for two cats but when not being purred into

submission she is a content strategist and writer, runs

dedicated workshops in-house with companies big and small

and continues to procrastinate over the draft of her Five Simple

Steps book ‘Content Creation for the Web’ due out in 2012.

She’ll get right back to it just after she’s had another cup of tea

and checked her RSS feed.

Extracting the Content

24 ways 2011 edition 183

http://www.poppycopy.co.uk/

Lea Verou 24ways.org/201116

16. CSS3 Patterns,
Explained

Many of you have probably seen my CSS3
patterns gallery. It became very popular
throughout the year and it showed many
web developers how powerful CSS3
gradients really are. But how many really
understand how these patterns are created?
The biggest benefit of CSS-generated
backgrounds is that they can be modified
directly within the style sheet. This benefit
is void if we are just copying and pasting CSS
code we don’t understand. We may as well
use a data URI instead.

IMPORTANT NOTE

In all the examples that follow, I’ll be using gradients

without a vendor prefix, for readability and brevity.

However, you should keep in mind that in reality you need

to use all the vendor prefixes (-moz-, -ms-, -o-, -webkit-)

as no browser currently implements them without a

184 24 ways 2011 edition

http://24ways.org/201116
http://lea.verou.me/css3patterns
http://lea.verou.me/css3patterns

prefix. Alternatively, you could use -prefix-free and have

the current vendor prefix prepended at runtime, only

when needed.

The syntax described here is the one that browsers

currently implement. The specification has since changed,

but no browser implements the changes yet. If you are

interested in what is coming, I suggest you take a look at

the dev version of the spec.

If you are not yet familiar with CSS gradients, you can

read these excellent tutorials by John Allsopp and return

here later, as in the rest of the article I assume you already

know the CSS gradient basics:

▪ CSS3 Linear Gradients

▪ CSS3 Radial Gradients

THE MAIN IDEA

I’m sure most of you can imagine the background this

code generates:

background: linear-gradient(left, white 20%, #8b0 80%);

It’s a simple gradient from one color to another that looks

like this:

CSS3 Patterns, Explained

24 ways 2011 edition 185

https://github.com/LeaVerou/prefixfree
http://dev.w3.org/csswg/css3-images/#linear-gradients
http://twitter.com/#!/johnallsopp
http://www.webdirections.org/blog/css3-linear-gradients/
http://www.webdirections.org/blog/css3-radial-gradients/

See this example live

As you probably know, in this case the first 20% of the

container’s width is solid white and the last 20% is solid

green. The other 60% is a smooth gradient between these

colors. Let’s try moving these color stops closer to each

other:

background: linear-gradient(left, white 30%, #8b0 70%);

See this example live

background: linear-gradient(left, white 40%, #8b0 60%);

See this example live

186 24 ways 2011 edition

http://dabblet.com/gist/1457548
http://dabblet.com/gist/1457620
http://dabblet.com/gist/1457624

background: linear-gradient(left, white 50%, #8b0 50%);

See this example live

Notice how the gradient keeps shrinking and the solid

color areas expanding, until there is no gradient any more

in the last example. We can even adjust the position of

these two color stops to control where each color

abruptly changes into another:

background: linear-gradient(left, white 30%, #8b0 30%);

See this example live

background: linear-gradient(left, white 90%, #8b0 90%);

CSS3 Patterns, Explained

24 ways 2011 edition 187

http://dabblet.com/gist/1457626
http://dabblet.com/gist/1457635

See this example live

What you need to take away from these examples is that

when two color stops are at the same position, there is no

gradient, only solid colors. Even without going any further,

this trick is useful for a number of different use cases like

faux columns or the effect I wanted to achieve in my

homepage or the -prefix-free page where the background

is only shown on one side and hidden on the other:

COMBINING WITH BACKGROUND-SIZE

We can do wonders, however, if we combine this with the

CSS3 background-size property:

background: linear-gradient(left, white 50%, #8b0 50%);

background-size: 100px 100px;

See this example live

188 24 ways 2011 edition

http://dabblet.com/gist/1457638
http://leaverou.github.com/prefixfree
http://dabblet.com/gist/1457651

And there it is. We just created the simplest of patterns:

(vertical) stripes. We can remove the first parameter

(left) or replace it with top and we’ll get horizontal

stripes. However, let’s face it: Horizontal and vertical

stripes are kinda boring. Most stripey backgrounds we

see on the web are diagonal. So, let’s try doing that.

Our first attempt would be to change the angle of the

gradient to something like 45deg. However, this results in

an ugly pattern like this:

See this example live

Before reading on, think for a second: why didn’t this

produce the desired result? Can you figure it out?

The reason is that the gradient angle rotates the gradient

inside each tile, not the tiled background as a whole.

However, didn’t we have the same problem the first time

we tried to create diagonal stripes with an image? And

then we learned that every stripe has to be included

twice, like so:

CSS3 Patterns, Explained

24 ways 2011 edition 189

http://dabblet.com/gist/1457652

So, let’s try to create that effect with CSS gradients. It’s

essentially what we tried before, but with more color

stops:

background: linear-gradient(45deg, white 25%,

#8b0 25%, #8b0 50%,

white 50%, white 75%,

#8b0 75%);

background-size:100px 100px;

See this example live

And there we have our stripes! An easy way to remember

the order of the percentages and colors it is that you

always have two of the same in succession, except the first

and last color.

190 24 ways 2011 edition

http://dabblet.com/gist/1457658

Note: Firefox for Mac also needs an additional 100% color

stop at the end of any pattern with more than two stops,

like so: ..., white 75%, #8b0 75%, #8b0). The bug was

reported in February 2011 and you can vote for it and

track its progress at Bugzilla.

Unfortunately, this is essentially a hack and we will realize

that if we try to change the gradient angle to 60deg:

See this example live

Not that maintainable after all, eh? Luckily, CSS3 offers us

another way of declaring such backgrounds, which not

only helps this case but also results in much more concise

code:

background: repeating-linear-gradient(60deg, white,

white 35px, #8b0 35px, #8b0 70px);

See this example live

CSS3 Patterns, Explained

24 ways 2011 edition 191

https://bugzilla.mozilla.org/show_bug.cgi?id=634982
https://bugzilla.mozilla.org/show_bug.cgi?id=634982
http://dabblet.com/gist/1481153
http://dabblet.com/gist/1481808

In this case, however, the size has to be declared in the

color stop positions and not through background-size,

since the gradient is supposed to cover the entire

container. You might notice that the declared size is

different from the one specified the previous way. This is

because the size of the stripes is measured differently: in

the first example we specify the dimensions of the tile

itself; in the second, the width of the stripes (35px), which

is measured diagonally.

MULTIPLE BACKGROUNDS

Using only one gradient you can create stripes and that’s

about it. There are a few more patterns you can create

with just one gradient (linear or radial) but they are more

or less boring and ugly. Almost every pattern in my gallery

contains a number of different backgrounds. For example,

let’s create a polka dot pattern:

background: radial-gradient(circle, white 10%,

transparent 10%),

radial-gradient(circle, white 10%, black 10%) 50px 50px;

background-size:100px 100px;

See this example live

192 24 ways 2011 edition

http://dabblet.com/gist/1457668

Notice that the two gradients are almost the same image,

but positioned differently to create the polka dot effect.

The only difference between them is that the first

(topmost) gradient has transparent instead of black. If it

didn’t have transparent regions, it would effectively be

the same as having a single gradient, as the topmost

gradient would obscure everything beneath it.

There is an issue with this background. Can you spot it?

This background will be fine for browsers that support

CSS gradients but, for browsers that don’t, it will be

transparent as the whole declaration is ignored. We have

two ways to provide a fallback, each for different use

cases. We have to either declare another background

before the gradient, like so:

background: black;

background: radial-gradient(circle, white 10%,

transparent 10%),

radial-gradient(circle, white 10%, black 10%) 50px 50px;

background-size:100px 100px;

or declare each background property separately:

background-color: black;

background-image: radial-gradient(circle, white 10%,

transparent 10%),

radial-gradient(circle, white 10%, transparent 10%);

background-size:100px 100px;

background-position: 0 0, 50px 50px;

CSS3 Patterns, Explained

24 ways 2011 edition 193

The vigilant among you will have noticed another change

we made to our code in the last example: we altered the

second gradient to have transparent regions as well. This

way background-color serves a dual purpose: it sets both

the fallback color and the background color of the polka

dot pattern, so that we can change it with just one edit.

Always strive to make code that can be modified with the

least number of edits. You might think that it will never be

changed in that way but, almost always, given enough

time, you’ll be proved wrong.

We can apply the exact same technique with linear

gradients, in order to create checkerboard patterns out of

right triangles:

background-color: white;

background-image: linear-gradient(45deg, black 25%,

transparent 25%, transparent 75%, black 75%),

linear-gradient(45deg, black 25%, transparent 25%,

transparent 75%, black 75%);

background-size:100px 100px;

background-position: 0 0, 50px 50px;

See this example live

194 24 ways 2011 edition

http://dabblet.com/gist/1457677

USING THE RIGHT UNITS

Don’t use pixels for the sizes without any thought. In some

cases, ems make much more sense. For example, when

you want to make a lined paper background, you want the

lines to actually follow the text. If you use pixels, you have

to change the size every time you change font-size. If

you set the background-size in ems, it will naturally

follow the text and you will only have to update it if you

change line-height.

IS IT POSSIBLE?

The shapes that can be achieved with only one gradient

are:

▪ stripes

▪ right triangles

▪ circles and ellipses

▪ semicircles and other shapes formed from slicing

ellipses horizontally or vertically

You can combine several of them to create squares and

rectangles (two right triangles put together), rhombi and

other parallelograms (four right triangles), curves formed

from parts of ellipses, and other shapes.

CSS3 Patterns, Explained

24 ways 2011 edition 195

JUST BECAUSE YOU CAN DOESN’T MEAN YOU
SHOULD

Technically, anything can be crafted with these

techniques. However, not every pattern is suitable for it.

The main advantages of this technique are:

▪ no extra HTTP requests

▪ short code

▪ human-readable code (unlike data URIs) that can be

changed without even leaving the CSS file.

Complex patterns that require a large number of

gradients are probably better left to SVG or bitmap

images, since they negate almost every advantage of this

technique:

▪ they are not shorter

▪ they are not really comprehensible – changing them

requires much more effort than using an image editor

They still save an HTTP request, but so does a data URI.

I have included some very complex patterns in my gallery,

because even though I think they shouldn’t be used in

production (except under very exceptional conditions),

understanding how they work and coding them helps

somebody understand the technology in much more

depth.

196 24 ways 2011 edition

http://lea.verou.me/css3patterns/#tartan
http://lea.verou.me/css3patterns/#madras
http://lea.verou.me/css3patterns/#hearts
http://lea.verou.me/css3patterns/#yin-yang
http://lea.verou.me/css3patterns/#stars
http://lea.verou.me/css3patterns/#seigaiha

Another rule of thumb is that if your pattern needs shapes

to obscure parts of other shapes, like in the star pattern or

the yin yang pattern, then you probably shouldn’t use it. In

these patterns, changing the background color requires

you to also change the color of these shapes, making edits

very tedious.

If a certain pattern is not practicable with a reasonable

amount of CSS, that doesn’t mean you should resort to

bitmap images. SVG is a very good alternative and is

supported by all modern browsers.

BROWSER SUPPORT

CSS gradients are supported by Firefox 3.6+, Chrome

10+, Safari 5.1+ and Opera 11.60+ (linear gradients since

Opera 11.10). Support is also coming in Internet Explorer

when IE10 is released. You can get gradients in older

WebKit versions (including most mobile browsers) by

using the proprietary -webkit-gradient(), if you really

need them.

EPILOGUE

I hope you find these techniques useful for your own

designs. If you come up with a pattern that’s very

different from the ones already included, especially if it

demonstrates a cool new technique, feel free to send a

pull request to the github repo of the patterns gallery.

CSS3 Patterns, Explained

24 ways 2011 edition 197

http://lea.verou.me/css3patterns/#stars
http://lea.verou.me/css3patterns/#yin-yang
https://github.com/LeaVerou/CSS3-Patterns-Gallery

Also, I’m always fascinated to see my techniques put in

practice, so if you made something cool and used CSS

patterns, I’d love to know about it!

Happy holidays!

ABOUT THE AUTHOR

Lea Verou is the lead web developer and designer of Fresset

Ltd, which she co-founded in 2008. Fresset owns and manages

some of the largest Greek community websites. Lea has a long-

standing passion for open web standards, especially CSS and

JavaScript. She loves researching new ways to use them and

shares her findings through her blog, lea.verou.me. She speaks

at a number of the largest web development conferences and

198 24 ways 2011 edition

http://fresset.gr
http://fresset.gr
http://lea.verou.me
http://lea.verou.me/speaking

writes for leading industry publications. Lea also co-organized

and occasionally lectures the web development course at the

Athens University of Economics and Business.

