

Credits

24 ways is the advent calendar for web
geeks. For twenty-four days each December
we publish a daily dose of web design and
development goodness to bring you all a
little Christmas cheer.

▪ 24 ways is brought to you by Perch CMS

▪ Produced by Drew McLellan, Brian Suda, Anna

Debenham and Owen Gregory.

▪ Designed by Paul Robert Lloyd.

▪ eBook published by edgeofmyseat.com and produced

by Rachel Andrew.

▪ Possible only with the help and dedication of our

authors.

2 24 ways 2012 edition

http://grabaperch.com/?ref=24w01
http://allinthehead.com/
http://suda.co.uk/
http://maban.co.uk/
http://maban.co.uk/
http://fullcreammilk.co.uk/
http://paulrobertlloyd.com/
http://edgeofmyseat.com
http://rachelandrew.co.uk/
http://24ways.org/authors/
http://24ways.org/authors/

2012

During the same month that HTML5 was
designated a Candidate Recommendation by
the W3C, 24 ways covered issues of
performance as part of responsive web
design, CSS and preprocessing, responsive
images (again) and design systems.

HTML5 Video Bumpers .. 5

Starting Your Project on the Right Foot (and Keeping It

There)...18

Being Prepared To Contribute ...26

Colour Accessibility..33

Responsive Responsive Design ...51

Flashless Animation ...61

Think First, Code Later..77

Giving CSS Animations and Transitions Their Place86

Should We Be Reactive? ...92

Fluent Design through Early Prototyping102

2012

24 ways 2012 edition 3

Responsive Images: What We Thought We Needed110

Design Systems ...120

Redesigning the Media Query...130

Using Questionnaires for Design Research.......................140

A Harder-Working Class ...158

How to Make Your Site Look Half-Decent in Half an

Hour...174

Cut Copy Paste..193

Giving Content Priority with CSS3 Grid Layout203

Direction, Distance and Destinations230

Content Planning Demystified..239

Infinite Canvas: Moving Beyond the Page..........................247

Unwrapping the Wii U Browser ...260

Monkey Business..278

Science! ..284

4 24 ways 2012 edition

Drew McLellan 24ways.org/201201

1. HTML5 Video Bumpers

Video is a bigger part of the web experience
than ever before. With native browser
support for HTML5 video elements freeing
us from the tyranny of plugins, and the
availability of faster internet connections to
the workplace, home and mobile networks,
it’s now pretty straightforward to publish
video in a way that can be consumed in all
sorts of ways on all sorts of different web
devices.

I recently worked on a project where the client had shot

some dedicated video shorts to publish on their site. They

also had some five-second motion graphics produced to

top and tail the videos with context and branding. This

pretty common requirement is a great idea on the web,

where a user might land at your video having followed a

link and be viewing a page without much context.

Known as bumpers, these short introduction clips help

brand a video and make it look a lot more professional.

HTML5 Video Bumpers

24 ways 2012 edition 5

http://24ways.org/201201

ADDING BUMPERS TO A VIDEO

The simplest way to add bumpers to a video would be to

edit them on to the start and end of the video file itself.

Cooking the bumpers into the video file is easy, but should

you ever want to update them it can become a real

headache. If the branding needs updating, for example,

you’d need to re-edit and re-encode all your videos. Not a

fun task.

What if the bumpers could be added dynamically? That

would enable you to use the same bumper for multiple

videos (decreasing download time for users who might

watch more than one) and to update the bumpers

whenever you wanted. You could change them seasonally,

6 24 ways 2012 edition

update them for special promotions, run different

advertising slots, perform multivariate testing, or even

target different bumpers to different users.

The trade-off, of course, is that if you dynamically add

your bumpers, there’s a chance that a user in a given

circumstance might not see the bumper. For example, if

the main video feature was uploaded to YouTube, you’d

have no way to control the playback. As always, you need

to weigh up the pros and cons and make your choice.

HTML5 BUMPERS

If you wanted to dynamically add bumpers to your

HTML5 video, how would you go about it? That was the

question I found myself needing to answer for this

particular client project.

My initial thought was to treat it just like an image

slideshow. If I were building a slideshow that moved

between images, I’d use CSS absolute positioning with z-

index to stack the images up on top of each other in a pile,

with the first image on top. To transition to the second

image, I’d use JavaScript to fade the top image out,

revealing the second image beneath it.

HTML5 Video Bumpers

24 ways 2012 edition 7

Now that video is just a native object in the DOM, just like

an image, why not do the same? Stack the videos up with

the opening bumper on top, listen for the video’s onended

event, and fade it out to reveal the main feature behind.

Good idea, right?

WRONG

Remember that this is the web. It’s never going to be that

easy. The problem here is that many non-desktop devices

use native, dedicated video players. Think about watching

a video on a mobile phone – when you play the video, the

phone often goes full-screen in its native player, leaving

the web page behind. There’s no opportunity to fade or

switch z-index, as the video isn’t being viewed in the

page. Your page is left powerless. Powerless!

8 24 ways 2012 edition

So what can we do? What can we control?

Those of us with particularly long memories might recall a

time before CSS, when we’d have to use JavaScript to

perform image rollovers. As CSS background images

weren’t a practical reality, we would use lots of

elements, and perform a rollover by modifying the src

attribute of the image.

Turns out, this old trick of modifying the source can help

us out with video, too. In most cases, modifying the src

attribute of a <video> element, or perhaps more likely the

src attribute of a source element, will swap from one

video to another.

SWAPPIN’ IT

Let’s take a deliberately simple example of a super-basic

video tag:

HTML5 Video Bumpers

24 ways 2012 edition 9

<video src="mycat.webm" controls>no fallback coz i is

lame, innit.</video>

We could very simply write a script to find all video tags

and give them a new src to show our bumper.

<script>

var videos, i, l;

videos = document.getElementsByTagName('video');

for(i=0, l=videos.length; i<l; i++) {

videos[i].setAttribute('src', 'bumper-in.webm');

}

</script>

View the example in a browser with WebM support. You’ll

see that the video is swapped out for the opening bumper.

Great!

BEEFING IT UP

Of course, we can’t just publish video in one format. In

practical use, you need a <video> element with multiple

<source> elements containing your different source

formats.

<video controls>

<source src="mycat.mp4" type="video/mp4" />

<source src="mycat.webm" type="video/webm" />

<source src="mycat.ogv" type="video/ogg" />

</video>

10 24 ways 2012 edition

http://media.24ways.org/2012/mclellan/examples/1.html

This time, our script needs to loop through the sources,

not the videos. We’ll use a regular expression

replacement to swap out the file name while maintaining

the correct file extension.

<script>

var sources, i, l, orig;

sources = document.getElementsByTagName('source');

for(i=0, l=sources.length; i<l; i++) {

orig = sources[i].getAttribute('src');

sources[i].setAttribute('src',

orig.replace(/(w+).(w+)/, 'bumper-in.$2'));

// reload the video

sources[i].parentNode.load();

}

</script>

The difference this time is that when changing the src of a

<source> we need to call the .load() method on the video

to get it to acknowledge the change.

See the code in action, this time in a wider range of

browsers.

BUT, MY VIDEO!

I guess we should get the original video playing again.

Keeping the same markup, we need to modify the script to

do two things:

1. Store the original src in a data- attribute so we can

access it later

HTML5 Video Bumpers

24 ways 2012 edition 11

http://media.24ways.org/2012/mclellan/examples/2.html

2. Add an event listener so we can detect the end of the

bumper playing, and load the original video back in

As we need to loop through the videos this time to add

the event listener, I’ve moved the .load() call into that

loop. It’s a bit more efficient to call it only once after

modifying all the video’s sources.

<script>

var videos, sources, i, l, orig;

sources = document.getElementsByTagName('source');

for(i=0, l=sources.length; i<l; i++) {

orig = sources[i].getAttribute('src');

sources[i].setAttribute('data-orig', orig);

sources[i].setAttribute('src',

orig.replace(/(w+).(w+)/, 'bumper-in.$2'));

}

videos = document.getElementsByTagName('video');

for(i=0, l=videos.length; i<l; i++) {

videos[i].load();

videos[i].addEventListener('ended', function(){

sources = this.getElementsByTagName('source');

for(i=0, l=sources.length; i<l; i++) {

orig = sources[i].getAttribute('data-orig');

if (orig) {

sources[i].setAttribute('src', orig);

}

sources[i].setAttribute('data-orig','');

}

this.load();

this.play();

12 24 ways 2012 edition

});

}

</script>

Again, view the example to see the bumper play, followed

by our spectacular main feature. (That’s my cat, Widget.

His interests include sleeping and internet marketing.)

TIDYING THINGS UP

The final thing to do is add our closing bumper after the

main video has played. This involves the following

changes:

1. We need to keep track of whether the src has been

changed, so we only play the video if it’s changed. I’ve

added the modified variable to track this, and it stops us

getting into a situation where the video just loops forever.

2. Add an else to the event listener, for when the orig is

false (so the main feature has been playing) to load in the

end bumper. We also check that we’re not already playing

the end bumper. Because looping.

<script>

var videos, sources, i, l, orig, current, modified;

sources = document.getElementsByTagName('source');

for(i=0, l=sources.length; i<l; i++) {

orig = sources[i].getAttribute('src');

sources[i].setAttribute('data-orig', orig);

sources[i].setAttribute('src',

orig.replace(/(w+).(w+)/, 'bumper-in.$2'));

HTML5 Video Bumpers

24 ways 2012 edition 13

http://media.24ways.org/2012/mclellan/examples/3.html

}

videos = document.getElementsByTagName('video');

for(i=0, l=videos.length; i<l; i++) {

videos[i].load();

modified = false;

videos[i].addEventListener('ended', function(){

sources = this.getElementsByTagName('source');

for(i=0, l=sources.length; i<l; i++) {

orig = sources[i].getAttribute('data-orig');

if (orig) {

sources[i].setAttribute('src', orig);

modified = true;

}else{

current = sources[i].getAttribute('src');

if (current.indexOf('bumper-out')==-1) {

sources[i].setAttribute('src',

current.replace(/([w]+).(w+)/, 'bumper-out.$2'));

modified = true;

}else{

this.pause();

modified = false;

}

}

sources[i].setAttribute('data-orig','');

}

if (modified) {

this.load();

this.play();

}

});

}

</script>

14 24 ways 2012 edition

Yo ho ho, that’s a lot of JavaScript. See it in action – you

should get a bumper, the cat video, and an end bumper.

Of course, this code works fine for demonstrating the

principle, but it’s very procedural. Nothing wrong with

that, but to do something similar in production, you’d

probably want to make the code more modular to ease

maintainability. Besides, you may want to use a

framework, rather than basic JavaScript.

THE END CREDITS

One really important principle here is that of progressive

enhancement. If the browser doesn’t support JavaScript,

the user won’t see your bumper, but they will get the main

video. If the browser supports JavaScript but doesn’t

allow you to modify the src (as was the case with older

versions of iOS), the user won’t see your bumper, but they

will get the main video.

If a search engine or social media bot grabs your page and

looks for content, they won’t see your bumper, but they

will get the main video – which is absolutely what you

want.

This means that if the bumper is absolutely crucial, you

may still need to cook it into the video. However, for many

applications, running it dynamically can work quite well.

As always, it comes down to three things:

HTML5 Video Bumpers

24 ways 2012 edition 15

http://media.24ways.org/2012/mclellan/examples/4.html

1. Measure your audience: know how people access your

site

2. Test the solution: make sure it works for your

audience

3. Plan for failure: it’s the web and that’s how things

work ‘round these parts

But most of all play around with it, have fun and build

something awesome.

ABOUT THE AUTHOR

16 24 ways 2012 edition

Drew McLellan is lead developer on your favourite small CMS,

Perch. He is Director and Senior Developer at UK-based web

development agency edgeofmyseat.com, and formerly Group

Lead at the Web Standards Project. When not publishing 24

ways, Drew keeps a personal site covering web development

issues and themes, takes photos and tweets a lot.

HTML5 Video Bumpers

24 ways 2012 edition 17

http://grabaperch.com/
http://allinthehead.com/
http://flickr.com/drewm/
http://twitter.com/drewm

Bethany Heck 24ways.org/201202

2. Starting Your Project
on the Right Foot (and
Keeping It There)

I’m not sure if anything is as terrifying as
beginning a new design project. I often
spend hours trying to find the best initial
footing in a design, so I’ve been working
hard to improve my process, particularly for
the earliest stages of a project. I want to
smooth out the bumps that disrupt my
creative momentum and focus on the
emotional highs and lows I experience, and
then try to minimize the lows and ride the
highs as long as possible.

Design is often a struggle broken up by blissful moments

of creative clarity that provide valuable force to move

your work forward. Momentum is a powerful tool in

creative work, and it’s something we don’t always

maximize when we’re working because of the hectic

nature of our field. Obviously, every designer is going to

have a different process, but I thought I’d share some of

18 24 ways 2012 edition

http://24ways.org/201202

the methods I’ve begun to adopt. I hope this will spark a

conversation among designers who are interested in

looking at process in a new way.

Jump-starting a project

I cannot overstate the importance of immersing yourself

in design and collecting ample amounts of inspiration

when beginning a project. I make it a daily practice to visit

a handful of sites (Dribbble, Graphic Exchange, Web

Creme, siteInspire, Designspiration, and others) and save

any examples of design that I like. I then sort them into

general categories (publication design, illustration,

typography, web design, and so on). Enjoying a bit of fresh

design every day helps me absorb it and analyze why it’s

effective instead of just imitating it.

Many designers are afraid to look at too much design for

fear that they’ll be tempted to copy it, but I feel a steady

influx of design inspiration reduces that possibility. You’re

much more likely to take the easy way out and rip off a

design if you’re scrambling for inspiration after getting

stuck. If you are immersed in design from a variety of

mediums, you’ll engage your creative brain on multiple

levels and have an easier time creating something unique

for your project. Looking at good design will not make you

a good designer but it will make you a better designer.

Starting Your Project on the Right Foot (and Keeping It There)

24 ways 2012 edition 19

http://dribbble.com
http://www.graphic-exchange.com
http://www.webcreme.com
http://www.webcreme.com
http://siteinspire.com
http://designspiration.net

Design is design

Try not to limit your visual research to the medium you’re

working in. Websites, books, posters and packaging all

have their own unique limitations and challenges, and any

one of those characteristics could be useful to you.

Posters need to grab the viewer and pass on a small tidbit

of information; packaging needs to encourage physical

interaction; and websites need to encourage exploration.

If you know the challenges you’ll be facing, you will know

where to look for design that tackles those same

problems.

I find it refreshing to look at design from the turn of the

nineteenth century, when type was laid out on objects

without thought to aesthetics. Many vintage packages

break all sorts of modern design rules, and looking at that

kind of work is a great way to spark your creativity.

Pulling yourself out of the box and away from the rules of

what you’re working on can reveal solutions that are

innovative and unique. After a little finessing, the warning

label text from a 1940s hazardous chemical box from

could have the exact type and icon arrangement you need

for your project. There’s a massive pool of design to pull

from that doesn’t have the limitations the web has, and

exploring those design worlds will help you grow your

own repertoire.

20 24 ways 2012 edition

If all else fails, start with the footer

The very beginning of a project is the most frustrating

point in a project for me. I’m trying to figure out typeface

combinations, colors and the overall voice of the design,

and until I find the right solutions, I’m a wreck. I’ve found

often that my frustration stems from trying to solve too

many problems at once. The beginning of a project has a

lot of moving targets, nearly endless possible solutions,

and constantly changing variables. You’ll knock out one

problem only to discover your solution doesn’t jive with

something you worked out earlier — you end up designing

in circles.

If you find yourself getting stuck at the beginning of a

website design, try working out one specific element of

the site and see what emerges. I’m going to recommend

the footer. Why? Footers can easily be ignored in a design

or become a dumping ground for items that couldn’t be

worked into the main layout. But, at the start of most

projects, the minimum content requirements for the

footer are usually established. There needs to be a certain

number of links, social media buttons, copyright details, a

search bar, and so on. It’s a self-contained item within the

design that has a specific purpose, and that’s a great

element to focus on when you’re stuck in a design. Colors,

typefaces, link styles, input fields and buttons can all be

sketched out from just the footer. It’s a very flexible

Starting Your Project on the Right Foot (and Keeping It There)

24 ways 2012 edition 21

element that can be as prominent or subtle as you want,

and it’s a solid starting point for setting the tone and style

of a site.

Save the details

Designers love details. I love details. But don’t let

nitpicking early on in your process kill your creative

momentum. Design is an emotional process, and being

frustrated or defeated by a tricky problem or a graphical

detail you just can’t nail down can deflate your creative

energies. If you hit a roadblock, set it aside and tackle

another piece of the project. As you spend time engaged

in a design, the style you develop will evolve according to

the needs of the content, and you might arrive naturally at

a solution that will work perfectly for the problem that

had you stuck before.

If I find myself working on one particular element for

more than a half an hour without any clear movement, I

shelve it. Designers often wear their obsessive detail-

oriented tendencies as a badge of honor, but there’s a

difference between making the design better and wasting

time. If you’ve spent hours nudging elements around pixel

by pixel and can’t settle on something, it probably means

what you’re doing isn’t making a huge improvement on

the design. Don’t be afraid to let it lie and come at it again

22 24 ways 2012 edition

with fresh eyes. You will be better equipped to tackle the

finer points of a project once you’ve got the broad strokes

defined.

Have a plan when you start and stop designing

We all know that creativity isn’t something you can turn

on effortlessly, and it’s easy to forget the emotional

process that goes along with design. If you leave a project

in a place of frustration, it’s going to stay with you in your

free time and affect you negatively, like a dark cloud of

impending disaster. Try to end each design session with a

victory, a small bit of definable progress that you can take

with you in your downtime. Even something as small as

finding the right opacity for the interior shadow on the

search bar in the header of the site is a win. Likewise,

when you return to a project after a break, it can be

difficult to get the ball rolling on the design again if you set

it down without a clear path for the next steps. I find that I

work on details best when I’m returning from downtime,

when I’m fresh and re-energized and ready to dig in again.

Try to pick out at least one element you’d like to fine-tune

when you are winding down in a design session and use it

to kick-start your next session.

Starting Your Project on the Right Foot (and Keeping It There)

24 ways 2012 edition 23

Content is king

I would argue there is nothing more crucial to the success

of a design than having the content defined from the

outset. Designing without content is similar to designing

without an audience, and designing with vague ideas of

content types and character limits is going to result in a

muted design that doesn’t reach its full potential. Images

and language go hand in hand with design, and can take a

design from functional to outstanding if you have them

available from the outset. We don’t always have the

luxury of having content to build a design around, but

fight for it whenever you can. For example, if the site you

are designing is full of technical jargon, your paragraphs

might need a longer line length to accommodate the

longer words being used.

Often, working with content will lead to design solutions

you wouldn’t have come to otherwise. Design speaks to

content, and content speaks to design. Lorem ipsum

doesn’t speak to anyone (unless you know Latin, in which

case, congratulations!).

Every project has its own set of needs, and every designer

has his or her own method of working. There’s obviously

no perfect process to design, and being dogmatic about

process can be just as harmful as not having one. Exposing

yourself to new design and new ways of designing is an

easy way to test your skills and grow. When things are

hard and you can’t get any momentum going on a design,

24 24 ways 2012 edition

this is when your skill set is truly challenged. We all hope

to get wonderful projects with great assets and ample

creative possibilities, but you won’t always be so blessed,

and this is when the quality of your process is really going

to shine.

ABOUT THE AUTHOR

Bethany Heck is a designer working in (famously hot) Columbia,

SC at the fabulous web design firm known as Cyberwoven. She

went to Auburn University, and she’s telling you this because it’s

got the best design program in the country. She is resisting the

urge to be clever in her bio. She runs the Eephus League of

Baseball Minutiae (she’s really into sports) and shares her latest

work on Dribbble.

Starting Your Project on the Right Foot (and Keeping It There)

24 ways 2012 edition 25

http://cyberwoven.com/
http://eephusleague.com/
http://eephusleague.com/
http://dribbble.com/bethanyheck

Trent Walton 24ways.org/201203

3. Being Prepared To
Contribute

“You’ll figure it out.” The advice my dad
gives has always been the same, whether
addressing my grade school homework or
paying bills after college. If I was looking for
a shortcut, my dad wasn’t going to be the
one to provide it.

When I was a kid it infuriated the hell out of me, but what

I then perceived to be a lack of understanding turned out

to be a keystone in my upbringing. As an adult, I realize

the value in not receiving outright solutions, but being

forced to figure things out.

Even today, when presented with a roadblock while

building for the web, I am temped to get by with the help

of the latest grid system, framework, polyfill, or plugin. In

and of themselves these resources are harmless, but

before I can drop them in, those damn words still echo in

the back of my mind: “You’ll figure it out.”

26 24 ways 2012 edition

http://24ways.org/201203

I know that if I blindly implement these tools as drag and

drop solutions I fail to understand the intricacies behind

how and why they were built; repeatedly using them as

shortcuts handicaps my skill set. When I solely rely on the

tools of others, my work is at their mercy, leaving me less

creative and resourceful, and, thus, less able to contribute

to the advancement of our industry and community.

One of my favorite things about this community is how

generous and collaborative it can be. I’ve loved seeing

FitVids used all over the web and regularly improved

upon at Github. I bet we can all think of a time where

implementing a shared resource has benefitted our own

work and sanity. Because these resources are so valuable,

it’s important that we continue to be a part of the

conversation in order to further develop solutions and

ideas. It’s easy to assume there’s someone smarter or

more up-to-date in any one area, but with a degree of

understanding and perspective, we can all participate.

This open form of collaboration is in our web DNA. After

all, its primary purpose was to promote the exchange and

development of new ideas.

Being Prepared To Contribute

24 ways 2012 edition 27

http://fitvidsjs.com/
http://www.w3.org/People/Berners-Lee/Longer.html
http://www.w3.org/People/Berners-Lee/Longer.html

Tim Berners-Lee proposed a global hypertext
project, to be known as the World Wide Web.
Based on the earlier “Enquire” work, it was
designed to allow people to work together by
combining their knowledge in a web of
hypertext documents.

I’m delighted to find that this spirit of collaborative

ingenuity is alive and well on the web today. Take the

story of Off Canvas as an example. I was at an ATX

Dribbble meet up where I met Jason Weaver and chatted

to him about his recent work on the responsive layout

prototype, Off Canvas. Jason said he came across a post

by Luke Wroblewski outlining the idea and saw this:

If anyone is interested in building a complete
example of this approach using responsive
Web design techniques, let me know!

From there Luke recounts:

We went back and forth on email, with me
laying out ideas and Jason doing all the hard
work to see if they can be done and improving
them bit by bit! Once we got to something we
both liked, I wrote up an article explaining
things and he hosted the examples.

28 24 ways 2012 edition

http://jasonweaver.name/lab/offcanvas/
http://www.lukew.com/ff/entry.asp?1514
http://www.lukew.com/ff/entry.asp?1514

Luke took the time to clearly outline and diagram his

ideas, and Jason responded with a solid proof of concept

that has evolved into a tool we all have at our disposal.

Victory!

I have also benefitted from comrades who have taken an

idea of mine into development. After blogging about some

concerns in regards to maintaining hierarchy as media

queries are used to shift layouts, Jordan Moore

rebounded with some responsive demos where he used

flexbox to (re)order content as viewport sizing changes.

Similar stories can be found behind the development of

things like FitVids, FitText, and Molten Leading. I love this

pattern of collaboration because it involves a fairly

specific process:

1. Initial idea or prototype is outlined or built, then

shared

2. Discuss

3. Someone develops or improves it, then shares it

4. Discuss

5. Someone else develops or improves it, then shares it.

6. Infinity.

This is what the web looks like when we build it together,

and I’d argue that steps 2+ are absolutely crucial. A web

where everyone develops their own ideas and tools

independent of one another is like a room full of people

talking and no one listening.

Being Prepared To Contribute

24 ways 2012 edition 29

http://trentwalton.com/2011/07/14/content-choreography/
http://trentwalton.com/2011/07/14/content-choreography/
http://www.jordanm.co.uk/post/21863299677/building-with-content-choreography
http://fitvidsjs.com/
http://fittextjs.com/
https://github.com/Wilto/Molten-Leading

The pattern itself mimics a literal web structure, and

ideally we’d be able to follow a strand from one idea to the

next and so on.

BLESSED ARE THE CURATORS

Sometimes those lines aren’t easy to find or follow.

Thankfully, there are people who painstakingly log each

experiment and index much of what’s out there. Chris

Coyier does this with CSS in general, and Brad Frost is

doing this for responsive and multi-device design with his

Pattern Library. Seriously, take a look at this page and

imagine what it would take to find, track and organize the

progression of each of these resources yourself. I’d argue

that ongoing collections like these are more valuable than

the sum of their parts when they are updated regularly as

opposed to a top ten tips blog post format.

30 24 ways 2012 edition

http://css-tricks.com/
http://bradfrost.github.com/this-is-responsive/patterns.html

HERE’S MY SOAPBOX

Here are a few things I appreciate about how things are

shared and contributed online. And yes, I could do way

better at all of them myself.

▪ Concise write-ups: honor others’ time by getting to the

point. Not every idea or solution needs two thousand

words to convey fully. I love long-form posts, but there’s a

time and a place for them.

▪ Visual aids: if a quick illustration, screenshot, or graphic

helps illustrate your point or problem, yes please.

By the way, Luke Wroblewski rules the school on both of

these.

▪ Demo it: host it yourself, or put it on CodePen or JS Bin

for others to see.

▪ Put it on Github: share and improve with the rest of the

community. Consider, however, that because someone

puts something on Github doesn’t mean they’re forever

bound to provide support or instruction.

This isn’t a call for everyone to learn everything all the

time, but if you’re curious or interested in something, skip

the shortcut and get your hands dirty: sketch, prototype,

question, debate, fork, and share. Figuring these things

out on our own makes us valuable contributors to the web

– the thing that ultimately we’re all trying to figure out

together.

Being Prepared To Contribute

24 ways 2012 edition 31

http://www.lukew.com/ff/
http://codepen.io/
http://jsbin.com

ABOUT THE AUTHOR

Trent Walton is founder and 1/3 of Paravel, a custom web

design and development shop based out of the Texas Hill

Country whose wife has put him on a font allowance. In his

spare time, he writes about what he learns at his blog, and on

Twitter.

32 24 ways 2012 edition

http://paravelinc.com/
http://trentwalton.com/
http://twitter.com/trentwalton

Geri Coady 24ways.org/201204

4. Colour Accessibility

Here’s a quote from Josef Albers:

In visual perception a colour is almost never seen as it

really is[…] This fact makes colour the most relative

medium in art.

Josef Albers, Interaction of Color, 1963

Albers was a German abstract painter and teacher, and

published a very famous course on colour theory in 1963.

Colour is very relative — not just in the way that it

appears differently across different devices due to screen

quality and colour management, but it can also be seen

differently by different people — something we really

need to be more mindful of when designing.

WHAT IS COLOUR BLINDNESS?

Colour blindness very rarely means that you can’t see any

colour at all, or that people see things in greyscale. It’s

actually a decreased ability to see colour, or a decreased

ability to tell colours apart from one another.

Colour Accessibility

24 ways 2012 edition 33

http://24ways.org/201204

HOW DOES IT HAPPEN?

Inside the typical human retina, there are two types of

receptor cells — rods and cones. Rods are the cells that

allow us to see dark and light, and shape and movement.

Cones are the cells that allow us to perceive colour. There

are three types of cones, each responsible for absorbing

blue, red, and green wavelengths in the spectrum.

Problems with colour vision occur when one or more of

these types of cones are defective or absent entirely, and

these problems can either be inherited through genetics,

or acquired through trauma, exposure to ultraviolet light,

degeneration with age, an effect of diabetes, or other

factors.

Colour blindness is a sex-linked trait and it’s much more

common in men than in women. The most common type

of colour blindness is called deuteranomaly which occurs

in 7% of males, but only 0.5% of females. That’s a pretty

significant portion of the population if you really stop and

think about it — we can’t ignore this demographic.

WHAT DOES IT LOOK LIKE?

People with the most common types of colour blindness,

like protanopia and deuteranopia, have difficulty

discriminating between red and green hues. There are

also forms of colour blindness like tritanopia, which

34 24 ways 2012 edition

affects perception of blue and yellow hues. Below, you can

see what a colour wheel might look like to these different

people.

WHAT CAN WE DO?

Here are some things you can do to make your websites

and apps more accessible to people with all types of

colour blindness.

Colour Accessibility

24 ways 2012 edition 35

Include colour names and show examples

One of the most common annoyances I’ve heard from

people who are colour-blind is that they often have

difficulty purchasing clothing and they will sometimes

need to ask another person for a second opinion on what

the colour of the clothing might actually be. While it’s

easier to shop online than in a physical store, there are

still accessibility issues to consider on shopping websites.

Let’s say you’ve got a website that sells T-shirts. If you

only show a photo of the shirt, it may be impossible for a

person to tell what colour the shirt really is. For

clarification, be sure to reference the name of the colour

in the description of the product.

36 24 ways 2012 edition

United Pixelworkers does a great job of following this

rule. The St. John’s T-shirt has a quirky palette inspired by

the unofficial pink, white and green Newfoundland flag,

and I can imagine many people not liking it.

Another common problem occurs when a colour filter has

been added to a product search. Here’s an example from a

clothing website with unlabelled colour swatches, and

how that might look to someone with deuteranopia-type

colour blindness.

The colour search filter below, from the H&M website, is

much better since it uses names instead.

Colour Accessibility

24 ways 2012 edition 37

http://www.unitedpixelworkers.com
http://www.hm.com

At first glance, Urban Outfitters also uses unlabelled

colour swatches on product pages (below), but on closer

inspection, the colour name is displayed on hover. This

isn’t an ideal solution, because although it’ll work on a

desktop browser, it won’t work on a touchscreen device

where hovering isn’t an option.

38 24 ways 2012 edition

http://www.urbanoutfitters.co.uk

Using overly fancy colour names, like the ones you might

find labelling high-end interior paint can be just as

confusing as not using a colour name at all. Names like

grape instead of purple don’t really give the viewer any

useful information about what the colour actually is on a

colour wheel. Is grape supposed to be purple, or could it

refer to red grapes or even green? Stick with hue names as

much as possible.

Avoid colour-specific instructions

When designing forms, avoid labelling required fields only

with coloured text. It’s safer to use a symbol cue like the

asterisk which is colour-independent.

Colour Accessibility

24 ways 2012 edition 39

A similar example would be directing a user to click a

green button to purchase a product. Label your buttons

clearly and reference them in the site copy by function,

not colour, to avoid confusion.

Don’t rely on colour coding

Designing accessible maps and infographics can be much

more challenging.

Don’t rely on colour coding alone — try to use a

combination of colour and texture or pattern, along with

precise labels, and reflect this in the key or legend.

Combine a blue background with a crosshatched pattern,

or a pink background with a stippled dot — your users will

always have two pieces of information to work with.

40 24 ways 2012 edition

The map of the London subway system is an iconic image

not just in London, but around the world. Unfortunately, it

contains some colours that are indistinguishable from

each other to a person with a vision problem. This is true

Colour Accessibility

24 ways 2012 edition 41

not only for the London underground, but also for any

other wayfinding system that relies on colour coding as

the only key in a legend.

There are printable versions of the map available online in

black and white, using patterns and shades of black and

grey that are distinguishable, but the point is that there

would be no need for such a map if it were designed with

accessibility in mind from the beginning. And, if you’re a

person who has a physical disability as well as a vision

problem, the “Step-Free” guide map which shows stations

is based on the original coloured map.

42 24 ways 2012 edition

Provide alternatives and customization

While it’s best to consider these issues and design your

app to be accessible by default, sometimes this might not

be possible. Providing alternative styles or allowing users

to edit their own colours is a feature to keep in mind.

The developers of the game Faster Than Light created an

alternate colour-blind mode and asked for public

feedback to make sure that it passed the test. Not much

needed to be done, but you can see they added stripes to

the red zones and changed some outlines to blue.

Colour Accessibility

24 ways 2012 edition 43

http://www.ftlgame.com

iChat is also a good example. Although by default it uses

coloured bubbles to indicate a user’s status (available for

chat, away or idle, or busy), included in the preferences is

a “User Shapes to Indicate Status” option, which changes

the shape of the standard circles to green circles, yellow

triangles and red squares.

44 24 ways 2012 edition

Pay attention to contrast

Colours that are similar in value but different in hue may

be easy to distinguish between for a user with good vision,

but a person who suffers from colour blindness may not

be able to tell them apart at all. Proofing your work in

greyscale is a quick way to tell if there’s enough contrast

between the most important information in your design.

Check with a simulator

There are many tools out there for simulating different

types of colour blindness, and it’s worth checking your

design to catch any potential problems up front.

Colour Accessibility

24 ways 2012 edition 45

One is called Sim Daltonism and it’s available for Mac OS

X. It’ll show a pop-up preview next to your cursor and you

can choose which type of colour blindness you want to

test from a drop-down menu.

You can also proof for the two most common types of

colour blindness right in Photoshop or Illustrator (CS4

and later) while you’re designing.

46 24 ways 2012 edition

http://michelf.ca/projects/sim-daltonism

The colour contrast check tool from designer and

developer Jonathan Snook gives you the option to enter a

colour code for a background, and a colour code for text,

and it’ll tell you if the colour contrast ratio meets the Web

Content Accessibility Guidelines 2.0. You can use the

built-in sliders to adjust your colours until they meet the

compliant contrast ratios. This is a great tool to test your

palette before going live.