CSS3 Patterns, Explained

24 ways 2011 edition 199

Greg Wood 24ways.org/201117

17. Designing for
Perfection

Hello, 24 ways readers. I hope you’re having
a nice run up to Christmas. This holiday
season I thought I’d share a few things with
you that have been particularly meaningful
in my work over the last year or so. They
may not make you wet your santa pants with
new-idea-excitement, but in the context of
24 ways I think they may serve as a nice
lesson and a useful seasonal reminder going
into the New Year. Enjoy!

STORY

Despite being a largely scruffy individual for most of my

life, I had some interesting experiences regarding kitchen

tidiness during my third year at university.

As a kid, my room had always been pretty tidy, and as a

teenager I used to enjoy reordering my CDs regularly (by

artist, label, colour of spine – you get the picture); but by

the time I was twenty I’d left most of these traits behind

200 24 ways 2011 edition

http://24ways.org/201117

me, mainly due to a fear that I was turning into my mother.

The one remaining anally retentive part of me that

remained however, lived in the kitchen. For some reason, I

couldn’t let all the pots and crockery be strewn across the

surfaces after cooking. I didn’t care if they were washed

up or not, I just needed them tidied. The surfaces needed

to be continually free of grated cheese, breadcrumbs and

ketchup spills. Also, the sink always needed to be clear.

Always. Even a lone teabag, discarded casually into the

sink hours previously, would give me what I used to refer

to as “kitchen rage”.

Whilst this behaviour didn’t cause any direct conflicts, it

did often create weirdness. We would be happily enjoying

a few pre-night out beverages (Jack Daniels and Red Bull

– nice) when I’d notice the state of the kitchen following

our round of customized 49p Tesco pizzas. Kitchen rage

would ensue, and I’d have to blitz the kitchen, which

usually resulted in me having to catch everyone up at the

bar afterwards.

One evening as we were just about to go out, I was stood

there, in front of the shithole that was our kitchen with

the intention of cleaning it all up, when a realization

popped into my head. In hindsight, it was a pretty obvious

one, but it went along the lines of “What the fuck are you

doing? Sort your life out”. I sodded the washing up, rolled

out with my friends, and had a badass evening of partying.

Designing for Perfection

24 ways 2011 edition 201

After this point, whenever I got the urge to clean the

kitchen, I repeated that same realization in my head. My

tidy kitchen obsession strived for a level of perfection

that my housemates just didn’t share, so it was ultimately

pointless. It didn’t make me feel that good, either; it was

like having a cigarette after months of restraint – initially

joyous but soon slightly shameful.

LESSON

Now, around seven years later, I’m a designer on the web

and my life is chaotic. It features no planning for

significant events, no day-to-day routine or structure, no

thought about anything remotely long-term, and I like to

think I do precisely what I want. It seems my days at

striving for something ordered and tidy, in most parts of

my life, are long gone.

For much of my time as a designer, though, it’s been a

different story. I relished industry-standard terms such as

‘pixel perfection’ and ‘polished PSDs’, taking them into my

stride as I strove to design everything that was put on my

plate perfectly. Even down to grids and guidelines, all

design elements would be painstakingly aligned to a five-

pixel grid. There were no seven-pixel margins or gutters

to be found in my design work, that’s for sure. I put too

much pride and, inadvertently, too much ego into my

work. Things took too long to create, and because of the

202 24 ways 2011 edition

amount of effort put into the work, significant changes,

based on client feedback for example, were more difficult

to stomach.

Over the last eighteen months I’ve made a conscious

effort to change the way I approach designing for the web.

Working on applications has probably helped with this;

they seem to have a more organic development than rigid

content-based websites. Mostly though, a realization

similar to my kitchen rage one came about when I had to

make significant changes to a painstakingly crafted

Photoshop document I had created. The changes

shouldn’t have been difficult or time-consuming to

implement, but they were turning out to be. One day,

frustrated with how long it was taking, the refrain “What

the fuck are you doing? Sort your life out” again entered

my head. I blazed the rest of the work, not rushing or

doing scruffy work, but just not adhering to the insane

levels of perfection I had previously set for myself. When

the changes were presented, everything went down

swimmingly. The client in this case (and I’d argue most

cases) cared more about the ideas than the perfect way in

which they had been implemented. I had taken myself and

my ego out of the creative side of the work, and it had

been easier to succeed.

Designing for Perfection

24 ways 2011 edition 203

ARGUMENT

I know many other designers who work on the web share

such aspirations to perfection. I think it’s a common part

of the designer DNA, but I’m not sure it really has a place

when designing for the web.

First, there’s the environment. The landscape in which we

work is continually shifting and evolving. The inherent

imperfection of the medium itself makes attempts to

create perfect work for it redundant. Whether you

consider it a positive or negative point, the products we

make are never complete. They’re always scaling and

changing.

Like many aspects of web design, this striving for

perfection in our design work is a way of thinking

borrowed from other design industries where it’s more

suited. A physical product cannot be as easily altered or

developed after it has been manufactured, so the need to

achieve perfection when designing is more apt.

Designers who can relate to anything I’ve talked about

can easily let go of that anal retentiveness if given the

right reasons to do so. Striving for perfection isn’t a bad

thing, but I simply don’t think it can be achieved in such a

fast-moving, unique industry. I think design for the web

works better when it begins with quick and simple,

followed by iteration and polish over time.

204 24 ways 2011 edition

To let go of ego and to publish something that you’re not

completely happy with is perhaps the most difficult part

of the job for designers like us, but it’s followed by a

satisfaction of knowing your product is alive and

breathing, whereas others (possibly even competitors)

may still be sitting in Photoshop, agonizing over whether a

margin should be twenty or forty pixels.

I keep telling myself to stop sitting on those two hundred

ideas that are all half-finished. Publish them, clean them

up and iterate over time. I’ve been telling myself this for

months and, hopefully, writing this article will give me the

kick in the arse I need. Hopefully, it will also give someone

else the same kick.

Designing for Perfection

24 ways 2011 edition 205

ABOUT THE AUTHOR

Greg Wood is a designer based in Nottingham, England. He

specialises in designing websites and online applications. He has

a journal thing, which hasn’t been updated in almost a year. He’ll

get back round to it one day. He is currently working on some

nifty stuff, including an ambitious music application and the

New Adventures in Web Design conference.

206 24 ways 2011 edition

http://journal.gregorywood.co.uk/
http://naconf.com/

Matt Curry 24ways.org/201118

18. Getting the Most Out
of Google Analytics

Something a bit different for today’s 24
ways article. For starters, I’m not a designer
or a developer. I’m an evil man who sells
things to people on the internet. Second,
this article will likely be a little more
nebulous than you’re used to, since it covers
quite a number of points in a relatively short
space.

This isn’t going to be the complete Google Analytics

Conversion University IQ course compressed into a single

article, obviously. What it will be, however, is a primer on

setting up and using Google Analytics in real life, and a

great deal of what I’ve learned using Google Analytics

nearly every working day for the past six (crikey!) years.

Getting the Most Out of Google Analytics

24 ways 2011 edition 207

http://24ways.org/201118

Also, to be clear, I’ll be referencing new Google Analytics

here; old Google Analytics is for loooosers (and those who

want reliable e-commerce conversion data per site search

term, natch).

You may have been running your Analytics account for

several years now, dipping in and out, checking traffic

levels, seeing what’s popular… and that’s about it. Google

Analytics provides so much more than that, but the

number of reports available can often intimidate users,

and documentation and case studies on their use are

minimal at best.

LET’S START! SETTING UP YOUR ANALYTICS
PROFILE

Before we plough on, I just want to run through a quick

checklist that some basic settings have been enabled for

your profile. If you haven’t clicked it, click the big cog on

the top-right of Google Analytics and we’ll have a poke

about.

1. If you have an e-commerce site, e-commerce tracking

has been enabled 
2. If your site has a search function, site search tracking

has been enabled.

208 24 ways 2011 edition

https://support.google.com/analytics/bin/answer.py?hl=en-GB&answer=1009612&topic=1037061&ctx=topic
https://support.google.com/analytics/bin/answer.py?hl=en-GB&answer=1009612&topic=1037061&ctx=topic
https://support.google.com/analytics/bin/answer.py?hl=en-GB&utm_id=ad&answer=1012264
https://support.google.com/analytics/bin/answer.py?hl=en-GB&utm_id=ad&answer=1012264

3. Query string parameters that you do not want tracked

as separate pages have been excluded (for example, any

parameters needed for your platform to function,

otherwise you’ll get multiple entries for the same page

appearing in your reports)

4. Filters have been enabled on your main profile to

exclude your office IP address and any IPs of people who

frequently access the site for work purposes. In decent

numbers they tend to throw data off a tad. 
5. You may also find the need to set up multiple profiles

prefiltered for specific audience segments. For example,

at Lovehoney we have seventeen separate profiles that

allow me quick access to certain countries, devices and

traffic sources without having to segment first. You’ll also

find load time for any complex reports much improved.

Use the same filter screen as above to set up a series of

profiles that only include, say, mobile visits, or UK visitors,

so you can quickly analyse important segments.

MATT, WHAT’S A SEGMENT?

A segment is a subsection of your visitor base, which you

define and then call on in reports to see specific data for

that subsection. For example, in this report I’ve defined

two segments, the first for IE6 users and the second for

IE7.

Getting the Most Out of Google Analytics

24 ways 2011 edition 209

https://support.google.com/analytics/bin/answer.py?hl=en-GB&answer=1010249&topic=1009620&ctx=topic
https://support.google.com/analytics/bin/answer.py?hl=en-GB&answer=1010249&topic=1009620&ctx=topic
https://support.google.com/analytics/bin/answer.py?hl=en-GB&answer=1033162&topic=1032939&ctx=topic
https://support.google.com/analytics/bin/answer.py?hl=en-GB&answer=1033162&topic=1032939&ctx=topic

Segments are easily created by clicking the Advanced

Segments tabs at the top of any report and clicking +New

Custom Segment.

WHAT DOES YOUR SITE DO?

Understanding the goals of your site is an oft-covered

topic, but it’s necessary not just to form a better

understand of your business and prioritize your time.

210 24 ways 2011 edition

Understanding what you wish visitors to do on your site

translates well into a goal-driven analytics package like

Google Analytics.

Every site exists essentially to sell something, either

financially through e-commerce, or to sell an idea or

impart information, get people to download a CV or

enquire about service, or to sell space on that website to

advertisers. If the site did not provide a positive benefit to

its owners, it would not have a reason for being.

Once you have understood the reason why you have a

site, you can map that reason on to one of the three goal

types Google Analytics provides.

E-commerce

This conversion type registers transactions as part of a

sales process which requires a monetary value, what

products have been bought, an SKU (stock keeping unit),

affiliation (if you’re then attributing the sale to a third

party or franchise) and so on.

The benefit of e-commerce tracking is not only assigning

non-arbitrary monetary value to behaviour of visitors on

your site, as well as being able to see ancillary costs such

as shipping, but seeing product-level information, like

which products are preferred from various channels,

popular categories, and so on.

Getting the Most Out of Google Analytics

24 ways 2011 edition 211

However, I find the e-commerce tracking options also

useful for non-e-commerce sites. For example, if you’re

offering downloads or subscriptions and having an email

address or user’s details is worth something to you, you

can set up e-commerce tracking to understand how much

value your site is bringing. For example, an email address

might be worth 20p to you, but if it also includes a name

it’s worth 50p. A contact telephone number is worth £2,

and so on.

Page goals

Page goals, unsurprisingly, track a visit to a page (often

with a sequence of pages leading up to that page). This is

what’s referred to as a goal funnel, and is generally used

to track how visitors behave in a multistep checkout.

212 24 ways 2011 edition

Interestingly, the page doesn’t have to actually exist. For

example, if you have a single page checkout, you can

register virtual page views using trackPageview() when a

visitor clicks into a particular section of the checkout or

other form. If your site is geared towards getting someone

to a particular page, but where there isn’t a transaction

(for example, a subscription page) this is for you.

There are also behavioural goals, such as time on site and

number of pages viewed, which are geared towards sites

that make money from advertising.

But, going back to the page goals, these can be abstracted

using regular expressions, meaning that you can define a

funnel based on page type rather than having to set

individual folders.

Getting the Most Out of Google Analytics

24 ways 2011 edition 213

In this example, I’ve created regexes for the main page

types on my site, so I can create a wide funnel that

captures visitors from where they enter through to

checkout.

214 24 ways 2011 edition

Events

Event tracking registers a predefined event, such as

playing a video, or some interaction that can trigger

JavaScript, such as a Tweet This button. Events can then

be triggered using the trackEvent() call. If you want

someone to complete watching a video, you would code

your player to fire trackEvent() upon completion.

While I don’t use events as goals, I use events elsewhere

to see how well a video play aids to conversion. This not

only helps me justify the additional spend on creating

video content, but also quickly highlights which videos are

underperforming as sales tools.

Getting the Most Out of Google Analytics

24 ways 2011 edition 215

WHAT A VISITOR CAN TELL YOU

 Now you have some proper goals set up, we can start to

see how changes in content (on-site and external) affect

those goals.