Colour Accessibility

24 ways 2012 edition 47

http://snook.ca/technical/colour_contrast/colour.html

For live websites, you can use the accessibility tool called

WAVE, which also has a contrast checker. It’s important to

keep in mind, though, that while WAVE can identify

contrast errors in text, other things can slip through, so a

site that passes the test does not automatically mean it’s

accessible in reality.

For example, the contrast checker here doesn’t notice

that our red link in the introduction isn’t underlined, and

therefore could blend into the surrounding paragraph

text.

48 24 ways 2012 edition

http://wave.webaim.org

I know that once I started getting into the habit of

checking my work in a simulator, I became more mindful

of any potential problem areas and it was easier to avoid

them up front. It’s also made me question everything I see

around me and it sends red flags off in my head if I think

it’s a serious colour blindness fail. Understanding that

colour is relative in the planning stages and following

these tips will help us make more accessible design for all.

Colour Accessibility

24 ways 2012 edition 49

ABOUT THE AUTHOR

Geri Coady is a colour-obsessed illustrator and designer from

Newfoundland, Canada. She is a former Art Director at a

Canadian advertising agency and is now pursuing her own

clients through her website at hellogeri.com. Geri loves chatting

about nerdy things on Twitter and has shared her thoughts in

publications such as net magazine, The Pastry Box Project, and

Digital Arts. She’s the author of the Pocket Guide to Colour

Accessibility from Five Simple Steps, a sometimes-illustrator for

A List Apart, and was voted Net Magazine’s Designer of the

Year in 2014.

50 24 ways 2012 edition

http://hellogeri.com
http://twitter.com/hellogeri
http://www.fivesimplesteps.com/products/colour-accessibility
http://www.fivesimplesteps.com/products/colour-accessibility

Tim Kadlec 24ways.org/201205

5. Responsive Responsive
Design

Now more than ever, we’re designing
work meant to be viewed along a gradient
of different experiences. Responsive web
design offers us a way forward, finally
allowing us to “design for the ebb and
flow of things.”

With those two sentences, Ethan closed the article that

introduced the web to responsive design. Since then,

responsive design has taken the web by storm. Seemingly

every day, some company is touting their new responsive

redesign. Large brands such as Microsoft, Time and

Disney are getting in on the action, blowing away the once

common criticism that responsive design was a technique

only fit for small blogs.

Certainly, this is a good thing. As Ethan and John Allsopp

before him, were right to point out, the inherent flexibility

of the web is a feature, not a bug. The web’s unique ability

Responsive Responsive Design

24 ways 2012 edition 51

http://24ways.org/201205
http://www.alistapart.com/articles/responsive-web-design/
http://www.alistapart.com/articles/responsive-web-design/
http://www.alistapart.com/articles/dao/
http://www.alistapart.com/articles/dao/

to be consumed and interacted with on any number of

devices, with any number of input methods is something

to be embraced.

But there’s one part of the web’s inherent flexibility that

seems to be increasingly overlooked: the ability for the

web to be interacted with on any number of networks,

with a gradient of bandwidth constraints and latency

costs, on devices with varying degrees of hardware

power.

A few months back, Stephanie Rieger tweeted

“Shoot me now…responsive design has
seemingly become confused with an
opportunity to reduce performance rather than
improve it.”

I would love to disagree, but unfortunately the evidence is

damning. Consider the size and number of requests for

four highly touted responsive sites that were launched

this year:

▪ 74 requests, 1,511kb

▪ 114 requests, 1,200kb

▪ 99 requests, 1,298kb

▪ 105 requests, 5,942kb

And those numbers were for the small screen versions of

each site!

52 24 ways 2012 edition

https://twitter.com/stephanierieger/statuses/245240465572642816

These sites were praised for their visual design and

responsive nature, and rightfully so. They’re very easy on

the eyes and a lot of thought went into their appearance.

But the numbers above tell an inconvenient truth: for all

the time spent ensuring the visual design was airtight,

seemingly very little (if any) attention was given to their

performance.

It would be one thing if these were the exceptions, but

unfortunately they’re not. Guy Podjarny, who has done a

lot of research around responsive performance,

discovered that 86% of the responsive sites he tested

were either the same size or larger on the small screen as

they were on the desktop.

The reality is that high performance should be a

requirement on any web project, not an afterthought.

Poor performance has been tied to a decrease in revenue,

traffic, conversions, and overall user satisfaction. Case

study after case study shows that improving performance,

even marginally, will impact the bottom line. The situation

is no different on mobile where 71% of people say they

expect sites to load as quickly or faster on their phone

when compared to the desktop.

The bottom line: performance is a fundamental

component of the user experience.

Responsive Responsive Design

24 ways 2012 edition 53

http://www.slideshare.net/guypod/performance-implications-of-mobile-design
http://www.slideshare.net/guypod/performance-implications-of-mobile-design
http://www.webperformancetoday.com/2010/06/15/everything-you-wanted-to-know-about-web-performance/
http://www.webperformancetoday.com/2010/06/15/everything-you-wanted-to-know-about-web-performance/
http://www.gomez.com/resources/whitepapers/survey-report-what-users-want-from-mobile/
http://www.gomez.com/resources/whitepapers/survey-report-what-users-want-from-mobile/

So, given it’s extreme importance in the success of any

web project, why is it that we’re seeing so many bloated

responsive sites?

First, I adamantly disagree with the belief that poor

performance is inherent to responsive design. That’s not a

rule – it’s a cop-out. It’s an example of blaming the

technique when we should be blaming the

implementation. This argument also falls flat because it

ignores the fact that the trend of fat sites is increasing on

the web in general. While some responsive sites are the

worst offenders, it’s hardly an issue resigned to one

technique.

To fix the issue, we need to stop making excuses and start

making improvements instead. Here, then, are some

things we can do to start improving the state of

responsive performance, and performance in general,

right now.

CREATE A CULTURE OF PERFORMANCE

If you understand just how important performance is to

the success of a project, the natural next step is to start

creating a culture where high performance is a key

consideration.

54 24 ways 2012 edition

One of the things you can do is set a baseline. Determine

the maximum size and number of requests you are going

to allow, and don’t let a page go live if either of those

numbers is exceeded. The BBC does this with its

responsive mobile site.

A variation of that, which Steve Souders discussed in a

recent podcast is to create a performance budget based

on those numbers. Once you have that baseline set, if

someone comes along and wants to add a something to

the page, they have to make sure the page remains under

budget. If it exceeds the budget, you have three options:

1. Optimize an existing feature or asset on the page

2. Remove an existing feature or asset from the page

3. Don’t add the new feature or asset

The idea here is that you make performance part of the

process instead of something that may or may not get

tacked on at the end.

EMBRACE THE PAIN

This troubling trend of web bloat can be blamed in part on

the lack of pain associated with poor performance. Most

of us work on high-speed connections with low latency.

When we fire up a 4Mb site, it doesn’t feel so bad.

Responsive Responsive Design

24 ways 2012 edition 55

http://fsm.bdconf.com/podcast/web-performance

When I tested the previously mentioned 5,942kb site on a

3G network, it took over 93 seconds to load. A minute and

a half just staring at a white screen. Had anyone working

on that project experienced that, you can bet the site

wouldn’t have launched in that state.

Don’t just crunch numbers. Fire up your site on a slower

network and see what it feels like to wait. If you don’t

have access to a slow network, simulate one using a tool

like Slowy, Throttle or the Network Conditioner found in

Mac OS X 10.7.

WATCH FOR LOW-HANGING FRUIT

There are a bunch of general performance improvements

that apply to any site (responsive or not) but often aren’t

made. A great starting point is to refer to Yahoo!‘s list of

rules.

Some of this might sound complicated or intimidating, but

it doesn’t have to be. You can grab an .htaccess file from

HTML 5 Boilerplate or use Sergey Chernyshev’s drop-in

.htaccess file. You can use tools like SpriteMe to simplify

the creation of sprites, and ImageOptim to compress

images.

Just by implementing these simple optimizations you will

achieve a noticeable improvement in terms of weight and

page load time.

56 24 ways 2012 edition

http://slowyapp.com/
https://github.com/dmolsen/Throttle
http://mattgemmell.com/2011/07/25/network-link-conditioner-in-lion/
http://developer.yahoo.com/performance/rules.html
http://developer.yahoo.com/performance/rules.html
https://github.com/h5bp/html5-boilerplate/blob/master/.htaccess
https://github.com/h5bp/html5-boilerplate/blob/master/.htaccess
https://github.com/sergeychernyshev/.htaccess
https://github.com/sergeychernyshev/.htaccess
http://spriteme.org/
http://imageoptim.com/

BE CAREFUL WITH IMAGES

The most common offender for poor responsive

performance is downloading unnecessarily large images,

or worse yet, multiple sizes of the same image.

For background images, simply being careful with where

and how you include the image can ensure you don’t get

caught in the trap of multiple background images being

downloaded without being used. Don’t count on

display:none to help. While it may hide elements from

displaying on screen, those images will still be requested

and downloaded.

Content images can be a little trickier. Whatever you do,

don’t serve a large image that works on a large screen

display to small screens. It’s wasteful, not only in terms of

adding weight to the page, but also in wasting precious

memory. Instead, use a tool like Adaptive Images or

src.sencha.io to make sure only appropriately sized

images are being downloaded.

The new <picture> element that has been so often

discussed is another excellent solution if you’re feeling

particularly future-oriented. A picture polyfill exists so

that you can start using the element now without any

worries about support.

Responsive Responsive Design

24 ways 2012 edition 57

http://timkadlec.com/2012/04/media-query-asset-downloading-results
http://timkadlec.com/2012/04/media-query-asset-downloading-results
http://adaptive-images.com/
http://www.sencha.com/learn/how-to-use-src-sencha-io/
https://github.com/scottjehl/picturefill

CONDITIONAL LOADING

Don’t load any more than you absolutely need to. If a

script isn’t needed at certain sizes, use the matchMedia

polyfill to ensure it only loads when needed. Use

eCSSential to do the same for unnecessary CSS files.

Last year on 24 ways, Jeremy Keith wrote an article about

conditional loading of content in a responsive design

based on the screen width. The technique was later

refined by the Filament Group into what they dubbed the

Ajax-Include Pattern. It’s a powerful and simple way to

lighten the load on small screens as well as reduce clutter.

GO VANILLA?

If you take a look at the HTTP Archive you’ll see that

other than image size, JavaScript is the heaviest asset on a

page weighing in at 215kb on average. It also boasts the

fifth highest correlation to load time as well as the second

highest correlation to render time.

Much of the weight can be attributed to our industry’s

increasing reliance on frameworks. This is especially a

concern on mobile devices. PPK recently exclaimed that

current JavaScript libraries are just “too heavy for mobile”.

“Research from Stoyan Stefanov on parse times supports

this. On some Android and iOS devices, it can take as long

as 200-300ms just to parse jQuery.

58 24 ways 2012 edition

https://github.com/paulirish/matchMedia.js
https://github.com/paulirish/matchMedia.js
https://github.com/filamentgroup/eCSSential
http://24ways.org/2011/conditional-loading-for-responsive-designs/
http://24ways.org/2011/conditional-loading-for-responsive-designs/
http://filamentgroup.com/lab/ajax_includes_modular_content/
http://httparchive.org/interesting.php
https://twitter.com/ppk/status/249100988693241856
http://jsperf.com/zepto-jq-eval

There’s nothing wrong about using a framework, but the

problem is that they’ve become the default. Before

dropping another framework or plugin into a page, we

should stop to consider the value it adds and whether we

could accomplish what we need to do using a combination

of vanilla JavaScript and CSS instead. (This is a great

example of a scenario where a performance budget could

help.)

START THINKING BEYOND VISUAL AESTHETICS

We love to tout the web’s universality when discussing

the need for responsive design. But that universality is not

limited simply to screen size. Networks and hardware

capabilities must factor in as well.

The web is an incredibly dynamic and interactive medium,

and designing for it demands that we consider more than

just visual aesthetics. Let’s not forget to give those other

qualities the attention they deserve.

Responsive Responsive Design

24 ways 2012 edition 59

ABOUT THE AUTHOR

Tim Kadlec is a developer living in a tiny town in the north

woods of Wisconsin. He’s very passionate about the Web and

can frequently be found speaking about what he’s learned at a

variety of web conferences.

Tim is the author of Implementing Responsive Design: Building

sites for an anywhere, everywhere web (New Riders, 2012) and

was a contributing author for the Web Performance Daybook

Volume 2 (O’Reilly, 2012). He writes sporadically at

timkadlec.com and you can find him sharing his thoughts in a

briefer format on Twitter at @tkadlec.

60 24 ways 2012 edition

http://www.implementingresponsivedesign.com/
http://www.implementingresponsivedesign.com/
http://www.amazon.com/Web-Performance-Daybook-Volume-2/dp/1449332919
http://www.amazon.com/Web-Performance-Daybook-Volume-2/dp/1449332919
http://timkadlec.com/
http://twitter.com/tkadlec

Rachel Nabors 24ways.org/201206

6. Flashless Animation

ANIMATION IN A FLASHLESS WORLD

When I splashed down in web design four
years ago, the first thing I wanted to do was
animate a cartoon in the browser. I’d been
drawing comics for years, and I’ve wanted to
see them come to life for nearly as long.
Flash animation was still riding high, but I
didn’t want to learn Flash. I wanted to learn
JavaScript!

Sadly, animating with JavaScript was limiting and

resource-intensive. My initial foray into an infinitely

looping background did more to burn a hole in my CPU

than amaze my friends (although it still looks pretty cool).

And there was still no simple way to incorporate audio.

The browser technology just wasn’t there.

Flashless Animation

24 ways 2012 edition 61

http://24ways.org/201206
http://www.rachelthegreat.com/ulQuery/
http://www.rachelthegreat.com/ulQuery/

Things are different now. CSS3 transitions and animations

can do most of the heavy lifting and HTML5 audio can

serve up the music and audio clips. You can do a lot

without leaning on JavaScript at all, and when you lean on

JavaScript, you can do so much more!

In this project, I’m going to show you how to animate a

simple walk cycle with looping audio. I hope this will

inspire you to do something really cool and impress your

friends. I’d love to see what you come up with, so please

send your creations my way at rachelnabors.com!

Note: Because every browser wants to use its own prefixes

with CSS3 animations, and I have neither the time nor the

space to write all of them out, I will use the W3C standard

syntaxes; that is, going prefix-less. You can implement them

out of the box with something like Prefixfree, or you can add

prefixes on your own. If you take the latter route, I recommend

using Sass and Compass so you can focus on your animations,

not copying and pasting.

THE WALK CYCLE

Walk cycles are the “Hello world” of animation. One of the

first projects of animation students is to spend hours

drawing dozens of frames to complete a simple loopable

animation of a character walking.

62 24 ways 2012 edition

http://rachelnabors.com
http://leaverou.github.com/prefixfree/
http://sass-lang.com/
http://compass-style.org/

Most animators don’t have to draw every frame

themselves, though. They draw a few key frames and send

those on to production animators to work on the between

frames (or tween frames). This is meticulous, grueling

work requiring an eye for detail and natural movement.

This is also why so much production animation gets

shipped overseas where labor is cheaper.

Luckily, we don’t have to worry about our frame count

because we can set our own frames-per-second rate on

the fly in CSS3. Since we’re trying to impress friends, not

animation directors, the inconsistency shouldn’t be a

problem. (Unless your friend is an animation director.)

This is a simple walk cycle I made of my comic character

Tuna for my CSS animation talk at CSS Dev Conference

this year:

The magic lies here:

animation: walk-cycle 1s steps(12) infinite;

Breaking those properties down:

animation: <name> <duration> <timing-function>

<iteration-count>;

walk-cycle is a simple @keyframes block that moves the

background sprite on .tuna around:

Flashless Animation

24 ways 2012 edition 63

http://www.rachelthegreat.com/comics_characters/tuna/
http://www.rachelthegreat.com/comics_characters/tuna/
http://cssdevconf.com/

@keyframes walk-cycle {

0% {background-position: 0 0; }

100% {background-position: 0 -2391px;}

}

The background sprite has exactly twelve images of Tuna

that complete a full walk cycle. We’re setting it to cycle

through the entire sprite every second, infinitely. So why

isn’t the background image scrolling down the .tuna

container? It’s all down to the timing function steps().

Using steps() let us tell the CSS to make jumps instead of

the smooth transitions you’d get from something like

linear. Chris Mills at dev.opera wrote in his excellent

intro to CSS3 animation :

Instead of giving a smooth animation
throughout, [steps()] causes the animation to
jump between a set number of steps placed
equally along the duration. For example,
steps(10) would make the animation jump
along in ten equal steps. There’s also an
optional second parameter that takes a value of
start or end. steps(10, start) would specify that
the change in property value should happen at
the start of each step, while steps(10, end)

means the change would come at the end.

(Seriously, go read his full article. I’m not going to touch on

half the stuff he does because I cannot improve on the

basics any more than he already has.)