Ultimately, when a visitor comes to your site, they bring

information with them:

▪ where they came from (a search engine – including:

keyword searched for; a referral; direct; affiliate; or ad

campaign)

216 24 ways 2011 edition

▪ demographics (country; whether they’re new or

returning, within thirty days)

▪ technical information (browser; screen size; device;

bandwidth)

▪ site-specific information (landing page; next click;

previous values assigned to them as custom variables*)

* A note about custom variables. There’s no hope in hell that I can cover

custom variables in this article. Go research them. Custom variables are

the single best way to hack Google Analytics and bend it to your will.

Custom variables allow you to record anything you want about a visitor,

which that visitor will then carry around with them between visits. It’s

also great for plugging other services into Google Analytics (as shown by

the marvelous way Visual Website Optimizer allows you to track and

segment tests within the GA interface). Just make sure not to breach the

terms of service, eh?

CSI YOUR WEBSITE

Police procedural TV shows are all the same: the

investigators are called to a crime and come across a clue;

there’s then an autopsy; new evidence leads them to a

new location; they find a new clue; they put two and two

together; they solve the mystery.

This is your life now. Exciting!

So, now you’re gathering a wealth of information about

what sort of people visit your site, what they do when

they’re there, and what eventually gets them to drive

Getting the Most Out of Google Analytics

24 ways 2011 edition 217

http://code.google.com/apis/analytics/docs/tracking/gaTrackingCustomVariables.html
http://visualwebsiteoptimizer.com/split-testing-blog/say-hello-to-google-analytics-plugin-for-visual-website-optimizer/
http://visualwebsiteoptimizer.com/split-testing-blog/say-hello-to-google-analytics-plugin-for-visual-website-optimizer/

value to you. It’s now your job to investigate all these little

clues to see which types of people drive the most value,

and what you can change to improve it.

Maybe not that exciting.

However, Google Analytics comes pre-armed with

extensive reports for you to delve into. As an e-commerce

guy (as opposed to a page goal guy) my day pretty much

follows the pattern below.

1. Look at e-commerce conversion rate by traffic source

compared to the same day in the previous week and

previous month. As ours is an e-commerce site, we have

weekly and monthly trends. A big spike on Sundays and

Mondays, and payday towards the end of the month is

always good; on the third week of a month there tends to

be a lull. Spend time letting your Google Analytics data

brew, understand your own trends and patterns, and

you’ll start to get a feel for when something isn’t quite

right.

▪ Traffic Sources → Sources → All Traffic

2. Look at the conversion rate by landing page for any

traffic source that feels significantly different to what’s

expected. Check bounce rates, drill down to likely landing

pages and check search keyword or referral site to see if

it’s a particular subset of visitor. You can do this by

218 24 ways 2011 edition

clicking Secondary Dimension and choosing Keyword or

Source. If it’s direct, choose Visitor Type to break down by

new or returning visitor.

▪ Content → Site Content → Landing Pages

3. I then tend to flip into Content Drilldown to see what

the next clicks were from those landing pages, and

whether they changed significantly to the date I’m

comparing with. If they have, that’s usually an indicator of

changed content (or its relevancy). Remember, if a bunch

of people have found their way to your page via a method

you’re not expecting (such as a mention on a Spanish radio

station – this actually happened to me once), while the

content hasn’t changed, the relevancy of it to the

audience may have.

▪ Content → Site Content → Content Drilldown

4. Once I have an idea of what content was consumed,

and whether it was relevant to the user, I then look at the

visitor specifics, such as browser or demographic data, to

see again whether the change was limited to a specific

subset. Site speed, for example, is normally a good factor

towards bounce rate, so compare that with previous data

as well.

Getting the Most Out of Google Analytics

24 ways 2011 edition 219

Now, to be investigating at this level you still need a

serious amount of data, in order to tell what’s a significant

change or not. If you’re struggling with a small number of

visitors, you might find reporting on a weekly or

fortnightly basis more appropriate.

However, once you’ve looked into the basics of why

changes happen to the value of your site, you’ll soon find

yourself limited by the reports offered in Standard

Reporting. So, it’s time to build your own. Hooray!

CUSTOM REPORTING

Google Analytics provides the tools to build reports

specific to the types of investigations you frequently

perform.

220 24 ways 2011 edition

Welcome to my world.

Custom reports are quite simple to build: first, you

determine the metric you want the report to cover

(number of visitors, bounce rate, conversion rate, and so

on), then choose a set of dimensions that you’d like to

segment the report by (say, the source of the traffic, and

whether they were new or returning users). You can filter

the report, including or excluding particular dimension

values, and you can assign the report to any of the profiles

you created earlier.

In the example below, I’ve created a report that shows me

visits and conversion rate for any Google traffic that

landed directly only on a product page. I can then drill

down on each product page to see the complete phrases

use to search. I can use this information in two ways:

1. I can see which products aren’t converting, which

shows me where I need to work harder on merchandising.

2. I can give this information to my content team,

showing them the actual phrases visitors used to reach

our product content, helping them write better targeted

product descriptions.

Getting the Most Out of Google Analytics

24 ways 2011 edition 221

The possibilities here are nearly endless, but here are a

few examples of reports I find useful:

1. Non-brand inbound search

By creating a report that shows inbound search traffic

which doesn’t include your brand, you can see more

clearly the behaviour of visitors most likely to be

unfamiliar with your site and brand values, without having

to rely on the clumsy new or returning demographic date.

2. Traffic/conversion/sales by hour

This is pure stats porn, but actually more useful than real-

time data. By seeing this data broken down at an hourly

222 24 ways 2011 edition

level, you can not only compare the current day to

previous days, but also see the best performing times for

email broadcasts and tweets.

3. Visits, load time, conversion and sales by page and

browser

Page speed can often kill conversion rates, but it’s difficult

to prove the value of focusing on speed in monetary

terms. Having this report to hand helps me drive

Operation Greenbelt, our effort to get into the sub-1.5

second band in Google Webmaster Tools.

Useful things you can’t do in custom reporting

If you have a search function on your website, then

Conversion Rate and Products Bought by Site Search

Term is an incredibly useful report that allows you to

measure the effectiveness of your site’s search engine at

returning products and content related to the search

term used. By including the products actually bought by

visitors who searched for each term, you can use this

information to better searchandise these results,

escalating high propensity and high value products to the

top of the results.

However, it’s not possible to get this information out of

new Google Analytics.

Try it, select the following in the report builder:

Getting the Most Out of Google Analytics

24 ways 2011 edition 223

▪ Metrics: total unique searches; e-commerce or goal

conversion rate

▪ Dimensions: search term; product

You’ll see that the data returned is a little nonsensical,

though a 2,000% conversion rate would be nice. However,

you can get more accurate information using advanced

segments. By creating individual segments to define users

who have searched for a particular term, you can run the

sales performance and product performance reports as

normal. It’s laborious, but it teaches a good lesson: data

that seems inaccessible can normally be found another

way!

REPORTING INFRASTRUCTURE

Now that you have a series of reports that you can refer

to on a daily or weekly basis, it’s time to put together a

regular reporting infrastructure.

Even if you’re not reporting to someone, having a set of

key performance indicators that you can use to see how

your performance is improving over time allows you to set

yourself business goals on a monthly and annual basis.

For my own reporting, I take some high-level metrics

(such as visitors, conversion rate and average order

value), and segment them by traffic source and,

separately, landing page. These statistics I record weekly

and report:

224 24 ways 2011 edition

▪ current week compared with previous week

▪ same week previous year (if available)

▪ 4 week average

▪ 13 week average

▪ 52 week average (if available)

This takes into account weekly, monthly, seasonal and

annual trends, and gives you a much clearer view of your

performance.

GETTING DATA IN OTHER WAYS

If you’re using Google Analytics frequently, with any large

site you’ll come to a couple of conclusions:

1. Doing any kind of practical comparative analysis is

unwieldy.

2. Boy, Google Analytics is slow!

As you work with bigger datasets and put together more

complex queries, you’ll see the loading graphic more than

you’ll see actual data. So when you reach that level, there

are ways to completely bypass the Google Analytics

interface altogether, and get data into your own

spreadsheet application for manipulation.

Getting the Most Out of Google Analytics

24 ways 2011 edition 225

Data Feed Query Explorer

If you just want to pull down some quick statistics but still

use complex filters and exotic metric and dimension

combinations, the Data Feed Query Explorer is the

quickest way of doing so. Authenticate with your Google

Analytics account, select a profile, and you can start

selecting metrics and dimensions to be generated in a

handy, selectable tabulated format.

Google Analytics API

If you’re feeling clever, you can bypass having to copy and

paste data by pulling in directly into Excel, Google Docs or

your own application using the Google Analytics API.

There are several scripts and plugins available to do this. I

use Automate Analytics Google Docs code (there’s also a

paid version that simplifies setup and creates some handy

reports for you).

NEW SHINY THINGS

Well, now that that’s over, I can show you some cool stuff.

Well, at least it’s cool to me. Google Analytics is being

constantly improved and new functionality is introduced

nearly every month. Here are a couple of my favourites.

226 24 ways 2011 edition

http://code.google.com/apis/analytics/docs/gdata/gdataExplorer.html
http://www.automateanalytics.com/2010/04/google-analytics-data-to-google-docs.html

Multichannel attribution

Not every visitor converts on your site on the first visit.

They may not even do so on the second visit, or third. If

they convert on the fourth visit, but each time they visit

they do so via a different channel (for example, Search

PPC, Search Organic, Direct, Email), which channel do you

attribute the conversion to? The last channel, or the first?

Dilemma!

Google now has a Multichannel Attribution report,

available in the Conversion category, which shows how

each channel assists in converting, the overlap between

channels, and where in the process that channel was

important.

For example, you may have analysed your blog traffic from

Twitter and become disheartened that not many people

were subscribing after visiting from Twitter links, but

Getting the Most Out of Google Analytics

24 ways 2011 edition 227

instead your high-value subscribers were coming from

natural search. On the face of it, you’d spend less time

tweeting, but a multichannel report may tell you that

visitors first arrived via a Twitter link and didn’t subscribe,

but then came back later after searching for your blog

name on Google, after which they did. Don’t pack Twitter

in yet!

Visitor and goal flow

Visitor and goal flow are amazing reports that help you

visualize the flow of traffic through your site and,

ultimately, into your checkout funnel or similar goal path.

Flow reports are perfect for understanding drop-off

points in your process, as well as what the big draws are

on each page.

228 24 ways 2011 edition

Previously, if you wanted to visualize this data you had to

set up several abstracted microgoals and chain them

together in custom reports. Frankly, it was a pain in the

arse and burned through your precious and limited goal

allocation.

Visitor flow bypasses all that and produces the report in

an interactive flow diagram. While it doesn’t show you the

holy grail of conversion likelihood by each path, you can

segment visitor flow so that you can see very specifically

how different segments of your visitor base behave.

Go play with it now!

ABOUT THE AUTHOR

Getting the Most Out of Google Analytics

24 ways 2011 edition 229

Matt Curry is Head of e-Commerce for Lovehoney. He’s seen

things you wouldn’t believe actually exist let alone are bought

online, is not easily embarrassed and has worked in e-

commerce for nearly 10 years. Previous to perverting the

nation, he sold frozen food to the elderly. He’s a statistician by

trade, a perfumer by fancy and a constant delight at parties. You

can find him on Twitter @mattycurry

230 24 ways 2011 edition

http://twitter.com/mattycurry

Jonathan Snook 24ways.org/201119

19. Going Both Ways

It’s that time of the year again: Santa is
getting ready to travel the world. Up until
now, girls and boys from all over have sent
in letters asking for what they want. I hope
that Santa and his elves have—unlike
me—learned more than just English.

On the Internet, those girls and boys want to participate

in sharing their stories and videos of opening presents

and of being with friends and family. Ah, yes, the wonders

of user generated content. But more than that, people

also want to be able to use sites in the language they

know.

While you and I might expect the text to read from left to

right, not all languages do. Some go from right to left, such

as Arabic and Hebrew. (Some also go from top to bottom,

but for now, let’s just worry about those first two

directions!)

Going Both Ways

24 ways 2011 edition 231

http://24ways.org/201119

If we were building a site for girls and boys to send their

letters to Santa, we need to consider having the interface

in the language and direction that they prefer. On the

elves’ side, they may be viewing the site in one direction

but reading the user generated content in the other

direction. We need to build a site that supports

bidirectional (or bidi) text.

Let’s take a look at some things to be aware of when it

comes to building bidi interfaces.

SETTING THE DIRECTION OF THE INTERFACE

Right off the bat, we need to tell the browser what

direction the text should be going in. To do this, we add

the dir attribute to an HTML element and set it to either

LTR (for left to right) or RTL (for right to left).

<body dir="rtl">

You can add the dir attribute to any element and it will

set or change the direction for the content within that

element.

<body dir="ltr">

Here is English Content.

<div dir="rtl">الموضوع</div>

</body>

You can also set the direction via CSS.

232 24 ways 2011 edition

.rtl {

direction: rtl;

}

It’s generally recommended that you don’t use CSS to set

the direction of the text. Text direction is an important

part of the content that should be retained even in

environments where the CSS may not be available or fails

to load.

HOW THINGS CHANGE WITH THE DIRECTION
ATTRIBUTE

Just adding the dir attribute tells the browser to render

the content within it differently.

The text aligns to the right of the page and, interestingly,

punctuation appears at the left of the sentence. (We’ll get

to that in a little bit.)

Going Both Ways

24 ways 2011 edition 233

Scrollbars in most browsers will appear on the left instead

of the right. Webkit is the notable exception here which

always shows the scrollbar on the right, no matter what

the text direction is. Avoid having a design that has an

expectation that the scrollbar will be in a specific place

(and a specific size).

CHANGING THE ORDER OF TEXT MID-WAY

As we saw in that previous example, the punctuation

appeared at the beginning of the sentence instead of the

end, even though the text was English. At Yahoo!, we have

an interesting dilemma where the company name has

punctuation in it. Therefore, when the name appears in

the middle of (for example) Arabic text, the exclamation

mark appears at the beginning of the word instead of the

end.

There are two ways in which this problem can be solved:

1. Use HTML around the left-to-right content, or

234 24 ways 2011 edition

To solve the problem of the Yahoo! name in the midst of

Arabic text, we can wrap a span around it and change the

direction on that element.

2. Use a text direction mark in the content.

Unicode has two marks, U+200E and U+200F, that tell the

browser that the text is in a particular direction. Placing

this right after the punctuation will correct the

placement.

Using the HTML entity:

Yahoo!

TABLES

Thankfully, the cells of a data table also get reordered

from right to left. Equally as nice, if you’re using

display:table, the content will still get reordered.

Going Both Ways

24 ways 2011 edition 235

CSS

So far, we’ve seen that the dir attribute does a pretty

decent job of getting content flowing in the direction that

we need it. Unfortunately, there are huge swaths of

design that is handled by CSS that the handy dir attribute

has zero effect over.

Many properties, like float or absolute positioning with

left and right values, are unaffected and must be handled

manually. Elements that were floated left must now by

floated right. Left margins and paddings must now move

to the right and the right margins and paddings must now

move to the left.

Since the browser won’t handle this for us, we have a

couple approaches that we can use:

CSS Only

We can take advantage of the attribute selector to target

CSS to apply in one direction or another.

[dir=ltr] .module {

float: left;

margin: 0 0 0 20px;

}

[dir=rtl] .module {

float: right;

margin: 0 20px 0 0;

}

236 24 ways 2011 edition

As you can see from this example, both of the properties

have been modified for the flipped interface. If your

interface is rather complicated, you will have to create a

lot of duplicate rules to have the site looking good in both

directions while serving up a single stylesheet.

CSSJanus

Google has a tool called CSSJanus. It’s a Python script that

runs over the LTR versions of your CSS files and generates

RTL versions. For the RTL version of the site, just serve up

those CSS files instead of the LTR versions.

The script looks for keywords and value combinations and

automatically swaps them so you don’t have to.

At Yahoo!, CSSJanus was a huge help in speeding up our

development of a bidi interface. We’ve also made a

number of improvements to the script to better handle

border radius, background positioning, and gradients. We

will be pushing those changes back into the CSSJanus

project.

Going Both Ways

24 ways 2011 edition 237

http://code.google.com/p/cssjanus/

BACKGROUND IMAGES

Background images, especially for things like CSS sprites,

also raise an interesting dilemma. Background images are

positioned relative to the left of the element. In a flipped

interface, however, we need to position it relative to the

right. An icon that would be to the left of some text will

now need to appear on the right.

238 24 ways 2011 edition

If the x position of the background is percentage-based,

then it’s fairly easy to swap the values. 0 becomes 100%,

10% becomes 90% and so on. If the x position is pixel-

based, then we’re in a bit of a pickle. There’s no way to say

that the image should be a certain number of pixels from

the right.

Therefore, you’ll need to ensure that any background

image that needs to be swapped should be percentage-

based. (99.9% of the the time, the background position

will need to be 0 so that it can be changed to 100% for

RTL.)

If you’re taking an existing implementation, background

positioning will likely be the biggest hurdle you’ll have to

overcome in swapping your interface around. If you make

sure your x position is always percentage-based from the

beginning, you’ll have a much smoother process ahead of

you!

FLIPPING IMAGES

This is a more subtle point and one where you’ll really

want an expert with the region to weigh in on. In RTL

interfaces, users may expect certain icons to also be

flipped. Pencil icons that skew to the right in LTR

interfaces might need to be swapped to skew to the left,

instead. Chat bubbles that come from the left will need to

come from the right.

Going Both Ways

24 ways 2011 edition 239

The easiest way to handle this is to create new images.

Name the LTR versions with -ltr in the name and name

the RTL versions with -rtl in the name. CSSJanus will

automatically rename all file references from -ltr to -

rtl.

THE FUTURE

Thankfully, those within the W3C recognize that CSS

should be more agnostic. As a result, they’ve begun

introducing new properties that allow the browser to

manage the swapping from left to right for us.

The CSS3 specification for backgrounds allows for the

background-position to be relative to other corners

other than the top left by specifying keywords before

each position.

This will position the background 5px from the bottom

right of the element.

background-position: right 5px bottom 5px;

Opera 11.60 is currently the only browser that supports

this syntax.

For margin and padding, we have margin-start and

margin-end. In LTR interfaces, margin-start would be the

same as margin-left and in RTL interfaces, margin-start

would be the same as margin-right.

240 24 ways 2011 edition

Firefox and Webkit support these but with vendor

prefixes right now:

-webkit-margin-start: 20px;

-moz-margin-start: 20px;

In the CSS3 Images working draft specification, there’s an

image() property that allows us to specify image fallbacks

and whether those fallbacks are for LTR or RTL interfaces.

background: image('sprite.png' ltr, 'sprite-rtl.png'

rtl);

Unfortunately, no browser supports this yet but it’s nice

to be able to dream of how much easier this will be in the

future!

HO HO HO

Hopefully, after all of this, you’re full of cheer knowing

that you’re well on your way to creating interfaces that

can go both ways!

Going Both Ways

24 ways 2011 edition 241

http://www.w3.org/TR/2011/WD-css3-images-20111206/#image-orientation

ABOUT THE AUTHOR

Jonathan Snook writes about tips, tricks, and bookmarks on his

blog at Snook.ca. He has also written for A List Apart and .net

magazine, and has co-authored two books, The Art and Science

of CSS and Accelerated DOM Scripting. He has also authored

and received world-wide acclaim for the self-published book,

Scalable and Modular Architecture for CSS sharing his

experience and best practices on CSS architecture.

Photo: Patrick H. Lauke

242 24 ways 2011 edition

http://snook.ca/
http://snook.ca/archives/writing/art_science_of_css
http://snook.ca/archives/writing/art_science_of_css
http://snook.ca/archives/javascript/accelerated_dom_scripting/
http://smacss.com
http://splintered.co.uk

Scott Jehl 24ways.org/201120

20. Raising the Bar on
Mobile

One of the primary challenges of designing
for mobile devices is that screen real estate
is often in limited supply. Through the
advocacy of Luke W and others, we’ve drawn
comfort from the idea that this constraint
ends up benefiting users and designers
alike, from obvious advantages like
portability and reach, to influencing our
content strategy decisions through focus
and restraint. But that doesn’t mean we
shouldn’t take advantage of every last pixel
of that screen we can snag!

As anyone who has designed a website for use on a

smartphone can attest, there’s an awful lot of space on

mobile screens dedicated to browser functions that

would be better off toggled out of view. Unfortunately,

the visibility of some of these elements is beyond our

control, such as the buttons fixed to the bottom of the

Raising the Bar on Mobile

24 ways 2011 edition 243

http://24ways.org/201120
http://www.abookapart.com/products/mobile-first

viewport in iOS’s Safari and the WebOS browser.

However, in many devices, the address bar at the top can

be manually hidden, and its absence frees up enough pixel

room for a large, impactful heading, a critical piece of

navigation, or even just a little more white space to air

things out.

So, as my humble contribution to this most festive of web

publications, today I’ll dig into the approach I used to hide

the address bar in a browser-agnostic fashion for sites like

BostonGlobe.com, and the jQuery Mobile framework.

SURVEYING THE LAND

First, let’s assess the chromes of some popular, current

mobile browsers. For example purposes, the following

screen-captures feature the homepage of the Boston

Globe site, without any address-bar-hiding logic in place.

Note: these captures are just mockups – actual

experience on these platforms may vary.

244 24 ways 2011 edition

http://bostonglobe.com/
http://jquerymobile.com/

On the left is iOS5’s Safari (running on iPhone), and on the right
is Windows Phone 7 (pre-Mango).

Raising the Bar on Mobile

24 ways 2011 edition 245

BlackBerry 7 (left), and Android 2.3 (right).

246 24 ways 2011 edition

WebOS (left), Opera Mini (middle), and Opera Mobile (right).

Some browsers, such the default browsers on WebOS and

BlackBerry 5, hide the bar automatically without any

developer intervention, but many of them don’t. Of these,

we can only manually hide the address bar on iOS Safari

and Android (according to Opera Web Opener, Mike

Taylor, some discussion is underway for support in Opera

Mini and Mobile as well, which would be great!). This is

unfortunate, but iOS and Android are incredibly popular,

so let’s direct our focus there.

GREAT API, OR GREATEST API?

As it turns out, iOS and Android not only allow you to hide

the address bar, they use the same JavaScript method to

do so, too (this shouldn’t be surprising, given that they are

both WebKit browsers, but nothing expected happens in

mobile). However, the method they use is not exactly

intuitive. You might set out looking for a JavaScript API

dedicated to this purpose, like, say,

window.toolbar.hide(), but alas, to hide the address bar

you need to use the window.scrollTo method!

Raising the Bar on Mobile

24 ways 2011 edition 247

WINDOW.SCROLLTO(0, 0);

The scrollTo method is not new, it’s just this particular

use of it that is. For the uninitiated, scrollTo is designed

to scroll a document to a particular set of coordinates,

assuming the document is large enough to scroll to that

spot. The method accepts two arguments: a left

coordinate; and a top coordinate. It’s both simple and

supported well pretty much everywhere. In iOS and

Android, these coordinates are calculated from the top of

the browser’s viewport, just below the address bar

(interestingly, it seems that some platforms like

BlackBerry 6 treat the top of the browser chrome as 0

instead, meaning the page content is closer to 20px from

the top).

Anyway, by passing the coordinates 0, 0 to the scrollTo

method, the browser will jump to the top of the page and

pull the address bar out of view! Of course, if a quick call

to scrollTo was all we need to do to hide the address bar

in iOS and Android, this article would be pretty short, and

nothing new. Unfortunately, the first issue we need to

deal with is that this method alone will not usually do the

trick: it must be called after the page has finished loading.

The browser gives us a load event for just that purpose, so

we’ll wrap our scrollTo method in it and continue on our

merry way! We’ll use the standard, addEventListener

248 24 ways 2011 edition

https://developer.mozilla.org/en/DOM/element.addEventListener

method to bind the the load event, passing arguments for

event name load, and a callback function to execute when

the event is triggered.

window.addEventListener("load",function() {

window.scrollTo(0, 0);

});

For the sake of preventing errors in those using browsers

that don’t support addEventListener, such as Internet

Explorer 8 and under, let’s make sure that method exists

before we use it:

if(window.addEventListener){

window.addEventListener("load",function() {

window.scrollTo(0, 0);

});

}

Now we’re getting somewhere, but we must also call the

method after the load event’s default behavior has been

applied. For this, we can use the setTimeout method,

delaying its execution to after the load event has run its

course.

if(window.addEventListener){

window.addEventListener("load",function() {

setTimeout(function(){

window.scrollTo(0, 0);

}, 0);

});

}

Raising the Bar on Mobile

24 ways 2011 edition 249

Sweet sugar of Christmas! Hit this demo in iOS and watch

that address bar drift up and away!

NOT SO FAST…

We’ve got a little problem: the approach above does work

in iOS but, in some cases, it works a little too well. In the

process of applying this behavior, we’ve broken one of the

primary tenets of responsible web development: don’t

break the browser’s default behaviour. This usability rule

of thumb is often violated by developers with even the

best of intentions, from breaking the browser’s back

button through unrecorded Ajax page refreshes, to fancy

momentum touch scrolling scripts that can wreak havoc

in all but the most sophisticated of devices. In this case,

we’ve prevented the browser’s native support of deep-

linking to sections of a page (a hash identifier in the URL

matching a page element’s id attribute, for example,

http://example.com#contact) from working properly,

because our script always scrolls to the top.

To avoid this collision, we’ll need to detect whether a deep

link, or hash, is present in the URL before applying our

logic. We can do this by ensuring that the location.hash

property is falsey:

if(!window.location.hash && window.addEventListener){

window.addEventListener("load",function() {

setTimeout(function(){

window.scrollTo(0, 0);

250 24 ways 2011 edition

http://jsbin.com/isenax/

}, 0);

});

}

Still works great! And a quick test using a hash-based URL

confirms that our script will not execute when a deep

anchor is in play. Now iOS is looking sharp, and we’ve

added our feature defensively to avoid conflicts.