64 24 ways 2012 edition

http://dev.opera.com/articles/view/css3-animations/
http://dev.opera.com/articles/view/css3-animations/

THE BACKGROUND

A cat walking in a void is hardly an impressive animation

and certainly your buddy one cube over could do it if he

chopped up some of those cat GIFs he keeps using in

group chat. So let’s add a parallax background! Yes, yes, all

web designers signed a peace treaty to not abuse parallax

anymore, but this is its true calling—treaty be damned.

And to think we used to need JavaScript to do this! It’s

still pretty CPU intensive but much less complicated. We

start by splitting up the page into different layers,

.foreground, .midground, and .background. We put .tuna

in the .midground.

.background has multiple background images, all set to

repeat horizontally:

background-image:

url(background_mountain5.png),

url(background_mountain4.png),

url(background_mountain3.png),

url(background_mountain2.png),

url(background_mountain1.png);

background-repeat: repeat-x;

With parallax, things in the foreground move faster than

those in the background. Next time you’re driving, notice

how the things closer to you move out of your field of

vision faster than something in the distance, like a

mountain or a large building. We can imitate that here by

Flashless Animation

24 ways 2012 edition 65

http://en.wikipedia.org/wiki/Parallax

making the background images on top (in the foreground,

closer to us) wider than those on the bottom of the stack

(in the distance).

The different lengths let us use one animation to move all

the background images at different rates in the same

interval of time:

animation: parallax_bg linear 40s infinite;

The shorter images have less distance to cover in the

same amount of time as the longer images, so they move

slower.

Let’s have a look at the background’s animation:

@keyframes parallax_bg {

0% {

background-position: -2400px 100%, -2000px 100%,

-1800px 100%, -1600px 100%, -1200px 100%;

}

100% {

background-position: 0 100%, 0 100%, 0 100%, 0 100%,

66 24 ways 2012 edition

0 100%;

}

}

At 0%, all the background images are positioned at the

negative value of their own widths. Then they start

moving toward background-position: 0 100%. If we

wanted to move them in the reverse direction, we’d

remove the negative values at 0% (so they would start at

2400px 100%, 2000px 100%, etc.). Try changing the

values in the codepen above or changing background-

repeat to none to see how the images play together.

.foreground and .midground operate on the same

principles, only they use single background images.

THE MUSIC

After finishing the first draft of my original walk cycle, I

made a GIF with it and posted it on YTMND with some

music from the movie Paprika, specifically the track “The

Girl in Byakkoya.” After showing it to some colleagues in

my community, it became clear that this was a winning

combination sure to drive away dresscode blues. So let’s

use HTML5 to get a clip of that music looping in there!

Warning, there is sound. Please adjust your volume or

apply headphones as needed.

Flashless Animation

24 ways 2012 edition 67

http://tunapkatz.ytmnd.com/

We’re using HTML5 audio’s loop and autoplay abilities to

automatically play and loop a sound file on page load:

<audio loop autoplay>

<source src="http://music.com/clip.mp3" />

</audio>

Unfortunately, you may notice there is a small pause

between loops. HTML5 audio, thou art half-baked still.

Let’s hope one day the Web Audio API will be able to help

us out, but until things improve, we’ll have to hack our way

around these shortcomings.

Turns out there’s a handy little script called

seamlessLoop.js which we can use to patch this. Mind you,

if we were really getting crazy with the Cheese Whiz, we’d

want to get out big guns like sound.js. But that’d be

overkill for a mere loop (and explaining the Web Audio

API might bore, rather than impress your friends)!

68 24 ways 2012 edition

http://codepen.io/CrowChick/pen/gcump
https://dvcs.w3.org/hg/audio/raw-file/tip/webaudio/specification.html#EventScheduling-section
https://github.com/Hivenfour/SeamlessLoop
https://github.com/Hivenfour/SeamlessLoop
http://www.createjs.com/#!/SoundJS

Installing seamlessLoop.js will get rid of the pause, and

now our walk cycle is complete.

(I’ve done some very rough sniffing to see if the browser

can play MP3 files. If not, we fall back to using .ogg

formatted clips (Opera and Firefox users, you’re

welcome).)

REALLY IMPRESS YOUR FRIENDS BY ADDING A
RUN CYCLE

So we have music, we have a walk cycle, we have parallax.

It will be a snap to bring them all together and have a

simple, endless animation. But let’s go one step further

and knock the socks off our viewers by adding a run cycle.

The run cycle

Tacking a run cycle on to our walk cycle will require a third

animation sequence: a transitional animation of Tuna

switching from walking to running. I have added all these

to the sprite:

Flashless Animation

24 ways 2012 edition 69

https://github.com/Hivenfour/SeamlessLoop
http://codepen.io/CrowChick/pen/kAyif

Let’s work on getting that transition down. We’re going to

use multiple animations on the same .tuna div, but we’re

going to kick them off at different intervals using

animation-delay—no JavaScript required! Isn’t that

magical?

It requires a wee bit of math (not much, it doesn’t hurt) to

line them up. We want to:

1. Loop the walk animation twice

70 24 ways 2012 edition

2. Play the transitional cycle once (it has a finite

beginning and end perfectly drawn to pick up between the

last frame of the walk cycle and the first frame of the run

cycle—no looping this baby)

3. RUN FOREVER.

Using the pattern animation: <name> <duration>

<timing-function> <delay> <iteration-count>, here’s

what that looks like:

animation:

walk-cycle 1s steps(12) 2,

walk-to-run .75s steps(12) 2s 1,

run-cycle .75s steps(13) 2.75s infinite;

I played with the times to get make the movement more

realistic. You may notice that the running animation looks

smoother than the walking animation. That’s because it

has 13 keyframes running over .75 second instead of 12

running in one second. Remember, professional animation

studios use super-high frame counts. This little animation

isn’t even up to PBS’s standards!

The music: extended play with HTML5 audio sprites

My favorite part in the The Girl in Byakkoya is when the

calm opening builds and transitions into a bouncy motif. I

want to start with Tuna walking during the opening, and

then loop the running and bounciness together for

infinity.

Flashless Animation

24 ways 2012 edition 71

1. The intro lasts for 24 seconds, so we set our 1 second

walk cycle to run for 24 repetitions:

walk-cycle 1s steps(12) 24

2. We delay walk-to-run by 24 seconds so it runs for .75

seconds before…

3. We play run-cycle at 24.75 seconds and loop it

infinitely

For the music, we need to think of it as two parts: the intro

and the bouncy loop. We can do this quite nicely with

audio sprites: using one HTML5 audio element and using

JavaScript to change the play head location, like skipping

tracks with a CD player. Although this technique will

result in a small gap in music shifts, I think it’s worth using

here to give you some ideas.

// Get the audio element

var byakkoya = document.querySelector('audio');

// create function to play and loop audio

function song(a){

//start playing at 0

a.currentTime = 0;

a.play();

//when we hit 64 seconds...

setTimeout(function(){

// skip back to 24.5 seconds and keep playing...

a.currentTime = 24.55;

// then loop back when we hit 64 again, or every

59.5 seconds.

setInterval(function(){

a.currentTime = 24.55;

72 24 ways 2012 edition

},39450);

},64000);

}

The load screen

I’ve put it off as long as I can, but now that the music and

the CSS are both running on their own separate clocks, it’s

imperative that both images and music be fully

downloaded and ready to run when we kick this thing off.

So we need a load screen (also, it’s nice to give people a

heads-up that you’re about to blast them with music, no

matter how wonderful that music may be).

Since the two timers are so closely linked, we’d best not

run the animations until we run the music:

* { animation-play-state: paused; }

animation-play-state can be set to paused or running,

and it’s the most useful thing you will learn today.

First we use an event listener to see when the browser

thinks we can play through from the beginning to end of

the music without pause for buffering:

byakkoya.addEventListener("canplaythrough",

function () { });

(More on HTML5 audio’s media events at

HTML5doctor.com)

Flashless Animation

24 ways 2012 edition 73

http://html5doctor.com/html5-audio-the-state-of-play/#events
http://html5doctor.com/html5-audio-the-state-of-play/#events

Inside our event listener, I use a bit of jQuery to add class

of .playable to the body when we’re ready to enable the

play button:

$("body").addClass("playable");

$("#play-me").html("Play me.").click(function(){

song(byakkoya);

$("body").addClass("playing");

});

That .playing class is special because it turns on the

animations at the same time we start playing the song:

.playing * { animation-play-state: running; }

The background

We’re almost done here! When we add the background, it

needs to speed up at the same time that Tuna starts

running. The music picks up speed around 24.75 seconds

in, and so we’re going to use animation-delay on those

backgrounds, too.

This will require some math. If you try to simply shorten

the animation’s duration at the 24.75s mark, the

backgrounds will, mid-scroll, jump back to their initial

background positions to start the new animation! Argh!

So let’s make a new @keyframe and calculate where the

background position would be just before we speed up the

animation.

74 24 ways 2012 edition

Here’s the formula:

new 0% value = delay ÷ old duration × length of image

new 100% value = new 0% value + length of image

Here’s the formula put to work on a smaller scale:

Voilà! The finished animation!

I’ve always wanted to bring my illustrations to life. Then I

woke up one morning and realized that I had all the tools

to do so in my browser and in my head. Now I have fallen

in love with Flashless animation.

I’m sure there will be detractors who say HTML wasn’t

meant for this and it’s a gross abuse of the DOM! But I say

that these explorations help us expand what we expect

from devices and software and challenge us in good ways

as artists and programmers. The browser might not be the

most appropriate place for animation, but is certainly a

fun place to start.

There is so much you can do with the spec implemented

today, and so much of the territory is still unexplored. I

have not yet begun to show you everything. In eight

months I expect this demo will represent the norm, not

the bleeding edge. I look forward to seeing the wonderful

things you create.

Flashless Animation

24 ways 2012 edition 75

(Also, someone, please, do something about that gappy

HTML5 audio looping. It’s a crying shame!)

ABOUT THE AUTHOR

Rachel Nabors is an interaction developer and award-winning

cartoonist. She travels the world, speaking and training people

in the art of web animation. When not biking around her home

city of Portland, she makes interactive comics at her company

Tin Magpie. You can catch her as @rachelnabors on Twitter and

at rachelnabors.com.

76 24 ways 2012 edition

http://tinmagpie.com
http://twitter.com/rachelnabors
http://rachelnabors.com/

Stephen Fulljames 24ways.org/201207

7. Think First, Code Later

This is a story that’s best told from the end,
and it’s probably one you’re all familiar
with.

You, or someone just like you, have been building a

website, probably as part of a skilled and capable team.

You’re a front-end developer, focusing on JavaScript – it’s

either your sole responsibility or shared around. It’s quite

a big job, been going on for months, and at last it feels like

you’re reaching the end of it.

But, in a brief moment of downtime, you step back and

take a look at the code as a whole. You notice that the

folder called “jQuery plugins” suddenly looks rather full,

and maybe there’s evidence of several methods of doing

the same thing; there are loads of little niggly fixes in the

bug tracker; and every place you use Ajax the structure of

the data is slightly different. You sigh, and your shoulders

droop slightly, and you think “Yeah, we’ll do that more

cleanly next time.”

Think First, Code Later

24 ways 2012 edition 77

http://24ways.org/201207

The thing is, you probably already know how to rewrite

the start of this story to make the ending work better. This

situation is not really anyone’s fault – it’s just an

accumulation of all the things you decided along the way,

all the things you agreed you’d fix later that have

disappeared into the black hole of technical debt, and

accomodating all the “can we just…?” requests from

around the team and the client.

So, the solution to this is easy, right? More interminable

planning meetings, more tightly controlled and

documented specifications, less freedom to innovate, to

try out new ideas and enjoy what you’re doing.

Wait, that sounds even less fun than the old way.

MINIMUM VIABLE PLANNING

Actually, planning and specifications are exactly what you

need, but the way you go about them can make a real

difference, both to the quality of your code, and the

quality of your life as a developer. It can be as simple as

being a little more thoughtful before starting on any new

piece of functionality. Involve your whole team if possible,

or at least those working on what you’re doing. Canvass

opinions and work out what the solution to the problem

might look like first, rather than coding speculatively to

find out.

78 24 ways 2012 edition

There are easy ways you can get into this habit of putting

the thought and design up front, and it doesn’t have to

mean spending more time on the project as a whole. It

also doesn’t have to result in reams of functional

specifications. Instead, let the code itself form the

specification.

As JavaScript applications become more complex, unit

testing is becoming ever more important. So embrace it,

whether you prefer QUnit, or Mocha, or any of the other

JavaScript testing frameworks out there. The TDD (or

test-driven development) pattern is all about writing the

tests first and then writing functional code to pass those

tests; or, if you prefer, code that meets the specification

given by the tests.

Sounds like a hassle at first, but once you get into the

rhythm of it you should find that the time spent writing

tests up front is no greater, and often significantly less,

than the time you would have spent fixing bugs

afterwards.

If what you’re working on requires an API between client

and server (usually Ajax but this can apply to any method

of sending or receiving data) then spend a bit of time with

the back-end developer to design the data contracts,

before either of you cut any code. Work out what the API

endpoints are going to be, and what the data structure

you’ll get back from a certain endpoint looks like. A mock

Think First, Code Later

24 ways 2012 edition 79

http://qunitjs.com/
http://visionmedia.github.com/mocha/

JSON object documented on a wiki is enough and it can be

atomic. Don’t worry about planning the entire project at

once, just plan enough to get on with your current tasks.

Definition in this way doesn’t have to make your API

immutable – change is still fine – but if you know roughly

where you’re heading, then not only can your team’s

efforts become more parallel, but you’re far more likely to

have an easier time making it all work. And again, you

have a specification – the shape of the data – to write your

JavaScript against.

Putting everything together, you end up with a logical

flow of development, from the specification agreed with

the client (your backlog), to the specification agreed with

your team (the API contract design), to the specification

agreed with your code (your unit tests). Hopefully, there

will be ample clues in all of this to inform your front-end

library choices, because by then you should have a better

picture of what you’re going to need.

WHAT THE FRAMEWORK?

As a JavaScript developer predominantly, these are the

choices I’m particularly interested in – how and why you

use JavaScript libraries and frameworks, both what you

expect from them and what you actually get.

80 24 ways 2012 edition

If we look back at how web development, and specifically

JavaScript development has progressed – from the

earliest days of using lines and lines of Dreamweaver

code-barf to make an image rollover effect, to today’s

large frameworks that handle working with the DOM,

Ajax communication and visual effects all in one hit – the

purpose of it is clear: to smooth over the inconsistent

bumps between browsers and give a solid, reliable,

predictable base on which to put our desired

functionality.

Understanding what we expect the language as a

specification to do, and matching that to what we observe

browsers actually doing, and then smoothing out the

differences, is a big job. Since the language and the

implementations are also changing as we go along, it also

feels like a never-ending job. So make full use of this

valuable effort. Use jQuery or YUI or anything else you’re

comfortable with, but it still pays to think early on about

what you need your library to do and what the best choice

is to meet that need.

I’ve come in to projects as a fixer and found, to take a

recent example, that jQuery UI was being used just to

provide a date picker and a modal effect. That’s a lot of

code weight to provide two fairly simple pieces of

functionality that could easily be covered by smaller

plugins. Which isn’t to say that jQuery UI itself is a bad

choice, but I could see that it had been included late on

Think First, Code Later

24 ways 2012 edition 81

http://jqueryui.com

just to do those things, whereas a more considered

approach would have been to put the library in early and

use it more universally.

There are other choices, too. If you automatically throw in

jQuery (or whatever your favourite main library is) to a

small site with limited functionality, you might only touch

a tiny fraction of its scope. In my own development I

started looking at what I actually needed from a

JavaScript library. For a simple project like What the

Framework?, all jQuery needed to do was listen for

.ready() and then perform some light DOM selection

before handing over to a client-side MVC framework. So

perhaps there was another way to go about this while still

avoiding the cross-browser headaches.

DELETING JQUERY

But the jQuery pattern is compelling and familiar. And

once you’re comfortable with something, it’s a bit of an

effort to force yourself out of that comfort zone and learn.

But looking back at my whole career, I realised that I’ve

relearned pretty much everything I do, probably several

times, since I started out. So it’s worth keeping in mind

that learning and trying new things is how development

has advanced to where it is now, and how it will keep

advancing in the future.

82 24 ways 2012 edition

http://whattheframework.com
http://whattheframework.com

In the end this lead me to Ender, which is billed as an

NPM-style package manager for the browser, letting you

search for and manage small, loosely coupled modules

and their dependencies, and compile them to one file with

a common API.

For What the Framework I ended up with a set of DOM

tools, Underscore and Knockout, all minified into 25kb of

JavaScript. This compares really well with 32kb minified

for jQuery on its own, and Ender’s use of the dollar

variable and the jQuery-like syntax in many modules

makes switching over a low-friction experience.