Raising the Bar on Mobile

24 ways 2011 edition 251

http://jsbin.com/olehot/#test

NOW, ON TO ANDROID…

Wait. You didn’t expect that we could write code for one

browser and be finished, right? Of course you didn’t. I

mentioned earlier that Android uses the same method for

getting rid of the scrollbar, but I left out the fact that the

arguments it prefers vary slightly, but significantly, from

iOS. Bah!

Differering from the earlier logic from iOS, to remove the

address bar on Android’s default browser, you need to

pass a Y coordinate of 1 instead of 0. Aside from being just

plain odd, this is particularly unfortunate because to any

other browser on the planet, 1px is a very real, however

small, distance from the top of the page!

window.scrollTo(0, 1);

Looks like we’re going to need a fork…

R UA ANDROID?

At this point, some developers might decide to simply not

support this feature in Android, and more determined

devs might decide that a quick check of the User Agent

string would be a reliable way to determine the browser

and tweak the scroll value accordingly. Neither of those

decisions would be tragic, but in the spirit of cross-

browser and future-friendly development, I’ll propose an

alternative.

252 24 ways 2011 edition

By this point, it should be clear that neither of the

implementations above offer a particularly intuitive way

to hide an address bar. As such, one might be skeptical

that these approaches will stick around very long in their

present state in either browser. Perhaps at some point,

Android will decide to use 0 like iOS, making our lives a

little easier, or maybe some new browser will decide to

model their address bar hiding method after one of these

implementations. In any case, detecting the User Agent

only allows us to apply logic based on the known present,

and in the world of mobile, let’s face it, the present is

already the past.

WRITING A CHECK

In this next step of today’s technique, we’ll apply some

logic to quickly determine the behavior model of the

browser we’re using, then capitalize on that model –

without caring which browser it happens to come from –

by applying the appropriate scroll distance.

To do this, we’ll rely on a fortunate side effect of Android’s

implementation, which is when you programatically scroll

the page to 1 using scrollTo, Android will report that it’s

still at 0 because oddly enough, it is! Of course, any other

browser in this situation will report a scroll distance of 1.

Thus, by scrolling the page to 1, then asking the browser

Raising the Bar on Mobile

24 ways 2011 edition 253

its scroll distance, we can use this artifact of their wacky

implementation to our advantage and scroll to the

location that makes sense for the browser in play.

GETTING THE SCROLL DISTANCE

To pull off our test, we’ll need to ask the browser for its

current scroll distance. The methods for getting scroll

distance are not entirely standardized across popular

browsers, so we’ll need to use some cross-browser logic.

The following scroll distance function is similar to what

you’d find in a library like jQuery. It checks the few

common ways of getting scroll distance before eventually

falling back to 0 for safety’s sake (that said, I’m unaware of

any browsers that won’t return a numeric value from one

of the first three properties).

// scrollTop getter

function getScrollTop(){

return scrollTop = window.pageYOffset ||

document.compatMode === "CSS1Compat" &&

document.documentElement.scrollTop ||

document.body.scrollTop || 0;

}

In order to execute that code above, the body object

(referenced here as document.body) will need to be

defined already, or we’ll risk an error. To determine that

it’s defined, we can run a quick timer to execute code as

soon as that object is defined and ready for use.

254 24 ways 2011 edition

var bodycheck = setInterval(function(){

if(document.body){

clearInterval(bodycheck);

//more logic can go here!!

}

}, 15);

Above, we’ve defined a 15 millisecond interval called

bodycheck that checks if document.body is defined and, if

so, clears itself of running again. Within that if statement,

we can extend our logic further to run other code, such as

our check for the scroll distance, defined via the variable

scrollTop below:

var scrollTop,

bodycheck = setInterval(function(){

if(document.body){

clearInterval(bodycheck);

scrollTop = getScrollTop();

}

}, 15);

With this working, we can immediately scroll to 1, then

check the scroll distance when the body is defined. If the

distance reports 1, we’re likely in a non-Android browser,

so we’ll scroll back to 0 and clean up our mess.

window.scrollTo(0, 1);

var scrollTop,

bodycheck = setInterval(function(){

if(document.body){

Raising the Bar on Mobile

24 ways 2011 edition 255

clearInterval(bodycheck);

scrollTop = getScrollTop();

window.scrollTo(0, scrollTop === 1 ? 0 : 1);

}

}, 15);

CASHING IN

All of the pieces are written now, so all we need to do is

combine them with our previous logic for scrolling when

the window is loaded, and we’ll have a cross-browser

solution of which John Resig would be proud. Here’s our

combined code snippet, with some formatting updates

rolled in as well:

(function(win){

var doc = win.document;

// If there’s a hash, or addEventListener is undefined, stop

here if(!location.hash && win.addEventListener){ //scroll

to 1 window.scrollTo(0, 1); var scrollTop = 1, getScrollTop

= function(){ return win.pageYOffset || doc.compatMode

= "CSS1Compat" && doc.documentElement.scrollTop ||

doc.body.scrollTop || 0; }, //reset to 0 on bodyready, if

needed bodycheck = setInterval(function(){ if(doc.body){

clearInterval(bodycheck); scrollTop = getScrollTop();

win.scrollTo(0, scrollTop = 1 ? 0 : 1); } }, 15);

win.addEventListener(“load”, function(){

setTimeout(function(){ //reset to hide addr bar at onload

256 24 ways 2011 edition

win.scrollTo(0, scrollTop === 1 ? 0 : 1); }, 0); }); }

})(this);

View code example

And with that, we’ve got a bunch more room to play with

on both iOS and Android.

Raising the Bar on Mobile

24 ways 2011 edition 257

http://24ways.org/code/2011/jehl/1.txt

BREAK OUT THE EGGNOG

…because we’re not done yet! In the spirit of making our

script act more defensively, there’s still another use case

to consider. It was essential that we used the window’s

load event to trigger our scripting, but on pages with a lot

of content, its use can come at a cost. Often, a user will

begin interacting with a page, scrolling down as they read,

before the load event has fired. In those situations, our

script will jump the user back to the top of the page,

resulting in a jarring experience.

To prevent this problem from occurring, we’ll need to

ensure that the page has not been scrolled beyond a

certain amount. We can add a simple check using our

getScrollTop function again, this time ensuring that its

value is not greater than 20 pixels or so, accounting for a

small tolerance.

if(getScrollTop() < 20){

//reset to hide addr bar at onload

window.scrollTo(0, scrollTop === 1 ? 0 : 1);

}

And with that, we’re pretty well protected! Here’s a final

demo.

The completed script can be found on Github (full source:

https://gist.github.com/1183357). It’s MIT licensed. Feel

free to use it anywhere or any way you’d like!

258 24 ways 2011 edition

http://jsbin.com/edecew
http://jsbin.com/edecew
https://gist.github.com/1183357

YOUR THOUGHTS?

I hope this article provides you with a browser-agnostic

approach to hiding the address bar that you can use in

your own projects today. Perhaps alternatively, the

complications involved in this approach convinced you

that doing this well is more trouble than it’s worth and,

depending on the use case, that could be a fair decision.

But at the very least, I hope this demonstrates that there’s

a lot of work involved in pulling off this small task in only

two major platforms, and that there’s a real need for

standardization in this area.

Feel free to leave a comment or criticism and I’ll do my

best to answer in a timely fashion.

Thanks, everyone!

SOME PARTING NOTES

I scream, you scream…

At the time of writing, I was not able to test this method

on the latest Android 4.0 (Ice Cream Sandwich) build.

According to Sencha Touch’s browser scorecard, the

browser in 4.0 may have a different way of managing the

address bar, so I’ll post in the comments once I get a

chance to dig into it further.

Raising the Bar on Mobile

24 ways 2011 edition 259

http://www.sencha.com/blog/galaxy-nexus-the-html5-developer-scorecard/

Short pages get no love

Today’s technique only works when the page is as tall, or

taller than, the device’s available screen height, so that

the address bar may be scrolled out of view. On a short

page, you might work around this issue by applying a

minimum height to the body element (body { min-

height: 460px; }), but given the variety of screen sizes

out there, not to mention changes in orientation, it’s

tough to find a value that makes much sense (unless you

manipulate it with JavaScript).

ABOUT THE AUTHOR

260 24 ways 2011 edition

Scott Jehl is a web designer / developer who works with the

bright folks at Filament Group. At Filament, Scott helps craft

websites and applications for a range of clients, including the

recent Responsive design of the Boston Globe, and regularly

contributes ideas and code to the open source community, such

as the recent Respond.js project.

Scott enjoys writing and speaking about web design, and in

2010 co-authored the book Designing with Progressive

Enhancement. He has written for A List Apart and is a jQuery

core team member, most recently leading the development of

the jQuery Mobile project.

Currently, Scott is tromping around Southeast Asia with his

wife, pushing his commits from afar.

Raising the Bar on Mobile

24 ways 2011 edition 261

http://scottjehl.com
http://filamentgroup.com/
http://bostonglobe.com
http://filamentgroup.com/lab/
https://github.com/scottjehl/Respond
http://filamentgroup.com/dwpe
http://filamentgroup.com/dwpe
http://www.alistapart.com/authors/j/scottjehl
http://jquerymobile.com

Simon Collison 24ways.org/201121

21. Taming Complexity

I’m going to step into my UX trousers for
this one. I wouldn’t usually wear them in
public, but it’s Christmas, so there’s
nothing wrong with looking silly.

Anyway, to business. Wherever I roam, I hear the familiar

call for simplicity and the denouncement of complexity. I

read often that the simpler something is, the more usable

it will be. We understand that simple is hard to achieve,

but we push for it nonetheless, convinced it will make

what we build easier to use. Simple is better, right?

Well, I’ll try to explore that. Much of what follows will not

be revelatory to some but, like all good lessons, I think this

serves as a welcome reminder that as we live in a complex

world it’s OK to sometimes reflect that complexity in the

products we build.

MYTHS AND LEGENDS

Less is more, we’ve been told, ever since master of poetic

verse Robert Browning used the phrase in 1855. Well, I’ve

conducted some research, and it appears he knew nothing

262 24 ways 2011 edition

http://24ways.org/201121
http://en.wikipedia.org/wiki/Robert_Browning

of web design. Neither did modernist architect Ludwig

Mies van der Rohe, a later pedlar of this worthy yet

contradictory notion. Broad is narrow. Tall is short. Eggs

are chips. See: anyone can come up with this stuff.

To paraphrase Einstein, simple doesn’t have to be simpler.

In other words, simple doesn’t dictate that we remove the

complexity. Complex doesn’t have to be confusing; it can

be beautiful and elegant. On the web, complex can be

necessary and powerful. A website that simplifies the

lives of its users by offering them everything they need in

one site or screen is powerful. For some, the greater the

density of information, the more useful the site.

In our decision-making process, principles such as

Occam’s razor’s_razor (in a nutshell: simple is better than

complex) are useful, but simple is for the user to

determine through their initial impression and

subsequent engagement. What appears simple to me or

you might appear very complex to someone else, based on

their own mental model or needs. We can aim to deliver

simple, but they’ll be the judge.

As a designer, developer, content alchemist, user

experience discombobulator, or whatever you call

yourself, you’re often wrestling with a wealth of material,

a huge number of features, and numerous objectives. In

many cases, much of that stuff is extraneous, and goes in

Taming Complexity

24 ways 2011 edition 263

http://en.wikipedia.org/wiki/Ludwig_Mies_van_der_Rohe
http://en.wikipedia.org/wiki/Ludwig_Mies_van_der_Rohe
http://en.wikipedia.org/wiki/Occam

the dustbin. However, it can be just as likely that there’s a

truckload of suggested features and content because it all

needs to be there. Don’t be afraid of that weight.

In the right hands, less can indeed mean more, but it’s just

as likely that less can very often lead to, well… less.

COMPLEXITY IS POWERFUL

Simple is the ability to offer a powerful experience

without overwhelming the audience or inducing

information anxiety. Giving them everything they need,

without having them ferret off all over a site to get things

done, is important.

It’s useful to ask throughout a site’s lifespan, “does the

user have everything they need?” It’s so easy to let our

designer egos get in the way and chop stuff out, reduce

down to only the things we want to see. That benefits us

in the short term, but compromises the audience long-

term.

The trick is not to be afraid of complexity in itself, but to

avoid creating the perception of complexity. Give a user a

flight simulator and they’ll crash the plane or jump out.

Give them everything they need and more, but make it feel

simple, and you’re building a relationship, empowering

people.

264 24 ways 2011 edition

This can be achieved carefully with what some call

gradual engagement, and often the sensible thing might

be to unleash complexity in carefully orchestrated phases,

initially setting manageable levels of engagement and

interaction, gradually increasing the inherent power of

the product and fostering an empowered community.

THE DESIGN AESTHETIC

Here’s a familiar scenario: the client or project lead gets

overexcited and skips most of the important decision-

making, instead barrelling straight into a bout of creative

direction Tourette’s. Visually, the design needs to be

minimal, white, crisp, full of white space, have big buttons,

and quite likely be “clean”. Of course, we all like our

websites to be clean as that’s more hygienic.

But what do these words even mean, really? Early in a

project they’re abstract distractions, unnecessary

constraints. This premature narrowing forces us to think

much more about throwing stuff out rather than

acknowledging that what we’re building is complex, and

many of the components perhaps necessary.

Simple is not a formula. It cannot be achieved just by using

a white background, by throwing things away, or by

breathing a bellowsful of air in between every element

and having it all float around in space. Simple is not a

design treatment. Simple is hard. Simple requires deep

Taming Complexity

24 ways 2011 edition 265

investigation, a thorough understanding of every aspect

of a project, in line with the needs and expectations of the

audience.

Recognizing this helps us empathize a little more with

those most vocal of UX practitioners. They usually

appreciate that our successes depend on a thorough

understanding of the user’s mental models and expected

outcomes. I personally still consider UX people to be web

designers like the rest of us (mainly to wind them up), but

they’re web designers that design every decision, and by

putting the user experience at the heart of their process,

they have a greater chance of finding simplicity in

complexity. The visual design aesthetic — the façade — is

only a part of that.

DIVIDE AND CONQUER

I’m currently working on an app that’s complex in

architecture, and complex in ambition. We’ll be releasing

in carefully orchestrated private phases, gradually

introducing more complexity in line with the unavoidably

complex nature of the objective, but my job is to design

the whole, the complete system as it will be when it’s out

of beta and beyond.

266 24 ways 2011 edition

I’ve noticed that I’m not throwing much out; most of it

needs to be there. Therefore, my responsibility is to

consider interesting and appropriate methods of

navigation and bring everything together logically.

I’m using things like smart defaults, graphical timelines

and colour keys to make sense of the complexity,

techniques that are sympathetic to the content. They act

as familiar points of navigation and reference, yet are

malleable enough to change subtly to remain relevant to

the information they connect. It’s really OK to have a lot

of stuff, so long as we make each component work

smartly.

It’s a divide and conquer approach. By finding simplicity

and logic in each content bucket, I’ve made more sense of

the whole, allowing me to create key layouts where most

of the simplified buckets are collated and sometimes

combined, providing everything the user needs and

expects in the appropriate places.

I’m also making sure I don’t reduce the app’s power. I need

to reflect the scale of opportunity, and provide access to

or knowledge of the more advanced tools and features for

everyone: a window into what they can do and how they

can help. I know it’s the minority who will be actively

building the content, but the power is in providing those

opportunities for all.

Taming Complexity

24 ways 2011 edition 267

Much of this will be familiar to the responsible

practitioners who build websites for government, local

authorities, utility companies, newspapers, magazines,

banking, and we-sell-everything-ever-made online shops.

Across the web, there are sites and tools that thrive on

complexity.

Alas, the majority of such sites have done little to make

navigation intuitive, or empower audiences. Where we

can make a difference is by striving to make our UIs feel

simple, look wonderful, not intimidating — even if they’re

mind-meltingly complex behind that façade.

EMBRACE, EMPATHIZE AND TAME

So, there are loads of ways to exploit complexity, and

make it seem simple. I’ve hinted at some methods above,

and we’ve already looked at gradual engagement as a way

to make sense of complexity, so that’s a big thumbs-up for

a release cycle that increases audience power.

Prior to each and every release, it’s also useful to rest on

the finished thing for a while and use it yourself, even if

you’re itching to release. ‘Ready’ often isn’t, and ‘finished’

never is, and the more time you spend browsing around

the sites you build, the more you learn what to question,

where to add, or subtract. It’s definitely worth building in

some contingency time for sitting on your work, so to

speak.

268 24 ways 2011 edition

One thing I always do is squint at my layouts. By squinting,

I get a sort of abstract idea of the overall composition, and

general feel for the thing. It makes my face look stupid,

but helps me see how various buckets fit together, and

how simple or complex the site feels overall.

I mentioned the need to put our design egos to one side

and not throw out anything useful, and I think that’s vital.

I’m a big believer in economy, reduction, and removing the

extraneous, but I’m usually referring to decoration, bells

and whistles, and fluff. I wouldn’t ever advocate the

complete removal of powerful content from a project

roadmap.

Above all, don’t fear complexity. Embrace and tame it.

Work hard to empathize with audience needs, and you

can create elegant, playful, risky, surprising, emotive,

delightful, and ultimately simple things.

Taming Complexity

24 ways 2011 edition 269

ABOUT THE AUTHOR

Simon Collison is a designer, author and speaker with a decade

of experience at the sharp end. He co-founded Erskine Design

back in 2006, but left in early 2010 to pursue new and exciting

challenges, including writing an ambitious new book, and

organising the New Adventures in Web Design event. Simon

has lived in London and Reykjavik, but now lives back in his

hometown of Nottingham, where he is owned by a cat.

Photo: Lachlan Hardy

270 24 ways 2011 edition

http://colly.com
http://newadventuresconf.com
http://www.flickr.com/photos/lachlanhardy/5198367160/

Elliot Jay Stocks 24ways.org/201122

22. From Side Project to
Not So Side Project

In the last article I wrote for 24 ways, back in
2009, I enthused about the benefits of
having a pet project, suggesting that we
should all have at least one so that we could
collaborate with our friends, escape our day
jobs, fulfil our own needs, help others out,
raise our profiles, make money, and — most
importantly — have fun. I don’t think I need
to offer any further persuasions: it seems
that designers and developers are launching
their own pet projects left, right and centre.
This makes me very happy.

However, there still seems to be something of a

disconnect between having a side project and turning it

into something that is moderately successful; in

particular, the challenge of making enough money to

From Side Project to Not So Side Project

24 ways 2011 edition 271

http://24ways.org/201122
http://24ways.org/2009/a-pet-project-is-for-life-not-just-for-christmas

sustain the project and perhaps even elevating it from the

sidelines so that it becomes something not so on the side

at all.

Before we even begin this, let’s spend a moment talking

about money, also known as…

EVIL, NASTY, FILTHY MONEY

Over the last couple of years, I’ve started referring to

myself as an accidental businessman. I say accidental

because my view of the typical businessman is someone

who is driven by money, and I usually can’t stand such

people. Those who are motivated by profit, obsessed with

growth, and take an active interest in the world’s financial

systems don’t tend to be folks with whom I share a beer,

unless it’s to pour it over them. Especially if they’re

wearing pinstriped suits.

That said, we all want to make money, don’t we? And most

of us want to make a relatively decent amount, too. I don’t

think there’s any harm in admitting that, is there? Hello,

I’m Elliot and I’m a capitalist.

The key is making money from doing what we love. For

most people I know in our community, we’ve already

achieved that — I’m hard-pressed to think of anyone who

isn’t extremely passionate about working in our industry

and I think it’s one of the most positive, unifying benefits

we enjoy as a group of like-minded people — but side

272 24 ways 2011 edition

projects usually arise from another kind of passion: a

passion for something other than what we do as our day

jobs. Perhaps it’s because your clients are driving you

mental and you need a break; perhaps it’s because you

want to create something that is truly your own; perhaps

it’s because you’re sick of seeing your online work

disappear so fast and you want to try your hand at print in

order to make a more permanent mark.

The three factors I listed there led me to create 8 Faces, a

printed magazine about typography that started as a side

project and is now a very significant part of my yearly

output and income.

Like many things that prove fruitful, 8 Faces’ success was

something of an accident, too. For a start, the magazine

was never meant to be profitable; its only purpose at all

was to scratch my own itch. Then, after the first issue took

off and I realized how much time I needed to spend in

order to make the next one decent, it became clear that I

would have to cover more than just the production costs:

I’d have to take time out from client work as well. Doing

this meant I’d have to earn some money. Probably not

enough to equate to the exact amount of time lost when I

could be doing client work (not that you could ever

describe time as being lost when you work on something

you love), but enough to survive; for me to feel that I was

getting paid while doing all of the work that 8 Faces

From Side Project to Not So Side Project

24 ways 2011 edition 273

http://8faces.com/

entailed. The answer was to raise money through

partnerships with some cool companies who were happy

to be associated with my little project.

A SUSTAINABLE BUSINESS MODEL

Business model! I can’t believe I just wrote those words!

But a business model is really just a loose plan for how not

to screw up. And all that stuff I wrote in the paragraph

above about partnering with companies so I could get

some money in while I put the magazine together? Well,

that’s my business model.

If you’re making any product that has some sort of

production cost, whether that’s physical print run

expenses or up-front dev work to get an app built,

covering those costs before you even release your

product means that you’ll be in profit from the first copy

you sell. This is no small point: production expenses are

pretty much the only cost you’ll ever need to recoup, so

having them covered before you launch anything is pretty

much the best possible position in which you could place

yourself. Happy days, as Jamie Oliver would say.

Obtaining these initial funds through partnerships has

another benefit. Sure, it’s a form of advertising but, done

right, your partners can potentially provide you with great

content, too. In the case of 8 Faces, the ads look as nice as

the rest of the magazine, and a couple of our partners also

274 24 ways 2011 edition

provide proper articles: genuinely meaningful, relevant,

reader-pleasing articles at that. You’d be amazed at how

many companies are willing to become partners and, as

the old adage goes, if you don’t ask, you don’t get.

WITH PROFIT COMES RESPONSIBILITY

Don’t forget about the responsibility you have to your

audience if you engage in a relationship with a partner or

any type of advertiser: although I may have freely

admitted my capitalist leanings, I’m still essentially a hairy

hippy, and I feel that any partnership should be good for

me as a publisher, good for the partner and — most

importantly — good for the reader. Really, the key word

here is relevance, and that’s where 99.9% of advertising

fails abysmally.

(99.9% is not a scientific figure, but you know what I’m on

about.)

The main grey area when a side project becomes

profitable is how you share that profit, partly because — in

my opinion, at least — the transition from non-profitable

side project to relatively successful source of income can

be a little blurred. Asking for help for nothing when

there’s no money to be had is pretty normal, but

sometimes it’s easy to get used to that free help even

once you start making money. I believe the best approach

is to ask for help with the promise that it will always be

From Side Project to Not So Side Project

24 ways 2011 edition 275

rewarded as soon as there’s money available. (Oh, god:

this sounds like one of those nightmarish client proposals.

It’s not, honest.) If you’re making something cool, people

won’t mind helping out while you find your feet.

Events often think that they’re exempt from sharing

profit. Perhaps that’s because many event organizers

think they’re doing the speakers a favour rather than the

other way around (that’s a whole separate article), but it’s

shocking to see how many people seem to think they can

profit from content-makers — speakers, for example —

and yet not pay for that content. It was for this reason

that Keir and I paid all of our speakers for our Insites: The

Tour side project, which we ran back in July. We probably

could’ve got away without paying them, especially as the

gig was so informal, but it was the right thing to do.

IN CONCLUSION: MONEY AS A BY-PRODUCT

Let’s conclude by returning to the slightly problematic

nature of money, because it’s the pivot on which your side

project’s success can swing, regardless of whether you

measure success by monetary gain. I would argue that

success has nothing to do with profit — it’s about you

being able to spend the time you want on the project.

Unfortunately, that is almost always linked to money:

money to pay yourself while you work on your dream

idea; money to pay for more servers when your web app

hits the big time; money to pay for efforts to get the word

276 24 ways 2011 edition

http://keirwhitaker.com/
http://insitestour.com/
http://insitestour.com/

out there. The key, then, is to judge success on your own

terms, and seek to generate as much money as you see fit,

whether it’s purely to cover your running costs, or enough

to buy a small country. There’s nothing wrong with profit,

as long as you’re ethical about it. (Pro tip: if you’ve earned

enough to buy a small country, you’ve probably been

unethical along the way.)

The point at which individuals and companies fail — in the

moral sense, for sure, but often in the competitive sense,

too — is when money is the primary motivation. It should

never be the primary motivation. If you’re not passionate

enough about something to do it as an unprofitable side

project, you shouldn’t be doing it all.

Earning money should be a by-product of doing what you

love. And who doesn’t want to spend their life doing what

they love?

From Side Project to Not So Side Project

24 ways 2011 edition 277

ABOUT THE AUTHOR

Elliot Jay Stocks is a designer, speaker, and author. He is also

the founder of typography magazine 8 Faces and, more

recently, the co-founder of Viewport Industries. He lives and

works in the countryside between Bristol and Bath, England.

Photo: Samantha Cliffe

278 24 ways 2011 edition

http://8faces.com/
http://viewportindustries.com/
http://samanthacliffe.com

Andrew Clarke 24ways.org/201123

23. There’s No Formula
for Great Designs

Before he combined them with fluid images
and CSS3 media queries to coin responsive
design, Ethan Marcotte described fluid grids
— one of the most enjoyable parts of
responsive design. Enjoyable that is, if you
like working with math(s). But fluid grids
aren’t perfect and, unless we’re careful
when applying them, they can sometimes
result in a design that feels disconnected.

RECAPPING FLUID GRIDS

If you haven’t read Ethan’s Fluid Grids, now would be a

good time to do that. It centres around a simple formula

for converting pixel widths to percentages:

(target ÷ context) × 100 = result

There’s No Formula for Great Designs

24 ways 2011 edition 279

http://24ways.org/201123
http://24ways.org/authors/ethanmarcotte
http://www.alistapart.com/articles/fluidgrids/
http://www.alistapart.com/articles/fluidgrids/

How does that work in practice? Well, take that Fireworks

or Photoshop comp you’re working on (I call them static

design visuals, or just visuals.) Of course, everything on

that visual — column divisions, inline images, navigation

elements, everything — is measured in pixels. Now:

1. Pick something in the visual and measure its width.

That’s our target.