On more complex projects, where you’re really going to

use all the features of something like jQuery, but want to

minimise the loading of other dependencies when you

don’t need them, I’ve recently started looking at Jam. This

uses the RequireJS pattern to compile commonly used

code into a library file and then manage dependencies and

bring in others on a per-page basis depending on how you

need it. Again, it all comes down to thinking about what

you need and using it only when you need it. And the

configurability of tools like Ender or Jam allow you to be

responsive to changing requirements as your project

grows.

Think First, Code Later

24 ways 2012 edition 83

http://ender.jit.su/
http://underscorejs.org/
http://knockoutjs.com/
http://jamjs.org/
http://requirejs.org/

THERE IS NO RIGHT ANSWER

That’s not to say this way of working automatically makes

things easier. It doesn’t. On a large, long-running project

or one where future functionality is unknown, it’s still

hard to predict and plan for everything – at least until

crystal balls as a service come about. But by including

strong engineering practices in your front-end, and trying

to minimise technical debt, you’re at least giving yourself

a decent safety net to guard against the “can we just…?”

tendencies that are a fact of life.

So, really, this is not an advocation of using a particular

technology or framework, because I can’t tell you what

works for you or your team. But what I can tell you is that

working this way round has done wonders for my

productivity and enthusiasm, both for code quality and

for trying out new libraries. Give it a go, you might like it!

84 24 ways 2012 edition

ABOUT THE AUTHOR

Stephen Fulljames is a freelance interface developer working

mostly (these days) in Javascript and Node. Having started out

writing about video games in the late 1990s, he was nominated

to build the magazine’s first website because “you know a bit

about HTML” and it’s kind of grown from there. Stephen lives

near Brighton with his wife, Nat, and two kids and fills his spare

time making atoms for railway modellers at Narrow Planet. You

can find him on Twitter @fulljames.

Photo: Nathalie Fulljames

Think First, Code Later

24 ways 2012 edition 85

http://fulljames.net/
http://narrowplanet.co.uk/
http://twitter.com/fulljames

Val Head 24ways.org/201208

8. Giving CSS Animations
and Transitions Their
Place

CSS animations and transitions may not sit
squarely in the realm of the behaviour layer,
but they’re stepping up into this area that
used to be pure JavaScript territory. Heck,
CSS might even perform better than its
JavaScript equivalents in some cases. That’s
pretty serious! With CSS’s new tricks
blurring the lines between presentation and
behaviour, it can start to feel bloated and
messy in our CSS files. It’s an uncomfortable
feeling.

Here are a pair of methods I’ve found to be pretty helpful

in keeping the potential bloat and wire-crossing under

control when CSS has its hands in both presentation and

behaviour.

86 24 ways 2012 edition

http://24ways.org/201208
http://dev.opera.com/articles/view/css3-vs-jquery-animations/

SAME EGGS, MORE BASKETS

Structuring your CSS to have separate files for layout,

typography, grids, and so on is a fairly common approach

these days. But which one do you put your transitions and

animations in? The initial answer, as always, is “it

depends”.

Small effects here and there will likely sit just fine with

your other styles. When you move into more involved

effects that require multiple animations and some logic

support from JavaScript, it’s probably time to choose

none of the above, and create a separate CSS file just for

them.

Putting all your animations in one file is a huge help for

code organization. Even if you opt for a name less literal

than animations.css, you’ll know exactly where to go for

anything CSS animation related. That saves time and

effort when it comes to editing and maintenance. Keeping

track of which animations are still currently used is easier

when they’re all grouped together as well. And as an

added bonus, you won’t have to look at all those horribly

unattractive and repetitive prefixed @-keyframe rules

unless you actually need to.

An animations.css file might look something like the

snippet below. It defines each animation’s keyframes and

defines a class for each variation of that animation you’ll

be using. Depending on the situation, you may also want

Giving CSS Animations and Transitions Their Place

24 ways 2012 edition 87

to include transitions here in a similar way. (I’ve found

defining transitions as their own class, or mixin, to be a

huge help in past projects for me.)

// defining the animation

@keyframes catFall {

from { background-position: center 0;}

to {background-position: center 1000px;}

}

@-webkit-keyframes catFall {

from { background-position: center 0;}

to {background-position: center 1000px;}

}

@-moz-keyframes catFall {

from { background-position: center 0;}

to {background-position: center 1000px;}

}

@-ms-keyframes catFall {

from { background-position: center 0;}

to {background-position: center 1000px;}

}

…

// class that assigns the animation

.catsBackground {

height: 100%;

background: transparent url(../endlessKittens.png) 0 0

repeat-y;

animation: catFall 1s linear infinite;

-webkit-animation: catFall 1s linear infinite;

88 24 ways 2012 edition

-moz-animation: catFall 1s linear infinite;

-ms-animation: catFall 1s linear infinite;

}

IF WE DON’T NEED IT, WHY LOAD IT?

Having all those CSS animations and transitions in one file

gives us the added flexibility to load them only when we

want to. Loading a whole lot of things that will never be

used might seem like a bit of a waste.

While CSS has us impressed with its motion chops, it falls

flat when it comes to the logic and fine-grained control.

JavaScript, on the other hand, is pretty good at both those

things. Chances are the content of your animations.css file

isn’t acting alone. You’ll likely be adding and removing

classes via JavaScript to manage your CSS animations at

the very least. If your CSS animations are so entwined

with JavaScript, why not let them hang out with the rest

of the behaviour layer and only come out to play when

JavaScript is supported?

Dynamically linking your animations.css file like this

means it will be completely ignored if JavaScript is off or

not supported. No JavaScript? No additional behaviour,

not even the parts handled by CSS.

<script>

document.write('<link rel="stylesheet" type="text/css"

href="animations.css">');

</script>

Giving CSS Animations and Transitions Their Place

24 ways 2012 edition 89

This technique comes up in progressive enhancement

techniques as well, but it can help here to keep your

presentation and behaviour nicely separated when more

than one language is involved. The aim in both cases is to

avoid loading files we won’t be using.

If you happen to be doing something a bit fancier – like

3-D transforms or critical animations that require more

nuanced fallbacks – you might need something like

modernizr to step in to determine support more

specifically. But the general idea is the same.

SUMMING IT ALL UP

Using a couple of simple techniques like these, we get to

pick where to best draw the line between behaviour and

presentation based on the situation at hand, not just on

what language we’re using. The power of when to

separate and how to reassemble the individual pieces can

be even greater if you use preprocessors as part of your

process. We’ve got a lot of options! The important part is

to make forward-thinking choices to save your future self,

and even your current self, unnecessary headaches.

90 24 ways 2012 edition

http://v2.danielmall.com/archives/2010/04/04/enhanced.php
http://v2.danielmall.com/archives/2010/04/04/enhanced.php
http://modernizr.com/

ABOUT THE AUTHOR

Val Head is totally into design, type and code. She is a designer

currently based in Pittsburgh where she works with agencies

and small businesses to keep the web fun. She speaks

internationally at conferences and leads workshops on web

design and creative coding.

Every year she and Jason bring a swarm of web designers to

Pittsburgh for Web Design Day. She also runs the local creative

coding meet up, Loop and helps keep Refresh Pittsburgh going

strong. She likes people. Val tweets too much, occasionally

dribbbles, and blogs somewhat inconsistently.

Giving CSS Animations and Transitions Their Place

24 ways 2012 edition 91

http://www.twitter.com/vlh
http://www.twitter.com/gjhead
http://webdesignday.com/
http://www.refreshpittsburgh.org/
http://www.twitter.com/vlh
http://dribbble.com/valhead
http://www.valhead.com/

Dan Donald 24ways.org/201209

9. Should We Be
Reactive?

EVOLUTION

Looking at the evolution of the web and the
devices we use should help remind us that
the times we’re adjusting to are just another
step on a journey. These times seem to be
telling us that we need to embrace
flexibility.

Imagine an HTML file containing nothing but text. It’s

viewable on any web-capable device and reasonably

readable: the notion of the universality of the web was

very much a founding principle. Right from the beginning,

browser vendors understood that we’d want text to

reflow (why wouldn’t we?), so I consider the first websites

to have been fluid.

As we attempted to exert more control through our

designs in the early days of the web, debates about

whether we should produce fixed or fluid sites raged. We

could create fluid designs using tables, but what we didn’t

have then was a wide range of web capable devices or the

92 24 ways 2012 edition

http://24ways.org/201209

ability to control this fluidity. The biggest changes

occurred when stats showed enough people using a

different screen resolution we could cater for.

To me, the techniques of responsive web design provide

the control we were missing. Combining new approaches

to layout and images with media queries empowered us to

learn how to embrace the inherent flexibility of the web in

ways to suit our work and the devices used by our

audience.

Perhaps another kind of flexibility might be found in how

we use context to affect how we present our content; to

consider how we might use the information we can access

from people, browsers and devices to provide web

experiences – effectively creating sites that react to initial

or changing circumstances in the relationship between

people and our content.

EMBRACING FLEXIBILITY

So what is context? Put simply, you could think of it as a

secondary piece of information that helps clarify the

meaning of the first. It helps set a scene or describe

circumstances. I think that Cennydd Bowles has summed

it up really well through talks he’s given recently, in which

he’s arrived at the acronym DETAILS (Device,

Environment, Time, Activity, Individual, Location, Social) –

I encourage you to keep an eye out for his next book due

Should We Be Reactive?

24 ways 2012 edition 93

http://vimeo.com/47548905
http://vimeo.com/47548905

in the new year where he’ll explore this idea much further.

This clarity over what context could mean in terms of

what we do on the web is fundamental, directing us

towards ways we might use it.

When you stop to think about it, we’ve been using some

basic pieces of this information right from the beginning,

like bits of JavaScript or Java applets that serve an

appropriate greeting to your site’s visitors, or show their

location, or even local weather. But what if we think of

this from the beginning of our projects?

We should think about our content first. Once we know

this and have a direction, perhaps then we can think about

what context, or even multiple contexts, might help us to

communicate more effectively.

THE REAL WORLD

There’s always been a disconnect between the real world

and the web, which is to be expected. But the world

around us is a sea of data; every fundamental building

block: people, places, events and things have information

waiting to be explored.

For sites based around physical objects or locations, this

divide is really apparent. We don’t ordinarily take the time

to describe in code the properties of a place, or consider

94 24 ways 2012 edition

whether your relationship to the place in the real world

should have any impact on your relationship with a site

about it.

When I think about local businesses, they have such rich

properties to draw on and yet we don’t really explore

them in any meaningful way, even through something as

simple as opening hours.

NOW WE HAVE DATA…

We’ve long had access to the current time both on server-

and client-sides. The use of geolocation is easier than

ever, but when we look at the range of information we

could glean to help us make some choices, maybe there’s

some help on the horizon from projects like the W3C

Device APIs Working Group. This might prove useful to

help make us aware of network and battery conditions of

a device, along with the potential to gain data from other

sensors, which could tell us about lighting conditions,

ambient noise levels and temperature depending on the

capabilities of the device.

It may be that our sites have some form of login or access

to your profile from another site. Along with data from

our devices and browsers, this should give us a sense of

how best to talk to our audience in certain situations. We

don’t necessarily need to know any personal details, just

enough to make decisions about how to present our sites.

Should We Be Reactive?

24 ways 2012 edition 95

http://www.w3.org/2009/dap/
http://www.w3.org/2009/dap/

THE REACTIVE WEB?

So why reactive web design? I’m hoping that a name might

help us to have a common vocabulary not only about what

we mean when we talk about context, but how it could be

considered through our projects, right from the early

stages. How could this manifest itself?

A simple example might be a location-aware panel on your

site. Perhaps the space is a little down in your content

hierarchy but serves a perfectly valid purpose by default.

To visitors outside the country perhaps this works fine,

but within your country maybe this panel could be used to

communicate more effectively. Further still, if we knew

the visitors were in the vicinity, we could talk to them

more directly.

What if both time and location were relevant? This space

could work as before but you could consider how time

could intersect with your local audience. If you know

they’re local and it’s a certain time of day, you could

communicate directly with them.

This example isn’t beyond what banner ads often do and

uses easily accessible information. There are more

unusual combinations we may be able to find, such as

movement and presence. Perhaps a site that tells a story,

which changes design and content based on whether

you’re moving, how long you’ve been on the site and how

far you’ve travelled. This isn’t what we typically expect

96 24 ways 2012 edition

from websites, but we should bear in mind that what

websites are now will not be what they become in the

future.

You could do much of this contextual presentation

through native apps, of course. The Silent History, an app

novel written and designed for iPad and iPhone, uses an

exploration element, providing “hundreds of location-

based stories across the U.S. and around the world. These

can be read only when your device’s GPS matches the

coordinates of the specified location.” But considering the

universality of the web, we could redefine what web-

based experiences should be like. Not all methods would

work well on the web, but that’s a decision that has to be

made for a specific project.

By thinking more broadly about any web-capable device,

we can use what we know to provide relevant experiences

for our site’s visitors. We need to be sure what we mean

by relevant, of course!

REALITY BITES

While there are incredible possibilities, from a simple

panel on a site to something bordering on living sites that

evolve and change with our circumstances, we need to act

with a degree of pragmatism and understand how much of

what we could do is based on assumptions and the bias of

our own experiences.

Should We Be Reactive?

24 ways 2012 edition 97

http://www.thesilenthistory.com/

We could go wild with changing the way our content is

presented based on contextual information, but if we’re

not careful what we end up with confuses and could

provide a very fractured experience. As much as possible

we need to think more ethnographically, observe and

question people in the situations we think may be

relevant, and test our assumptions as early as we can.

Even on small projects, there may be ways we can validate

our assumptions and test with our audience. The key to

applying contextual content or cues is not to break the

experience between contextual views (as I think we now

wouldn’t when hiding content on a mobile view).

It’s another instance of progressive enhancement – as we

know certain pieces of information, we can enhance the

experience. Also, if you do change content, how can you

not make a more cumbersome experience for your

visitors?

IT’S ALL ABOUT COMMUNICATION

Content is at the core of what we do, but if we consider

context we need to understand the impact on that. The

effect could be as subtle as an altered hierarchy, involve

swapping out panels of content, or in extreme instances

perhaps all of your content might change. In some ways,

this extends the notion of adaptive content that Karen

McGrane has been talking about, to how we write and

store the content we create. Thinking about the the

98 24 ways 2012 edition

http://karenmcgrane.com/2012/09/04/adapting-ourselves-to-adaptive-content-video-slides-and-transcript-oh-my/

impact of context may require us to re-evaluate our site

structure, too. Whatever we decide, we have to be clear

what will happen and manage the expectations of our

users.

THE BOTTOM LINE

What I’m proposing isn’t that we go crazy and end up with

a confused, disjointed set of experiences across the web.

What I hope is that starting right from the beginning of a

project, we think about what context is and could be, and

see what relevance it might have to what we’re trying to

communicate. This strategic process leads us to think

about design.

We are slowly adapting to what it means to be flexible

through responsive and adaptive processes. What does

thinking about contextual states mean to us (or designing

for state in general)? Does this highlight again how

difficult it’ll be for our tools to keep up with our processes

and output?

In terms of code, the vast majority of this data comes from

the client-side through JavaScript. While we can

progressively enhance, this could lead to a lot of code

bloat through feature or capability detection, and

potentially a lot of conditional loading of scripts. It’s a real

shame we don’t get much we can rely on from the server-

side – we know how unreliable user agents are!

Should We Be Reactive?

24 ways 2012 edition 99

We need to understand why we’d do this. Are we trying to

communicate well and be useful, or doing it to show off?

Underneath it all, what do we base our decisions on? Do

we have actual insight or are we proceeding from our

assumptions and the bias of our own experiences? Scott

Jenson summed it up best for me: (to paraphrase) the pain

we put people through has to be greatly outweighed by

the value we offer.

I see that this could be another potential step in our

evolution on the web; continuing this exploration of the

flexibility the web allows us. It’s amazing we can do such

incredible things from what is essentially a set of

disparate, linked documents.

100 24 ways 2012 edition

http://jenson.org/
http://jenson.org/

ABOUT THE AUTHOR

Dan Donald, based up near Manchester, currently tinkers with

web things at BBC Sport, tries his hand from time to time at

speaking, and tweets nonsense as @hereinthehive. He hopes to

finally get big-picture-web-journal-thing Break the Page

launched at some point before the end of the world. When not

webbing it up he makes noise in Mark of 1000 Evils and stacks

up side projects he’ll never get to.

Should We Be Reactive?

24 ways 2012 edition 101

http://twitter.com/hereinthehive
http://breakthepage.com/
http://soundcloud.com/markof1000evils

Rebecca Cottrell 24ways.org/201210

10. Fluent Design through
Early Prototyping

There’s a small problem with wireframes.
They’re not good for showing the kind of
interactions we now take for granted –
transitions and animations on the web, in
Android, iOS, and other platforms. There’s a
belief that early prototyping requires a large
amount of time and effort, and isn’t worth
an early investment. But it’s not true!

It’s still normal to spend a significant proportion of time

working in wireframes. Given that wireframes are high-

level and don’t show much detail, it’s tempting to give up

control and responsibility for things like transitions and

other things sidelined as visual considerations. These

things aren’t expressed well, and perhaps not expressed

at all, in wireframes, yet they critically influence the

quality of a product. Rapid prototyping early helps to

bring sidelined but significant design considerations into

focus.

102 24 ways 2012 edition

http://24ways.org/201210

Speaking fluent design

Fluency in a language means being able to speak it

confidently and accurately. The Latin root means flow.

By design fluency, I mean using a set of skills in order to

express or communicate an idea. Prototyping is a kind of

fluency. It takes designers beyond the domain of grey and

white boxes to consider all the elements that make up

really good product design.

Designers shouldn’t be afraid of speaking fluent design.

They should think thoroughly about product decisions

beyond their immediate role — not for the sake of

becoming some kind of power-hungry design demigod,

but because it will lead to better, more carefully

considered product design.

Wireframes are incomplete sentences

Wireframes, once they’ve served their purpose, are a kind

of self-imposed restriction.

Mostly made out of grey and white boxes, they

deliberately express the minimum. Important details —

visuals, nuanced transitions, sounds — are missing. Their

appearance bears little resemblance to the final thing.

Responsibility for things that traditionally didn’t matter

(or exist) is relinquished. Animations and transitions in

particular are increasingly relevant to the mobile

Fluent Design through Early Prototyping

24 ways 2012 edition 103

designer’s methods. And rather than being fanciful and

superfluous visual additions to a product, they help to

clarify designs and provide information about context.

Wireframes are useful in the early stages. As a designer

trying to persuade stakeholders, clients, or peers,

sometimes it will be in your interests to only tell half the

story. They’re ideal for gauging whether a design is taking

the right direction, and they’re the right medium for

deciding core things, such as the overall structure and

information architecture.

But spending a long time in wireframes means delaying

details to a later stage in the project, or to the end, when

the priority is shifted to getting designs out of the door.

This leaves little time to test, finesse and perfect things

which initially seemed to be less important. I think

designers should move away from using wireframes as

primary documentation once the design has reached a

certain level of maturity.

A prototype is multiple complete sentences

Paragraphs, even.

Unlike a wireframe, a prototype is a persuasive

storyteller. It can reveal the depth and range of design

decisions, not just the layout, but also motion: animations

and transitions. If it’s a super-high-fidelity prototype, it’s a

perfect vessel for showing the visual design as well. It’s all

104 24 ways 2012 edition

of these things that contribute to the impression that a

product is good… and useful, and engaging, and something

you’d like to use.

A prototype is impressive. A good prototype can help to

convince stakeholders and persuade clients. With a

compelling demo, people can more easily imagine that this

thing could actually exist. “Hey”, they’re thinking. “This

might actually be pretty good!”

How to make a prototype in no time and with no effort

Now, it does take time and effort to make a prototype.

However, good news! It used to require a lot more effort.

There are tools that make prototyping much quicker and

easier.

If you’re making a mobile prototype (this seems quite

likely), you will want to test and show this on the actual

device. This sounds like it could be a pain, but there are a

few ways to do this that are quite easy.

Keynote, Apple’s presentation software, is an unlikely

candidate for a prototyping tool, but surprisingly great

and easy for creating prototypes with transitions that can

be shown on different devices.

Keynote enables you to do a few useful, excellent things.

You can make each screen in your design a slide, which

can be linked together to allow you to click through the

Fluent Design through Early Prototyping

24 ways 2012 edition 105

prototype. You can add customisable transitions between

screens. If you want to show a panel that can slide open or

closed on your iPad mockup, for example, transitions can

also be added to individual elements on the screen. The

design can be shown on tablet and mobile devices, and

interacted with like it’s a real app. Another cool feature is

that you can export the prototype as a video, which works

as another effective format for demoing a design.

Overall, Keynote offers a very quick, lightweight way to

prototype a design. Once you’ve learned the basics, it

shouldn’t take longer than a few hours – at most – to put

together a respectable clickable prototype with

transitions.

Download the interactive MOV example

Holly icon by Megan Sheehan from The Noun Project

This is a Quicktime movie exported from Keynote. This

version is animated for demonstration purposes, but

download the interactive original and you can click the

screen to move through the prototype. It demonstrates

the basic interactivity of an iPhone app. This anonymised

example was used on a project at Fjord to create a master

example of an app’s transitions.

106 24 ways 2012 edition

http://media.24ways.org/2012/cottrell/iPhoneKeynoteExample.mov
http://thenounproject.com/megan.sheehan/
http://media.24ways.org/2012/cottrell/iPhoneKeynoteExample.mov
http://www.fjordnet.com/

Prototyping drawbacks, and perceived drawbacks

If prototyping is so great, then why do we leave it to the

end, or not bother with it at all? There are multiple

misconceptions about prototyping: they’re too difficult to

make; they take too much time; or they’re inaccurate (and

dangerous) documentation.

A prototype is a preliminary model. There should always

be a disclaimer that it’s not the real thing to avoid setting

up false expectations.

A prototype doesn’t have to be the main deliverable. It can

be a key one that’s supported by visual and interaction

specifications. And a prototype is a lightweight means of

managing and reflecting changes and requirements in a

project.

An actual drawback of prototyping is that to make one too

early could mean being gung-ho with what you thought a

client or stakeholder wanted, and delivering something

inappropriate. To avoid this, communicate, iterate, and

keep things simple until you’re confident that the client or

other stakeholders are happy with your chosen direction.

The key throughout any design project is iteration.

Designers build iterative models, starting simple and

becoming increasingly sophisticated. It’s a process of

iterative craft and evolution. There’s no perfect

methodology, no magic recipe to follow.

Fluent Design through Early Prototyping

24 ways 2012 edition 107

What to do next

Make a prototype! It’s the perfect way to impress your

friends.

It can help to advance a brilliant idea with a fraction of the

effort of complete development. Sketches and wireframes

are perfect early on in a project, but once they’ve served

their purpose, prototypes enable the design to advance,

and push thinking towards clarifying other important

details including transitions.

For Keynote tutorials, Keynotopia is a great resource.

Axure is standard and popular prototyping software many

UX designers will already be familiar with; it’s possible to

create transitions in Axure. POP is an iPhone app that

allows you to design apps on paper, take photos with your

phone, and turn them into interactive prototypes. Ratchet

is an elegant iPhone prototyping tool aimed at web

developers.

There are perhaps hundreds of different prototyping

tools and methods. My final advice is not to get bogged

down in (or limited by) any particular tool, but to

remember you’re making quick and iterative models.

Experiment and play!

Prototyping will push you and your designs to a scary

place without limitations. No more grey and white boxes,

just possibilities!

108 24 ways 2012 edition

http://keynotopia.com/guides/
http://axure.com
http://popapp.in/
http://maker.github.com/ratchet/

ABOUT THE AUTHOR

Rebecca Cottrell is an interaction designer at Fjord. She likes

prototyping, living in London (most of the time), and unusual-

looking animals.

Fluent Design through Early Prototyping

24 ways 2012 edition 109

http://rcottrell.com/
http://fjordnet.com/

Paul Lloyd 24ways.org/201211

11. Responsive Images:
What We Thought We
Needed

If you were to read a web designer’s
Christmas wish list, it would likely include a
solution for displaying images responsively.
For those concerned about users
downloading unnecessary image data, or
serving images that look blurry on high
resolution displays, finding a solution has
become a frustrating quest.

Having experimented with complex and sometimes

devilish hacks, consensus is forming around defining new

standards that could solve this problem. Two approaches

have emerged.

The <picture> element markup pattern was proposed by

Mat Marquis and is now being developed by the

Responsive Images Community Group. By providing a

means of declaring multiple sources, authors could use

media queries to control which version of an image is

displayed and under what conditions:

110 24 ways 2012 edition

http://24ways.org/201211
http://24ways.org/2011/adaptive-images-for-responsive-designs/
http://24ways.org/2011/adaptive-images-for-responsive-designs-again/
http://picture.responsiveimages.org/
http://www.alistapart.com/articles/responsive-images-how-they-almost-worked-and-what-we-need
http://www.alistapart.com/articles/responsive-images-how-they-almost-worked-and-what-we-need
http://responsiveimages.org/

<picture width="500" height="500">

<source media="(min-width: 45em)" src="large.jpg">

<source media="(min-width: 18em)" src="med.jpg">

<source src="small.jpg">

<p>Accessible text</p>

</picture>

A second proposal put forward by Apple, the srcset

attribute, uses a more concise syntax intended for use

with the element, although it could be compatible

with the <picture> element too. This would allow authors

to provide a set of images, but with the decision on which

to use left to the browser:

<img src="fallback.jpg" alt="" srcset="small.jpg 640w

1x, small-hd.jpg 640w 2x, med.jpg 1x, med-hd.jpg 2x ">

ENTER SCROOGE

Men’s courses will foreshadow certain ends, to
which, if persevered in, they must lead.
Ebenezer Scrooge

Given the complexity of this issue, there’s a heated debate

about which is the best option. Yet code belies a certain

truth. That both feature verbose and opaque syntax, I’m

not sure either should find its way into the browser –

especially as alternative approaches have yet to be fully

explored.

Responsive Images: What We Thought We Needed

24 ways 2012 edition 111

http://dev.w3.org/html5/srcset/
http://dev.w3.org/html5/srcset/

So, as if to dampen the festive cheer, here are five reasons

why I believe both proposals are largely redundant.

1. WE NEED BETTER FORMATS, NOT MORE
MARKUP

As we move away from designs defined with fixed pixel

values, bitmap images look increasingly unsuitable. While

simple images and iconography can use scalable vector

formats like SVG, for detailed photographic imagery,

raster formats like GIF, PNG and JPEG remain the only

suitable option.

There is scope within current formats to account for

varying bandwidth but this requires cooperation from

browser vendors. Newer formats like JPEG2000 and

WebP generate higher quality images with smaller file

sizes, but aren’t widely supported.

While it’s tempting to try to solve this issue by inventing

new markup, the crux of it remains at the file level.

Daan Jobsis’s experimentation with image compression

strengthens this argument. He discovered that by

increasing the dimensions of a JPEG image while

simultaneously reducing its quality, a smaller files could

be produced, with the resulting image looking just as good

on both standard and high-resolution displays.

112 24 ways 2012 edition

http://blog.yoav.ws/2012/05/Responsive-image-format
http://blog.yoav.ws/2012/05/Responsive-image-format
http://blog.netvlies.nl/design-interactie/retina-revolution/

This may be a hack in lieu of a more permanent solution,

but it’s applied in the right place. Easy to accomplish with

existing tools and without compatibility issues, it has few

downsides. Further experimentation in this area should

be encouraged, with standardisation efforts more helpful

if focused on developing new image formats or,

preferably, extending existing ones.

2. ART DIRECTION DOESN’T BELONG IN
MARKUP

A desired benefit of the <picture> markup pattern is to

allow for greater art direction. For example, rather than

scaling down images on smaller displays to the point that

their content is hard to discern, we could present closer

crops instead:

Responsive Images: What We Thought We Needed

24 ways 2012 edition 113

http://blog.cloudfour.com/a-framework-for-discussing-responsive-images-solutions/

This can be achieved with CSS of course, although with a

download penalty for those parts of an image not shown.

This point may be negligible, however, since in the context

of adaptable layouts, these hidden areas may end up being

revealed anyway.

Art direction concerns design, not content. If we wish to

maintain a separation of concerns, including presentation

within our markup seems misguided.

3. THE SIZE OF A DISPLAY HAS LITTLE
RELATION TO THE SIZE OF AN IMAGE

By using media queries, the <picture> element allows

authors to choose which characteristics of the screen or

viewport to query for different images to be displayed.

In developing sites at Clearleft, we have noticed that the

viewport is essentially arbitrary, with the size of an

image’s containing element more important. For example,

look at how this grid of images may adapt at different

viewport widths:

114 24 ways 2012 edition

http://clearleft.com/

As we build more modular systems, components need to

be adaptable in and of themselves. There is a case to be

made for developing more contextual methods of

querying, rather than those based on attributes of the

display.

4. WE HAVEN’T LIVED WITH THE PROBLEM
LONG ENOUGH

A key strength of the web is that the underlying platform

can be continually iterated. This can also be problematic if

snap judgements are made about what constitutes an

improvement.

The early history of the web is littered with such

examples, be it the perceived need for blinking text or

inline typographic styling. To build a platform for the

future, additions to it should be carefully considered. And

Responsive Images: What We Thought We Needed

24 ways 2012 edition 115

http://blog.andyhume.net/responsive-containers/
http://blog.andyhume.net/responsive-containers/

if we want more consistent support across browsers,

burdening vendors with an ever increasing list of features

seems counterproductive.

Only once the need for a new feature is sufficiently

proven, should we look to standardise it. Before we could

declare hover effects, rounded corners and typographic

styling in CSS, we used JavaScript as a polyfill. Sure, doing

so was painful, but use cases were fully explored, and the

CSS specification better reflected the needs of authors.

5. IMAGES AND THE WEB AESTHETIC

The srcset proposal has emerged from a company that

markets its phones as being able to browse the real – yet

squashed down, tapped and zoomable – web. Perhaps

Apple should make its own website responsive before

suggesting how the rest of us should do so.

Converserly, while the <picture> proposal has the

backing of a few respected developers and designers, it

was born out of the work Mat Marquis and Filament

Group did for the Boston Globe. As the first large-scale

responsive design, this was a landmark project that

ignited the responsive web design movement and proved

its worth. But it was the first.

Its design shares a vernacular to that of contemporary

newspaper websites, with a columnar, image-laden and

densely packed layout. Compared to more recent

116 24 ways 2012 edition

http://bostonglobe.com/

examples – Quartz, The Next Web and the New York

Times Skimmer – it feels out of step with the future

direction of news sites. In seeking out a truer aesthetic for

the web in which software interfaces have greater

influence, we might discover that the need for responsive

images isn’t as great as originally thought.

BUILDING FOR THE FUTURE

With responsive design, we’ve accepted the idea that a

fully fluid layout, rather than a set of fixed layouts, is best

suited to the web’s unpredictable nature. Current

responsive image proposals are antithetical to this

approach.

We need solutions that lack complexity, are device-

agnostic and work within existing workflows. Any

proposal that requires different versions of the same

image to be created, is likely to have to acquiesce under

the pressure of reality.

Responsive Images: What We Thought We Needed

24 ways 2012 edition 117

http://qz.com/
http://thenextweb.com/
http://nytimes.com/skimmer/
http://nytimes.com/skimmer/
http://www.alistapart.com/articles/the-web-aesthetic/
http://www.alistapart.com/articles/the-web-aesthetic/

While it’s easy to get distracted about the size and quality

of an image, and how we might choose to serve it, often

the simplest solution is not to include it at all. After years

of gluttonous design practice, in which fast connections

and expansive display sizes were an accepted norm, we

have got use to filling pages with needless images and

countless items of page furniture.

To design more adaptable experiences, the presence of

every element needs to be questioned, for its existence

requires additional data to be downloaded or futher

complexity within a design system. Conditional loading

techniques mean that the inclusion of images is no longer

a binary choice, but can instead appear in a progressively

enhanced manner.

So here is my proposal. Instead of spending the next year

worrying about responsive images, let’s embrace the

constraints of the medium, and seek out new solutions

that can work within them.

118 24 ways 2012 edition

ABOUT THE AUTHOR

Paul Robert Lloyd is interaction designer at the Guardian. Prior

to this he was a senior designer at Clearleft, where he worked

for clients such as NBCUniversal, Channel 4, Mozilla and

UNICEF UK.

When not working on side projects (he is currently digitizing

George Bradshaw’s railway guide), Paul can be found writing

about design, travel and more on his blog or blathering on

Twitter.

Responsive Images: What We Thought We Needed

24 ways 2012 edition 119

http://theguardian.com/
http://clearleft.com
http://bradshawsguide.org
http://paulrobertlloyd.com/
http://twitter.com/paulrobertlloyd/

Laura Kalbag 24ways.org/201212

12. Design Systems

The most important part of responsive web
design is that, no matter what the viewport
width, the content is accessible in an
optimum display. The best responsive
designs are those that allow you to go from
one optimised display to another, but with
the feeling that these experiences are part
of a greater product whole.

RESPONSIVE DESIGN: WHERE WE’VE BEEN
GOING WRONG

Responsive web design was a shock to my web designer

system. Those of us who had already been designing sites

for mobile probably had the biggest leap to make. We

might have been detecting user agents in order to deliver

a mobile-specific site, or using the slightly more familiar

Bushido technique to deliver sites optimised for device

type and viewport size, but either way our focus was on

devices. A site was optimised for either a mobile phone or

a desktop.

120 24 ways 2012 edition

http://24ways.org/201212
http://www.alistapart.com/articles/responsive-web-design/
http://www.alistapart.com/articles/responsive-web-design/
http://www.bushidodesigns.net/blog/mobile-device-detection-css-without-user-agent/

Responsive web design brought us back to pre-table

layout fluid sites that expanded or contracted to fit the

viewport. This was a big difference to get our heads

around when we were so used to designing for fixed-

width layouts. Suddenly, an element could be any width or,

at least, we needed to consider its maximum and

minimum widths. Pixel perfection, while pretty, became

wholly unrealistic, and a whole load of designers who

prided themselves in detailed and precise designs got a bit

scared.

Hanging on to our previous processes and typical

deliverables led us to continue to optimise our sites for

particular devices and provide pixel-perfect mockups for

those device widths.

With all this we were concentrating on devices, not

content, deliverables and not process, and making

assumptions about users and their devices based on

nothing but the width of the viewport.

I don’t think this is a crime, I think it was inevitable.

We can be up to date with our principles and ideals, but

it’s never as easy in practice. That’s why it’s more

important than ever to share our successful techniques

and processes. Let’s drag each other into modern web

design.

Design Systems

24 ways 2012 edition 121

DESIGN SYSTEMS: THE PRINCIPLES

What are design systems?

A visual design system is built out of the core components

of typography, layout, shape or form, and colour. When

considering the design of a whole product, a design

system should also include patterns in user flow, content

strategy, copy, and tone of voice. These concepts, design

decisions or rules, created around the core components

are used consistently across your product to create a

cohesive feel, whether it’s from one element to another,

page to page, or viewport width to viewport width.

Responsive design is one of the most important

considerations in the components of a design system. For

each component, you must decide what will unite the

design across the viewports to maintain that consistent

feel, and what parts of the design will differentiate in

order to provide a flexible and optimal experience for

different viewport sizes.

COMPONENTS YOU MIGHT KEEP THE SAME ACROSS
VIEWPORTS

▪ typeface

▪ base unit

▪ colour

▪ shape/form

122 24 ways 2012 edition

COMPONENTS YOU MIGHT DIFFERENTIATE ACROSS
VIEWPORTS

▪ grids

▪ layout

▪ font size

▪ measure (line length)

▪ leading (line height)

CONTENT: IT MUST ALWAYS BE THE SAME

The focus of a design system is the optimum display of

content. As Mark Boulton put it, designing “content out,

not canvas in.” Chris Armstrong puts the emphasis on not

designing for viewports but for content – “we need to

build on what we do know: content.” In order to do this, we

must share the same content across all devices and focus

on how best to display and represent content through

design system components.

THE PRACTICAL: CORE VISUAL COMPONENTS

Typography first

When you work with a lot of text content, typography is

the easiest way to set the visual tone of the design across

all viewport widths. It’s likely that you’ll choose one or

two typefaces to use across the whole system, but you

Design Systems

24 ways 2012 edition 123

http://www.markboulton.co.uk/journal/a-richer-canvas
http://www.alistapart.com/articles/the-infinite-grid/
http://www.alistapart.com/articles/the-infinite-grid/

might change the most legible font size, balanced with the

most comfortable measure, as the viewport width

changes.

Where typography meets layout

The unit on which you choose to base the grid and layout

design, font sizes and leading could be based on the

typeface, an optimal reading size, or something more

arbitrary. Sometimes I’ll choose a unit based on multiples

of ten because it makes the maths in the CSS easier. Tim

Brown suggests trying a modular scale. Chris Armstrong

suggests basing it on your ideal measure, or the width of a

fixed item of content such as an ad unit.

Grids and layouts

Sensible grid design can be a flexible yet solid foundation

for your design system layout component. But you must

be wary in responsive design that a grid might not work

across all widths: even four columns could make for very

cramped content and one-word measures on smaller

screens.

Maybe the grid columns are something you differentiate

across widths, but you can keep the concept of the grid

consistent. If the content has blocks in groups of three,

you might decide on a three-column grid which folds

down to one column for narrow viewports. If the grid

124 24 ways 2012 edition

http://www.alistapart.com/articles/more-meaningful-typography/
http://www.alistapart.com/articles/the-infinite-grid/
http://www.alistapart.com/articles/the-infinite-grid/

focuses on the idea of symmetry and has a four-column

grid on larger viewports, it might fold down to two

columns for narrower viewports. These consistencies may

seem subtle, not at all obvious to many except the

designer, but it’s all these little constants and patterns

across the whole of the design system that makes design

decisions easier to make (as they adhere to the guiding

concepts of your system), and give the product a uniform

feel no matter what the device.

Shape or form

The shape or form components are concepts you already

use in fixed-width web design for a strong, consistent look

and feel.

Since CSS border-radius became widely supported by

browsers, a lot of designs feature circle themes. These are

very distinctive and can be used across viewport widths

giving them the same united feel, even if they’re not used

in the same way. This could also apply to border styles,

consistent shadows and any number of decorative details

and textures. These are the elements that make up the

shape or form of a design system.

Design Systems

24 ways 2012 edition 125

Colour

Colour is the most basic way to reinforce a brand and

unite experiences across viewports. The same hex colour

used system-wide is instantly recognisable, no matter

what the viewport width.

THE PROCESS

While using a design system isn’t necessarily attached to

any particular process, it does lend itself to some process

ideals.

Detaching design considerations from viewport widths

A design system allows you to focus separately on the

components that make up the system, disconnecting the

look and feel from the layout. This helps prevent us

getting stuck in the rut of the Apple breakpoints

(brilliantly coined by Simon Foster) of mobile, tablet and

desktop. It also forces us to design for variation in

viewport experiences side by side, not one after the other.

Design in the browser

I can’t start off designing in the browser – it just doesn’t

seem to bring out my creative side (and I’m incredibly

envious of you if you can; I just have to start on paper) –

but static mock-ups aren’t the only alternative. Style

126 24 ways 2012 edition

http://simonfosterdesign.com/home/
http://24ways.org/2011/front-end-style-guides

guides and style tiles are perfect for expressing the

concepts of your design system. Pattern libraries could

also work well.

Mock-ups and breakpoints

At some point, whether it’s to test your system ideas, or

because a client needs help visualising how your system

might work, you may end up producing some static mock-

ups. It’s not the end of the world, but you must ensure

that these consider all the viewports, not just those of the

iDevices, or even the devices currently on the market. You

need to decide the breakpoints where the states of your

design change. The blocks within your content will always

have optimum points for their display (based on their

hierarchy, density, width, or type of interaction) and so

your breakpoints should be based around these points.

These are probably the ideal points at which to produce

static mockups; treat them as snapshots. They’re not

necessarily mock-ups, so much as a way of capturing how

your design system would be interpreted when frozen at

that particular viewport width.

THE FUTURE

Creating design systems will give us the flexibility we

need for working with the unknown devices of the future.

It may be a change in process, but it shouldn’t be too much

Design Systems

24 ways 2012 edition 127

http://24ways.org/2011/front-end-style-guides
http://styletil.es/
http://pea.rs/
http://www.alistapart.com/articles/the-infinite-grid/
http://www.alistapart.com/articles/the-infinite-grid/

of a difference in thinking. The pioneers in responsive

design have a hard job. Some of these problems may have

already been solved in other technologies or industries,

but it’s up to the pioneers to find those connections and

help us formulate solutions and standards that will make

responsive design the best it can possibly be. We need to

keep experimenting and communicating, particularly in

the area of design, as good user experiences are the true

sign of whether our products are a success.

ABOUT THE AUTHOR

128 24 ways 2012 edition

Laura Kalbag is a designer easily excited by web design and

development. Among her list of ever-changing pet subjects

are responsive web, semantic web, and web fonts, but she’s

really fascinated by anything in the areas of web, mobile and

design.

Laura has been a freelancer for the whole of her professional

life. She revels in working with small and meaningful

clients, creating websites, apps, icons, illustrations and the odd

logo.

Design Systems

24 ways 2012 edition 129

http://laurakalbag.com/

Les James 24ways.org/201213

13. Redesigning the
Media Query

Responsive web design is showing us that
designing content is more important than
designing containers. But if you’ve given
RWD a serious try, you know that shifting
your focus from the container is surprisingly
hard to do. There are many factors and
instincts working against you, and one
culprit is a perpetrator you’d least suspect.

The media query is the ringmaster of responsive design. It

lets us establish the rules of the game and gives us what

we need most: control. However, like some kind of evil

double agent, the media query is actually working against

you.

Its very nature diverts your attention away from content

and forces you to focus on the container.

The very act of choosing a media query value means

choosing a screen size.

130 24 ways 2012 edition

http://24ways.org/201213

Look at the history of the media query—it’s always been

about the container. Values like screen, print, handheld

and tv don’t have anything to do with content. The

modern media query lets us choose screen dimensions,

which is great because it makes RWD possible. But it’s

still the act of choosing something that is completely

unpredictable.

Content should dictate our breakpoints, not the container.

In order to get our focus back to the only thing that

matters, we need a reengineered media query—one that

frees us from thinking about screen dimensions. A media

query that works for your content, not the window.

Fortunately, Sass 3.2 is ready and willing to take on this

challenge.

THINKING IN COLUMNS

Fluid grids never clicked for me. I feel so disoriented and

confused by their squishiness. Responsive design

demands their use though, right?

I was ready to surrender until I found a grid that turned

my world upright again. The Frameless Grid by Joni Korpi

demonstrates that column and gutter sizes can stay fixed.

As the screen size changes, you simply add or remove

columns to accommodate. This made sense to me and

Redesigning the Media Query

24 ways 2012 edition 131

http://sass-lang.com/
http://framelessgrid.com/

armed with this concept I was able to give Sass the first

component it needs to rewrite the media query: fixed

column and gutter size variables.

$grid-column: 60px;

$grid-gutter: 20px;

We’re going to want some resolution independence too,

so let’s create a function that converts those nasty pixel

values into ems.

@function em($px, $base: $base-font-size) {

@return ($px / $base) * 1em;

}

We now have the components needed to figure out the

width of multiple columns in ems. Let’s put them together

in a function that will take any number of columns and

return the fixed width value of their size.

@function fixed($col) {

@return $col * em($grid-column + $grid-gutter)

}

With the math in place we can now write a mixin that

takes a column count as a parameter, then generates the

perfect media query necessary to fit that number of

columns on the screen. We can also build in some left and

right margin for our layout by adding an additional gutter

value (remembering that we already have one gutter built

into our fixed function).

132 24 ways 2012 edition

@mixin breakpoint($min) {

@media (min-width: fixed($min) + em($grid-gutter)) {

@content

}

}

And, just like that, we’ve rewritten the media query.

Instead of picking a minimum screen size for our layout,

we can simply determine the number of columns needed.

Let’s add a wrapper class so that we can center our

content on the screen.

@mixin breakpoint($min) {

@media (min-width: fixed($min) + em($grid-gutter)) {

.wrapper {

width: fixed($min) - em($grid-gutter);

margin-left: auto; margin-right: auto;

}

@content

}

}

Designing content with a column count gives us nice, easy,

whole numbers to work with. Sizing content, sidebars or

widgets is now as simple as specifying a single-digit

number.

@include breakpoint(8) {

.main { width: fixed(5); }

.sidebar { width: fixed(3); }

}

Redesigning the Media Query

24 ways 2012 edition 133

Those four lines of Sass just created a responsive layout

for us. When the screen is big enough to fit eight columns,

it will trigger a fixed width layout. And give widths to our

main content and sidebar. The following is the outputted

CSS…

@media (min-width: 41.25em) {

.wrapper {

width: 38.75em;

margin-left: auto; margin-right: auto;

}

.main { width: 25em; }

.sidebar { width: 15em; }

}

Demo

I’ve created a Codepen demo that demonstrates what

we’ve covered so far. I’ve added to the demo some grid

classes based on Griddle by Nicolas Gallagher to create a

floatless layout. I’ve also added a CSS gradient overlay to

help you visualize columns. Try changing the column

variable sizes or the breakpoint includes to see how the

layout reacts to different screen sizes.

RESPONSIVE IMAGES

Responsive images are a serious problem, but I’m excited

to see the community talk so passionately about a

solution. Now, there are some excellent stopgaps while

134 24 ways 2012 edition

http://codepen.io/lesjames/pen/ClsdE
https://github.com/necolas/griddle

we wait for something official, but these solutions require

you to mirror your breakpoints in JavaScript or HTML.

This poses a serious problem for my Sass-generated

media queries, because I have no idea what the real values

of my breakpoints are anymore. For responsive images to

work, JavaScript needs to recognize which media query is

active so that proper images can be loaded for that layout.

What I need is a way to label my breakpoints. Fortunately,

people much smarter than I have figured this out. Jeremy

Keith devised a labeling method by using CSS-generated

content as the storage method for breakpoint labels. We

can use this technique in our breakpoint mixin by passing

a label as another argument.

@include breakpoint(8, 'desktop') { /* styles */ }

Sass can take that label and use it when writing the

corresponding media query. We just need to slightly

modify our breakpoint mixin.

@mixin breakpoint($min, $label) {

@media (min-width: fixed($min) + em($grid-gutter)) {

// label our mq with CSS generated content

body::before { content: $label; display: none; }

.wrapper {

width: fixed($min) - em($grid-gutter);

margin-left: auto; margin-right: auto;

}

Redesigning the Media Query

24 ways 2012 edition 135

http://adactio.com/journal/5429/

@content

}

}

This allows us to label our breakpoints with a user-

friendly string. Now that our media queries are defined

and labeled, we just need JavaScript to step in and read

which label is active.

// get css generated label for active media query

var label = getComputedStyle(document.body,

'::before')['content'];

JavaScript now knows which layout is active by reading

the label in the current media query—we just need to

match that label to an image. I prefer to store references

to different image sizes as data attributes on my image

tag.

<img class="responsive-image" data-mobile="mobile.jpg"

data-desktop="desktop.jpg" />

<noscript></noscript>

These data attributes have names that match the labels

set in my CSS. So while there is some duplication going on,

setting a keyword like ‘tablet’ in two places is much easier

than hardcoding media query values. With matching

labels in CSS and HTML our script can marry the two and

load the right sized image for our layout.

136 24 ways 2012 edition

// get css generated label for active media query

var label = getComputedStyle(document.body,

'::before')['content'];

// select image

var $image = $('.responsive-image');

// create source from data attribute

$image.attr('src', $image.data(label));

Demo

With some slight additions to our previous Codepen

demo you can see this responsive image technique in

action. While the above JavaScript will work it is not

nearly robust enough for production so the demo uses a

jQuery plugin that can accomodate multiple images,

reloading on screen resize and fallbacks if something

doesn’t match up.

CREATING A FRAMEWORK

This media query mixin and responsive image JavaScript

are the center piece of a front end framework I use to

develop websites. It’s a fluid, mobile first foundation that

uses the breakpoint mixin to structure fixed width layouts

for tablet and desktop. Significant effort was focused on

making this framework completely cross-browser. For

example, one of the problems with using media queries is

that essential desktop structure code ends up being

Redesigning the Media Query

24 ways 2012 edition 137

http://codepen.io/lesjames/pen/ixjsc
https://github.com/lesjames/Breakpoint/blob/master/static/js/breakpoint.js
https://github.com/lesjames/Breakpoint

hidden from legacy Internet Explorer. Respond.js is an

excellent polyfill, but if you’re comfortable serving a single

desktop layout to older IE, we don’t need JavaScript. We

simply need to capture layout code outside of a media

query and sandbox it under an IE only class name.

// set IE fallback layout to 8 columns

$ie-support = 8;

// inside of our breakpoint mixin (but outside the media

query)

@if ($ie-support and $min <= $ie-support) {

.lt-ie9 { @content; }

}

PERSPECTIVE REGAINED

Thinking in columns means you are thinking about

content layout. How big of a screen do you need for 12

columns? Who cares? Having Sass write media queries

means you can use intuitive numbers for content layout. A

fixed grid means more layout control and less edge cases

to test than a fluid grid. Using CSS labels for activating

responsive images means you don’t have to duplicate

breakpoints across separations of concern.

138 24 ways 2012 edition

https://github.com/scottjehl/Respond

It’s a harmonious blend of approaches that gives us

something we need—responsive design that feels

intuitive. And design that, from the very outset, focuses

on what matters most. Just like our kindergarten teachers

taught us: It’s what’s inside that counts.

ABOUT THE AUTHOR

Les James was born with the heart of an artist but the brain of a

developer. Fortunately for him, front-end development is the

perfect intersection between the art and science of crafting a

website and he gets to pursue his passion for design at

Capstrat by transforming ideas into code. Les is always thirsty

for knowledge, so why don’t you drop some on him

at @lesjames.

Redesigning the Media Query

24 ways 2012 edition 139

http://www.capstrat.com/
http://twitter.com/lesjames

Emma Boulton 24ways.org/201214

14. Using Questionnaires
for Design Research

How do
you ask

the right questions?

In this article, I share a bunch of tips and
practical advice on how to write and use
your own surveys for design research.

I’m an audience researcher – I’m not a designer or

developer. I’ve spent much of the last thirteen years

working with audience data both in creative agencies and

on the client-side. I’m also a member of the Market

Research Society. I run user surveys and undertake user

research for our clients at the design studio I run with my

husband – Mark Boulton Design.

SO LET’S GET STARTED!

Who are you designing for?

Good web designers and developers appreciate the

importance of understanding the audience they are

designing or building a website or app for. I’m assuming

140 24 ways 2012 edition

http://24ways.org/201214
http://www.mrs.org.uk/
http://www.mrs.org.uk/
http://markboultondesign.com/

that because you are reading a quality publication like 24

ways that you fall into this category, and so I won’t begin

this article with a lecture.

Suffice it to say, it’s a good idea to involve research of

some sort during the life cycle of every project you

undertake. I don’t just mean visual or competitor

research, which of course is also very important. I mean

looking at or finding your own audience or user data.

Whether that be auditing existing data or research

available from the client, carrying out user interviews, A/

B testing, or conducting a simple questionnaire with

users, any research is better than none. If you create

personas as a design tool, they should always be based on

research, so you will need to have plenty of data to hand

for that.

Where do I start?

In the initial kick-off stages of a project, it’s a good idea to

start by asking your client (when working in-house you

still have a client – you might even be the client) what

research or audience data they have available. Some will

have loads – analytics, surveys, focus groups and insights

– from talking to customers. Some won’t have much at all

and you’ll be hard pressed to find out much about the

audience. It’s best to review existing research first

without rushing headlong into doing new research. Get a

picture of what the data tells you and perhaps get this into

Using Questionnaires for Design Research

24 ways 2012 edition 141

a document – who, what, why and how are they using this

website or app? What gaps are there in existing research?

What else do you need to know? Then you can decide

what else you need to do to plug these gaps. Think about

the information first before deciding on the methodology.

The rest of my article talks mostly about running self-

completion online surveys. You can of course do face-to-

face surveys, self-completion written questionnaires or

phone polls, but I won’t cover those here. That’s for

another article.

Why run a survey?

Surveys are great for getting a broad picture of your

audience. As long as they are designed carefully, you can

create an overview of them, how they use the site and

their opinions of it, with an idea of which parts of this

picture are more important than others. By using a limited

amount of open-ended questions, you can also get some

more qualitative feedback or insights on your website or

app. The clients we work with surprisingly often don’t

have much in the way of audience research available, even

basic analytics, so I will often suggest running a short

survey, just to create a picture of who is out there.

142 24 ways 2012 edition

http://en.wikipedia.org/wiki/Online_questionnaires
http://en.wikipedia.org/wiki/Online_questionnaires

OK, WHAT SHOULD I DO FIRST?

Before you rush into writing questions, stop and think

about what you’re trying to find out. Remember being in

school when you studied science and you had to propose a

hypothesis? This could be a starting point – something to

prove or disprove. Or, even better, write a research brief.

It doesn’t have to be long; it can be just a sentence that

encapsulates what you’re trying to do, like a good creative

brief. For the purposes of this article, I created a short,

slightly silly survey on Christmas and beliefs in Father

Christmas.

My research brief was:

To find out more about people’s beliefs about
Father Christmas and their experiences of
Christmas.

Inevitably, as you start thinking of what questions to ask,

you will find that you go off at tangents or your client will

want you to add in everything but the kitchen sink. In

order for your questionnaire not to get too long and lose

focus, you could write lists of what it is and what it’s not.

This is how I’d apply it to my Christmas questionnaire

example:

WHAT IT IS ABOUT

▪ How people communicate with Father Christmas

Using Questionnaires for Design Research

24 ways 2012 edition 143

https://www.surveymonkey.com/s/AllIWantForChristmas2012
https://www.surveymonkey.com/s/AllIWantForChristmas2012

▪ If someone’s background has affected their likelihood

of believing in Father Christmas

WHAT IT IS NOT ABOUT

▪ What colour to change Father Christmas’s coat to

▪ Father Christmas’s elves

Let’s get down to business: the questions.

KINDS OF QUESTIONS

There are two basic kinds of questions: open-ended and

closed. Closed questions limit answers by giving the

respondent a number of predefined lists of options to

choose from. Typically, these are multiple-choice

questions with a list of responses. You can either select

one or tick all that apply. Another useful type of closed

question I often use is a rating scale, where a respondent

can assess a situation along a continuum of values. These

can also be useful as a measure of advocacy or strength of

feeling about something. There is a standard measure

called the Net Promoter score, which measures how likely

someone is to recommend your product or service to a

friend or acquaintance. It’s a useful benchmark as you can

compare your scores to others in a similar sector.

144 24 ways 2012 edition

http://www.netpromoter.com/

Open-ended questions often take the form of a statement

which requires a response. Generally, respondents are

given a text box to fill in. It’s useful to limit this in some

way so that people have an idea of how long the expected

response should be; for example, a single line for an email

address (Q18), or a larger text area for a longer response

(Q6).

If you plan to send your survey out to a large number of

people, I would suggest using mostly closed questions,

unless you want to spend a long time wading through

comments and hand-coded responses. I’d always advise

adding a general request at the end of a survey (‘Is there

anything else you’d like to tell us?’). You’d be surprised

how many interesting and insightful comments people

will add.

There are times when it’s better to provide an open-

ended text box rather than a predefined list makes

assumptions about your audience’s groupings. For

Using Questionnaires for Design Research

24 ways 2012 edition 145

http://media.24ways.org/2012/boulton/survey.png

example, we ran a short survey for our Gridset beta

testers and rather than assume we knew who they were,

we decided to ask an open-ended question: “What is your

current job title?”

The analysis took quite a bit longer than responses using a

predefined list, but it meant that we were able to make

sure we didn’t miss anyone. And next time we run a survey

for Gridset, I can use the responses gathered from this

survey to help create a predefined list to make analysis

easier.

WHAT TO ASK

The questions to ask depend on what you want to know,

but your brief and lists of what the survey is and isn’t

should help here. I always ask the design team and client

to give me ideas of what they are interested in finding out,

and combine this with a mix of new and standard

146 24 ways 2012 edition

http://media.24ways.org/2012/boulton/gridset.png

questions I have used in other surveys. I find Survey

Monkey’s question bank a very useful source of example

questions and help with tricky wording.

I always include simple demographics so I can compare my

results to the population at large or internet users as a

whole – just going on age, gender and location can be

quite illuminating. For example, with the Christmas

survey, I can see that the respondents were typical of the

online design and dev community, mainly young and male.

If appropriate, I add questions on disability, ethnic

background, religion and community of interest.

Questions about ethnicity, religion, sexual preference,

disability and other sensitive subjects can feel awkward

and difficult to ask. This is not a good reason to not ask

them. Perhaps you’re working for a public sector client,

like a local council, so it’s likely you will need to consider

groups of people who maybe under-represented, who

may have differing views to others, or who you need to

look at specifically as a subset.

HOW TO ASK

Although they may seem clunky and wordy, it’s often best

to use the census wording or professional body wording

for such demographic questions. For example, I used the

UK census 2011 wording for Wales on my Christmas

questionnaire in my questions on religion [PDF] (Q16) and

Using Questionnaires for Design Research

24 ways 2012 edition 147

http://www.surveymonkey.com/mp/certified-survey-questions/
http://www.surveymonkey.com/mp/certified-survey-questions/
http://www.ons.gov.uk/ons/guide-method/census/2011/index.html
http://www.ons.gov.uk/ons/guide-method/census/2011/the-2011-census/2011-census-questionnaire-content/final-recommended-questions-2011---religion.pdf

ethnicity [PDF] (Q17). I had to adapt them slightly for the

Survey Monkey format – self-completion online, rather

than pen and paper – which is why “White Welsh” came

up as the first option for the ethnicity question. For similar

questions for US audiences, try the Census Bureau

website.

When conducting a survey for a project that has a global

audience, you need to consider who your primary

audience is. For example, I recently created a

questionnaire for a global news website. A large

proportion of its audience is based in the USA, so I was

careful to word things in a way Americans would find

familiar. I used the US ethnic background census question

wording and options, and looked at data for US

competitor news websites to decide which to include.

You should also consider people whose first language isn’t

English. Working as an audience researcher at BBC

Wales, every survey we did was bilingual. I’ve also

recently run a user survey in Arabic using Google Forms.

During this project, we found that while Survey Monkey

supports different languages, including Arabic, the text

ran left to right with no option to change it to right to left

– an essential when it comes to reading Arabic! If

research is a deliverable in a client project, and you know

you’ll need to conduct it in a foreign language, always

build in extra time for translation at both the

questionnaire design and analysis stages. Make sure you

148 24 ways 2012 edition

http://www.ons.gov.uk/ons/guide-method/census/2011/the-2011-census/2011-census-questionnaire-content/final-recommended-questions-2011---ethnic-group.pdf
http://www.census.gov/
http://www.bbc.co.uk/cymru/
http://www.bbc.co.uk/cymru/
http://www.google.com/google-d-s/forms/

also allow for plenty of checks. In this case we had to

change to Google Forms after initially creating our survey

with Survey Monkey to get the functionality we needed.

LOOK AND FEEL

Think about the survey as another way your audience will

experience your brand. Take care getting the tone of voice

right. There are plenty of great articles and books out

there about tone of voice – try Letting Go of the Words by

Ginny Redish for starters, or Brand Language by Liz Doig.

The basic rule of thumb is to sound like a human, and use

clear and friendly language. If, like me, you are lucky

enough to work with journalists or copy editors, you

should ask for their help, particularly in the preamble,

linking text and closing statements. I find it helpful to

break my questions down into sections and to have a page

for each. I then have an introductory piece of text for each

section to guide the respondent through the survey.

You should also make sure you check with your designers

how your survey looks – use a company logo and

branding, and make the typography legible. Many survey

apps like Survey Monkey and Google Forms have a

progress bar. This is helpful for users to see how far

through your survey they are. I generally time the survey

and give an indication in the preamble: “This survey will

only take five minutes of your time.”

Using Questionnaires for Design Research

24 ways 2012 edition 149

http://www.amazon.co.uk/Letting-Go-Words-Interactive-Technologies/dp/0123694868/
http://www.amazon.co.uk/Letting-Go-Words-Interactive-Technologies/dp/0123694868/
http://www.amazon.co.uk/Brand-Language-Tone-Voice-Wordtree/dp/095738730X/

You also need to think about how you will technically

serve the questionnaire. For example, will it be via email,

social media, a pop-up or lightbox on your website, or (not

recommended but possible) in an ad space?

ETHICAL CONSIDERATIONS

Something else to think about are any local laws that

govern how you collect and store data, such as the Data

Protection Act in the UK. As a member of the Market

Research Society, I am also obliged to consider its

guidelines, but even if you’re not, it’s always a good idea to

deal with personal data ethically.

If you collect personal data that can identify individuals,

you must ask their permission to share it with others, and

store it securely for no longer than two years. If you want

to contact people afterwards, you must ask for their

permission. If you ask for email addresses, as I did in

question 18, you have a ready-made sample for a further

survey, interviews or focus groups. Remember, you

shouldn’t survey people under sixteen years old without

the permission of their parents or legal guardians, so if

you know your website is likely to be used by children, you

must ask for verification of age early on, and your survey

should close someone answers that they are under

sixteen. The ESOMAR guidelines for online research

150 24 ways 2012 edition

http://www.ico.gov.uk/for_organisations/data_protection.aspx
http://www.ico.gov.uk/for_organisations/data_protection.aspx
http://www.esomar.org/uploads/public/knowledge-and-standards/codes-and-guidelines/ESOMAR_Guideline-for-online-research.pdf

[PDF] are well worth reading, as they go into detail about

such issues, as well as privacy guidelines – using cookies,

storing IP addresses, and so on.

TOOLS

Unless you work in-house and have proprietary software,

or at a market research agency and you’re using specialist

software such as Snap or IBM SPSS Statistics (previously

just SPSS), you will need to use a good tool to run your

survey, collect your responses and, ideally, help with the

analysis. I like Survey Monkey because of the question

bank and analysis tools. The software graphs your results

and does simple cross-tabbing and filtering. What this

means is you can slice the data in more interesting ways

and delve a bit deeper. For example, in the Gridset

questionnaire I mentioned earlier, I cross-tabbed

responses to questions against whether a person worked

in-house, for an agency or as a freelancer.

Other well known online tools that I also use from time to

time are Wufoo and Google Forms. Smart Surveys is a

similar service to Survey Monkey and it’s used by many

leading brands in the UK. Snap Surveys mentioned above

is a well-established player in the market research scene,

used a lot for face-to-face surveys and also on tablets and

smartphones.

Using Questionnaires for Design Research

24 ways 2012 edition 151

http://www.snapsurveys.com/
http://www-01.ibm.com/software/uk/analytics/spss/products/statistics/
http://www.surveymonkey.com/
http://www.wufoo.com/
http://support.google.com/drive/bin/answer.py?hl=en&answer=87809
http://www.smart-survey.co.uk/

ANALYSIS

Analysis is often overlooked but is as important as the

design of the questionnaire. Don’t just rely on looking at

the summary report and charts generated as standard by

your form or survey software. Spend time with your data.

Spend at least a week now and then if you can, looking at

the data. Keep coming back to it and tweaking or cutting it

a different way to see if there are any different pictures.

Slice it up in different ways to reveal new insights. Here is

the data from my dummy survey (apart from the open-

ended responses).

For open-ended questions, you can analyse

collaboratively. Print and cut out the open-ended

responses and do a cluster analysis or affinity sort with a

colleague.

152 24 ways 2012 edition

https://www.surveymonkey.com/sr.aspx?sm=AdyXyhzR6_2fKf_2fMnFc09eelAm9_2bWz2_2b0VRcRgR78okUg_3d
https://www.surveymonkey.com/sr.aspx?sm=AdyXyhzR6_2fKf_2fMnFc09eelAm9_2bWz2_2b0VRcRgR78okUg_3d

Discussing the comments helps you to understand them.

You will also find the design team are more likely to buy

into the research as they have uncovered the insights for

Using Questionnaires for Design Research

24 ways 2012 edition 153

themselves. Always make sure to treat open-ended

responses sensitively and don’t share anything publicly in

a way that identifies the respondent.

Write a report

Never hand over a dataset to your client without a

summary of the findings. Data on its own can be skewed

to suit the reader’s needs, and not everyone is able to find

the story in a dataset. Even if it’s not a deliverable, it’s

always a good idea to capture your findings in a report of

some sort. Use graphs sparingly to show really interesting

things or to aid the reader’s understanding. I have written

a quick dummy report using the data from the Christmas

questionnaire so you can see how it’s done.

I highly recommend Brian Suda’s book A Practical Guide to

Designing with Data for tips on how to present data

effectively, but that’s a subject that benefits a whole

article (indeed book) in itself.

I am not a designer. I am a researcher, so I never write

design recommendations in a report unless they have

been talked about or suggested by the designers I work

with. More often, I write up the results and we talk about

them and what impact they have on the project or design.

Often they lead to more questions or further research.

154 24 ways 2012 edition

https://docs.google.com/document/d/1l5BySCZctuornWnPvK4csLc5iszii4HKk9NUtlBP7zg/edit
https://docs.google.com/document/d/1l5BySCZctuornWnPvK4csLc5iszii4HKk9NUtlBP7zg/edit
http://www.fivesimplesteps.com/products/a-practical-guide-to-designing-with-data
http://www.fivesimplesteps.com/products/a-practical-guide-to-designing-with-data

So that’s it: a brief introduction to using questionnaires

for design research. Here’s a quick summary to remind

you what I have talked about, and a list of resources if

you’re interested in reading further.

TOP 10 THINGS TO REMEMBER WHEN USING
QUESTIONNAIRES FOR DESIGN RESEARCH:

1. Start by auditing existing research to identify gaps in

data.

2. Write a research brief. Work out exactly what you’re

trying to find out – what is the survey about, and what is it

not about?

3. The two basic kinds of questions are open-ended and

closed.

4. Closed questions limit responses by giving the

respondent a number of predefined lists of options to

choose from (multiple choice, rating scales, and so on).

5. Open-ended questions are often in the form of a

statement which requires a response. Always ask one at

the end of a questionnaire.

6. Always include simple demographics to enable you to

compare your sample against the population in general.

7. It’s best to use official census or professional body

wording for questions on ethnicity, disability and religion.

8. Be sure to think carefully about your tone of voice and

the look of your questionnaire.

Using Questionnaires for Design Research

24 ways 2012 edition 155

9. Pay attention to guidelines and laws on storing

personal data, cookies and privacy.

10. Invest plenty of time in analysis and report writing.

Don’t just look at the obvious – dig deep for more

interesting insights.

SOME USEFUL RESOURCES FOR FURTHER
STUDY

Online research

▪ Design Research: Methods and Perspectives edited by

Brenda Laurel

▪ Online Research Essentials by Brenda Russell and John

Purcell

▪ Handbook of Online and Social Media Research by Ray

Poynter

▪ ESOMAR guidelines for online research [PDF]

▪ Online questionnaires

Market research books on questionnaire design

▪ Using Questionnaires in Small-Scale Research: A Beginner’s

Guide by Pamela