2. Take that target measurement and divide it by the

width of its parent (context).

3. Multiply what you’ve got by 100 (shift two decimal

places).

4. What you’re left with is a percentage width to drop

into your style sheets.

For example, divide this 300px wide sidebar division by its

948px parent and then multiply by 100: your original

300px is neatly converted to 31.646%.

.content-sub {

width : 31.646%; /* 300px ÷ 948px = .31646 */ }

That formula makes it surprisingly simple for even die-

hard fixed width aficionados to convert their visuals to

percentage-based, fluid layouts.

It’s a handy formula for those who still design using static

visuals, and downright essential for those situations

where one person in an organization designs in Fireworks

or Photoshop and another develops with CSS. Why?

280 24 ways 2011 edition

Well, although I think that designing in a browser makes

the best sense — particularly when designing for multiple

devices — I’ll wager most designers still make visuals in

Fireworks or Photoshop and use them for demonstrations

and get feedback and sign-off. That’s OK. If you haven’t

made the transition to content-out designing in a browser

yet, the fluid grids formula helps you carry on pushing

pixels a while longer.

You can carry on moving pixel width measurements from

your visuals to your style sheets, too, in the same way you

always have. You can be precise to the pixel and even

apply a grid image as a CSS background to help you keep

everything lined up perfectly.

Once you’re done, and the fixed width layout in the

browser matches your visual, loop back through your

style sheets and convert those pixels to percentages using

the fluid grids formula. With very little extra work, you’ll

have a fluid implementation of your fixed width layout.

The fluid grids formula is simple and incredibly effective,

but not long after I started working responsively I realized

that the formula shouldn’t (always) be a one-fix, set-and-

forget calculation. I noticed that unless we compensate

for problems it sometimes creates, the result can be a

disconnected design.

There’s No Formula for Great Designs

24 ways 2011 edition 281

http://24ways.org/2009/make-your-mockup-in-markup

STAYING CONNECTED

Good design relies on connectedness, a feeling of natural

balance between elements and the grid they’re placed on.

Give an element greater prominence or position in a

visual hierarchy and you can fundamentally alter the

balance and sometimes the meaning of a design.

Different from a browser’s page zooming feature —

where images, text and overall layout change size by the

same ratio — fluid grids flex a layout in response to a

window or device width. Columns expand and contract,

and within them fluid media (images and videos) can also

change size. This can be one of the most impressive

demonstrations of responsive design.

But not every element within a fluid grid can change size

along with the window or device width. For example, type

size and leading won’t change along with a column’s

width.

When columns and elements within them change width,

all too easily a visual hierarchy can be broken and along

with it the relationship between element sizes and the

outer window or viewport. This can happen quickly if you

make just one set of fluid grid calculations and use those

percentages across every screen width, from

smartphones through tablets and up to large desktops.

282 24 ways 2011 edition

The answer? Make several sets of fluid grids calculations,

each one at a significant window or device width

breakpoint. Then apply those new percentages, when

needed, to help keep elements in proportion and maintain

balance and connectedness. Here’s how I work.

AVOIDING DISCONNECTION

I’ve never been entirely happy with grid frameworks such

as the 960 Grid System, so I start almost every project by

creating a custom grid to inform my layout decisions.

Here’s a plain version of a grid from a recent project that

I’ll use as an illustration.

This project’s grid comprises 84px columns and 24px

gutters. This creates an odd number of columns at

common tablet and desktop widths, and allows for 300px

fixed width assets — useful when I need to fit advertising

into a desktop layout’s sidebar.

There’s No Formula for Great Designs

24 ways 2011 edition 283

http://960.gs/
http://media.24ways.org/2011/clarke/1.png

Showing common advertising sizes (Larger image)

For this project I chose three 320 and Up breakpoints

above 320px and, after placing as many columns as would

fit those breakpoint widths, I derived three content

widths:

BreakpointColumnsContent width
768px 7 732px

992px 9 948px

1,382px 13 1,380px

Here’s my grid again, this time with pixel measurements

and breakpoints overlaid.

Showing pixel measurements and breakpoints (Larger image)

284 24 ways 2011 edition

http://media.24ways.org/2011/clarke/2.png
http://www.stuffandnonsense.co.uk/projects/320andup/
http://media.24ways.org/2011/clarke/3.png

Now cast your mind back to the fluid grids calculation I

made earlier. I divided a 300px element by 948px and

arrived at 31.646%. For some elements it’s possible to use

that percentage across all screen widths, but others will

feel too small in relation to a narrower 768px and too

large inside 1,380px.

To help maintain connectedness, I make a set of fluid grids

calculations based on each of the content widths I

established earlier. Now I can shift an element’s

percentage width up or down when I switch to a new

breakpoint and content width. For example:

▪ 300px is 40.984% of 732px

▪ 300px is 31.646% of 948px

▪ 300px is 21.739% of 1,380px

I’ll add all those fluid grid percentages to my grid image

and save it for quick reference.

Showing percentages at all breakpoints (Larger image)

There’s No Formula for Great Designs

24 ways 2011 edition 285

http://media.24ways.org/2011/clarke/4.png

Then I can apply those different percentage widths to

elements at each breakpoint using CSS3 media queries.

For example, that sidebar division again:

/* 732px, 7-column width */

@media only screen and (min-width: 768px) {

.content-sub {

width : 40.983%; /* 300px ÷ 732px = .40983 */ }

}

/* 948px, 9-column width */

@media only screen and (min-width: 992px) {

.content-sub {

width : 31.645%; /* 300px ÷ 948px = .31645 */ }

}

/* 1380px, 13-column width */

@media only screen and (min-width: 1382px) {

.content-sub {

width : 21.739%; /* 300px ÷ 1380px = .21739 */ }

}

The number of changes you make to a layout at different

breakpoints will, of course, depend on the specifics of the

design you’re working on. Yes, this is additional work, but

286 24 ways 2011 edition

the result will be a layout that feels better balanced and

within which elements remain in harmony with each other

while they respond to new screen or device widths.

PUTTING THE DESIGN IN RESPONSIVE WEB
DESIGN

Until now, many of the conversations around responsive

web design have been about aspects of technical

implementation, rather than design. I believe we’re only

beginning to understand what’s involved in designing

responsively. In future, we’ll likely be making design

decisions not just about proportions but also about

responsive typography. We’ll also need to learn how to

adapt our designs to device characteristics such as touch

targets and more.

Sometimes we’ll make decisions to improve function,

other times because they make a design ‘feel’ right. You’ll

know when you’ve made a right decision. You’ll feel it.

After all, there really is no formula for making great

designs.

There’s No Formula for Great Designs

24 ways 2011 edition 287

ABOUT THE AUTHOR

Andrew Clarke runs Stuff and Nonsense, a tiny web design

company where they make fashionably flexible websites.

Andrew’s the author of Transcending CSS and Hardboiled Web

Design and hosts the popular weekly podcast Unfinished

Business where he discusses the business side of web, design

and creative industries with his guests. He tweets as

@malarkey.

288 24 ways 2011 edition

http://stuffandnonsense.co.uk/
http://unfinished.bz/
http://unfinished.bz/
http://twitter.com/malarkey

Ben Bodien 24ways.org/201124

24. Crafting the Front-
end

Much has been spoken and written recently
about the virtues of craftsmanship in the
context of web design and development. It
seems that we as fabricators of the web are
finally tiring of seeking out parallels
between ourselves and architects, and are
turning instead to the fabled specialist
artisans.

Identifying oneself as a craftsman or craftswoman (let’s

just say craftsperson from here onward) will likely be a

trend of early 2012. In this pre-emptive strike, I’d like to

expound on this movement as I feel it pertains to front-

end development, and encourage care and understanding

of the true qualities of craftsmanship (craftspersonship).

Crafting the Front-end

24 ways 2011 edition 289

http://24ways.org/201124

THE CORE VALUES

I’ll begin by defining craftspersonship. What distinguishes

a craftsperson from a technician? Dictionaries tend to

define a craftsperson as one who possesses great skill in a

chosen field. The badge of a craftsperson for me, though,

is a very special label that should be revered and used

sparingly, only where it is truly deserved. A genuine

craftsperson encompasses a few other key traits, far

beyond raw skill, each of which must be learned and

mastered.

A craftsperson has:

▪ An appreciation of good work, in both the work of

others and their own. And not just good as in ‘hey, that’s

pretty neat’, I mean a goodness like a shining purity – the

kind of good that feels right when you see it.

▪ A belief in quality at every level: every facet of the

craftsperson’s product is as crucial as any other, without

exception, even those normally hidden from view.

▪ Vision: an ability to visualize their path ahead, pre-

empting the obstacles that may be encountered to plan a

route around them.

▪ A preference for simplicity: an almost Bauhausesque

devotion to undecorated functionality, with no

unjustifiable parts included.

▪ Sincerity: producing work that speaks directly to its

purpose with flawless clarity.

290 24 ways 2011 edition

Only when you become a custodian of such values in your

work can you consider calling yourself a craftsperson.

Now let’s take a look at some steps we front-end

developers can take on our journey of enlightenment

toward craftspersonhood.

Speaking of the craftsman’s journey, be sure to watch out for the video

of The Standardistas’ stellar talk at the Build 2011 conference titled The

Journey, which should be online sometime soon.

BUILDING YOUR OWN TOOLBOX

My grandfather was a carpenter and trained as a young

apprentice under a master. After observing and practising

the many foundation theories, principles and techniques

of carpentry, he was tasked with creating his own set of

woodworking tools, which he would use and maintain

throughout his career. By going through the process of

having to create his own tools, he would be connected at

the most direct level with every piece of wood he touched,

his tools being his own creations and extensions of his

own skilled hands. The depth of his knowledge of these

tools must have surpassed the intricate as he fathered,

used, cleaned and repaired them, day in and day out over

many years.

And so it should be, ideally, with all crafts. We must

understand our tools right down to the most fundamental

level. I firmly believe that a level of true craftsmanship

Crafting the Front-end

24 ways 2011 edition 291

cannot be reached while there exists a layer that remains

not wholly understood between a creator and his canvas.

Of course, our tools as front-end developers are

somewhat more complex than those of other crafts – it

may seem reasonable to require that a carpenter create

his or her own set of chisels, but somewhat less so to ask a

front-end developer to code their own CSS preprocessor,

or design their own computer.

However, it is still vitally important that you understand

how your tools work. This is particularly critical when it

comes to things like preprocessors, libraries and

frameworks which aim to save you time by automating

common processes and functions. For the most part,

anything that saves you time is a Good Thing™ but it

cannot be stressed enough that using tools like these in

earnest should be avoided until you understand exactly

what they are doing for you (and, to an extent, how they

are doing it).

In particular, you must understand any drawbacks to

using your tools, and any shortcuts they may be taking on

your behalf. I’m not suggesting that you steer clear of paid

work until you’ve studied each of jQuery’s 9,266 lines of

JavaScript source code but, all levity aside, it will further

you on your journey to look at interesting or relevant bits

of jQuery, and any other libraries you might want to use.

Such libraries often directly link to corresponding

sections of their source code on sites like GitHub from

292 24 ways 2011 edition

their official documentation. Better yet, they’re almost

always written in high level languages (easy to read), so

there’s no excuse not to don your pith helmet and go on

something of an exploration. Any kind of tangential

learning like this will drive you further toward becoming a

true craftsperson, so keep an open mind and always be

ready to step out of your comfort zone.

DOWNTIME AND TOOL HONING

With any craft, it is essential to keep your tools in good

condition, and a good idea to stay up-to-date with the

latest equipment. This is especially true on the web,

which, as we like to tell anyone who is still awake more

than a minute after asking what it is that we do, advances

at a phenomenal pace. A tool or technique that could be

considered best practice this week might be the subject of

haughty derision in a comment thread within six months.

I have little doubt that you already spend a chunk of time

each day keeping up with the latest material from our

industry’s finest Interblogs and Twittertubes, but do you

honestly put aside time to collect bookmarks and code

snippets from things you read into a slowly evolving

toolbox? At @media in 2009, Simon Collison delivered a

candid talk on his ‘Ultimate Package’. Those of us who

didn’t flee the room anticipating a newfound and

unwelcome intimacy with the contents of his trousers

were shown how he maintained his own toolkit – a

Crafting the Front-end

24 ways 2011 edition 293

http://www.slideshare.net/collylogic/developing-your-ultimate-package

collection of files and folders all set up and ready to go for

a new project. By maintaining a toolkit in this way, he has

consistency across projects and a dependable base upon

which to learn and improve.

The assembly and maintenance of such a personalized

and familiar toolkit is probably as close as we will get to

emulating the tool making stage of more traditional craft

trades. Keep a master copy of your toolkit somewhere

safe, making copies of it for new projects. When you learn

of a way in which part of it can be improved, make

changes to the master copy.

SIMPLICITY THROUGH MODULARITY

I believe that the user interfaces of all web applications

should be thought of as being made up primarily of

modular components. Modules in this context are

patterns in design that appear repeatedly throughout the

app. These can be small collections of elements, like a user

profile summary box (profile picture, username, meta

data), as well as atomic elements such as headings and list

items.

Well-crafted front-end architectures have the ability to

support this kind of repeating pattern as modules, with as

close to no repetition of CSS (or JavaScript) as possible,

and as close to no variations in HTML between instances

as possible.

294 24 ways 2011 edition

One of the most fundamental and well known tenets of

software engineering is the DRY rule – don’t repeat

yourself. It requires that “every piece of knowledge must

have a single, unambiguous, authoritative representation

within a system.”

As craftspeople, we must hold this rule dear and apply it

to the modules we have identified in our site designs. The

moment you commit a second style definition for a

module, the quality of your output (the front-end code)

takes a huge hit. There should only ever be one base style

definition for each distinct module or component. Keep

these in a separate, sacred place in your CSS. I use a

_modules.scss Sass include file, imported near the top of

my main CSS files.

Be sure, of course, to avoid making changes to this file

lightly, as the smallest adjustment can affect multiple

pages (hint: keep a structure list of which modules are

used on which pages). Avoid the inevitable temptation to

duplicate code late in the project. Sticking to this rule

becomes more important the more complex the codebase

becomes.

If you can stick to this rule, using sensible class names and

consistent HTML, you can reach a joyous, self-fulfilling

plateau stage in each project where you are assembling

each interface from your own set of carefully crafted

building blocks.

Crafting the Front-end

24 ways 2011 edition 295

OLD SCHOOL MARKUP

Let’s take a step back. Before we fret about creating a

divinely pure modular CSS framework, we need to know

the site’s design and what it is made of. The best way to

gain this knowledge is to go old school. Print out every

comp, mockup, wireframe, sketch or whatever you have. If

there are sections of pages that are hidden until some

user action takes place, or if the page has multiple states,

be sure that you have everything that could become

visible to the user on paper.

Once you have your wedge of paper designs, lay out all

the pages on the floor, or stick them to the wall if you can,

arranging them logically according to the site hierarchy,

by user journey, or whatever guidelines make most sense

to you. Once you have the site laid out before you, study it

for a while, familiarizing yourself with every part of every

interface. This will eliminate nasty surprises late in the

project when you realize you’ve duplicated something, or

left an interface on the drawing board altogether.

Now that you know the site like it’s your best friend, get

out your pens or pencils of choice and attack it. Mark it up

like there’s no tomorrow. Pretend you’re a spy trying to

identify communications from an enemy network hiding

their messages in newspapers. Look for patterns and

similarities, drawing circles around them. These are your

modules. Start also highlighting the differences between

each instance of these modules, working out which is the

296 24 ways 2011 edition

most basic or common type that will become the base

definition from which all other representations are

extended.

This simple but empowering exercise will equip you for

your task of actually crafting, instead of just building, the

front-end. Without the knowledge gained from this kind

of research phase, you will be blundering forward,

improvising as best you can, but ultimately making

quality-compromising mistakes that could have been

avoided.

For more on this theme, read Anna Debenham’s Front-

end Style Guides which recommends a similar process,

and the sublime idea of extending this into a guide to refer

to during development and beyond.

DESIGN HOMOGENEITY

Moving forward again, you now have your modules

defined and things are looking good. I mentioned that

many instances of these modules will carry minor

differences. These differences must be given significant

thinking time, and discussion time with your designer(s).

It should be common knowledge by now that successful

software projects are not the product of distinct design

and build phases with little or no bidirectional feedback.

The crucial nature of the designer-developer relationship

has been covered in depth this year by Paul Robert Lloyd,

Crafting the Front-end

24 ways 2011 edition 297

http://24ways.org/2011/front-end-style-guides
http://24ways.org/2011/front-end-style-guides
http://24ways.org/2011/collaborative-development-for-a-responsively-designed-web

and a joint effort from both teams throughout the project

lifecycle is pivotal to your ability to craft and ship

successful products.

This relationship comes into play when you’re well into

the development of the site, and you start noticing these

differences between instances of modules (they’ll start to

stand out very clearly to you and your carefully

regimented modular CSS system). Before you start

overriding your base styles, question the differences with

the designer to work out why they exist. Perhaps they are

required and are important to their context, but perhaps

they were oversights from earlier design revisions, or

simple mistakes.

THE CRAFTSPERSON’S GLAND

As you grow towards the levels of expertise and

experience where you can proudly and honestly consider

yourself a craftsperson, you will find that you steadily

develop what initially feels like a kind of sixth sense. I

think of it more as a new hormonal gland, secreting into

your bloodstream a powerful messenger chemical that

can either reward or punish your brain. This gland is

connected directly to your core understanding of what

good quality work looks and feels like, an understanding

that itself improves with experience.

298 24 ways 2011 edition

This gland will make itself known to you in two ways. First,

when you solve a problem in a beautifully elegant way

with clean and unobtrusive code that looks good and just

feels right, your craftsperson’s gland will ooze something

delicious that makes your brain and soul glow from the

inside out. You will beam triumphantly at the succinct

lines of code on your computer display before bounding

outside with a spring in your step to swim up glittering

rainbows and kiss soft fluffy puppies.

The second way that you may become aware of your

craftsperson’s gland, though, is somewhat less

pleasurable. In an alternate reality, your parallel self is

faced with the same problem, but decides to take a

shortcut and get around it by some dubious means – the

kind of technical method that the words hack, kludge and

bodge are reserved for. As soon as you have done this, or

even as you are doing it, your craftsperson’s gland will

damn well let you know that you took the wrong fork in

the road. As your craftsperson’s gland begins to secrete a

toxic pus, you will at first become entranced into a vacant

stare at the monstrous mess you are considering

unleashing upon your site’s visitors, before writhing in the

horrible agony of an itch that can never be scratched, and

a feeling of being coated with the devil’s own deep and

penetrating filth that no shower will ever cleanse.

Crafting the Front-end

24 ways 2011 edition 299

Perhaps I exaggerate slightly, but it is no overstatement to

suggest that you will find yourself being guided by

proverbial angels and demons perched on opposite

shoulders, or a whispering voice inside your head. If you

harness this sense, sharpening it as if it were another tool

in your kit and letting it guide or at least advise your

decision making, you will transcend the rocky realm of

random trial and error when faced with problems, and

tend toward the right answers instinctively.

This gland can also empower your ability to assess your

own work, becoming a judge before whom all your work is

cross-examined. A good craftsperson regularly takes a

step back from their work, and questions every facet of

their product for its precise alignment with their core

values of quality and sincerity, and even the very

necessity of each component.

THE WRAPPING

By now, you may be thinking that I take this kind of thing

far too seriously, but to terrify you further, I haven’t even

shared the half of it. Hopefully, though, this gives you an

idea of the kind of levels of professionalism and

dedication that it should take to get you on your way to

becoming a craftsperson. It’s a level of accomplishment

and ability toward which we all should strive, both for our

300 24 ways 2011 edition

personal fulfilment and the betterment of the products

we use daily. I look forward to seeing your finely crafted

work throughout 2012.

ABOUT THE AUTHOR

Ben Bodien is Co-Founder of Neutron Creations and a front-

end development journeyman, and sometimes dabbler in

interface design (when there are no grown-ups around to stop

him). His employers and clients have ranged from video game

companies to hedge funds and from bedroom and VC backed

startups to publicly listed multinationals. His other loves

include coffee, jazz and cocktails, often consumed in

combination. You can observe him quizzically from a safe

distance on Twitter @bbodien.

Crafting the Front-end

24 ways 2011 edition 301

http://neutroncreations.com
http://twitter.com/bbodien

Photo: Stefan Nitzsche

302 24 ways 2011 edition

	Credits
	2011
	Creating Custom Font Stacks with Unicode-Range
	Unicode-range
	The best available ampersand
	A better best available ampersand
	You didn’t think it was that easy, did you?
	Ensuring good fallbacks
	So, how can we use this?
	About the author

	Conditional Loading for Responsive Designs
	About the author

	Subliminal User Experience
	Progress activity and the post-active state
	Pseudo-class preloading
	Buttons and their (mis)behaviour
	Final thoughts
	About the author

	Adaptive Images for Responsive Designs
	HTML has an problem
	Adaptive image techniques
	Adaptive Images
	Setting up and rolling out
	How it works
	Customizing
	Caveats
	This is a PHP solution
	Content delivery networks
	A minor but interesting cookie issue.

	The future
	Footnotes
	About the author

	Collaborative Development for a Responsively Designed Web
	About the author

	Defending the Perimeter Against Web Widgets
	Down and out
	Widgets 101
	document.write()… or wrong?
	The elegant solution
	The hack
	About the author

	Front-end Style Guides
	Design guidelines
	Code standards documents
	The front-end developer’s style guide
	Natalie Downe’s pattern portfolio
	Paul Lloyd’s style guide
	Oli Studholme’s style guide
	Jeremy Keith’s pattern primer

	The benefits of maintaining a front-end style guide
	Easier to test
	Better workflow
	Shared vocabulary
	Useful reference

	Creating your front-end style guide
	Document code practices

	The gift wrapping
	Encourage participation

	Future-friendly
	About the author

	Adaptive Images for Responsive Designs… Again
	TL;DR
	What’s wrong with the server-side solution?
	So, why isn’t this straightforward on the client?
	Oh yeah! <noscript>!
	A dirty, dirty hack
	Images are downloaded in comments now? What?
	A dirty, dirty hack… that works
	Using dirtiness to create responsive images
	Media querying via JavaScript
	The API
	The future
	About the author

	Composing the New Canon: Music, Harmony, Proportion
	Music, design and web design
	Antiphonal geometry
	Boulton’s new canon
	Harmonies musical and visual
	A digression: whither φ?

	Musical interval ratios
	Once more, with feeling: connectedness
	Small speakers, tall speakers: binding to the device
	Coda
	Footnotes

	About the author

	Context First: Web Strategy in Four Handy Ws
	Question everything
	Content first
	Starting is too easy
	The four Ws
	Who
	What
	Why
	Where

	To conclude
	About the author

	Nine Things I've Learned
	1. Becoming the designer you want to be
	2. Compete on your own terms
	3. How much to charge and staying motivated
	4. Supplying the right design
	5. Colour is key
	6. Creative thinking is central to good or boundary-pushing web design
	7. Creative block: don’t be afraid to get things wrong
	8. You get better at designing by designing
	9. Self-belief is overrated
	About the author

	Displaying Icons with Fonts and Data- Attributes
	About the author

	Your jQuery: Now With 67% Less Suck
	Selector optimization
	Selector speed: fast or slow?
	Chaining
	Without chaining
	With chaining

	Caching

	Event delegation
	DOM manipulation
	Wrapping up
	About the author

	Design the Invisible to Tell Better Stories on the Web
	How can we design something that’s invisible?
	Storytelling strands
	Colour
	Typefaces
	Tone of voice

	Research
	About the author

	Extracting the Content
	The Content in content out.
	Defining the problem.
	The page table is your friend
	Guide to redundancy for employees

	About the author

	CSS3 Patterns, Explained
	Important note
	The main idea
	Combining with background-size
	Multiple backgrounds
	Using the right units
	Is it possible?
	Just because you can doesn’t mean you should
	Browser support
	Epilogue
	About the author

	Designing for Perfection
	Story
	Lesson
	Argument
	About the author

	Getting the Most Out of Google Analytics
	Let’s start! Setting up your Analytics profile
	Matt, what’s a segment?
	What does your site do?
	E-commerce
	Page goals
	Events

	What a visitor can tell you
	CSI your website
	Custom reporting
	Useful things you can’t do in custom reporting

	Reporting infrastructure
	Getting data in other ways
	Data Feed Query Explorer
	Google Analytics API

	New shiny things
	Multichannel attribution
	Visitor and goal flow

	About the author

	Going Both Ways
	Setting the direction of the interface
	How things change with the direction attribute
	Changing the order of text mid-way
	Tables
	CSS
	CSS Only
	CSSJanus

	Background Images
	Flipping Images
	The Future
	Ho Ho Ho
	About the author

	Raising the Bar on Mobile
	Surveying the land
	Great API, or greatest API?
	window.scrollTo(0, 0);
	Not so fast…
	Now, on to Android…
	R UA Android?
	Writing a check
	Getting the scroll distance
	Cashing in
	Break out the eggnog
	Your thoughts?
	Some parting notes
	I scream, you scream…
	Short pages get no love

	About the author

	Taming Complexity
	Myths and legends
	Complexity is powerful
	The design aesthetic
	Divide and conquer
	Embrace, empathize and tame
	About the author

	From Side Project to Not So Side Project
	Evil, nasty, filthy money
	A sustainable business model
	With profit comes responsibility
	In conclusion: money as a by-product
	About the author

	There’s No Formula for Great Designs
	Recapping fluid grids
	Staying connected
	Avoiding disconnection
	Putting the design in responsive web design
	About the author

	Crafting the Front-end
	The core values
	Building your own toolbox
	Downtime and tool honing
	Simplicity through modularity
	Old school markup
	Design homogeneity
	The craftsperson’s gland
	The wrapping
	About the author

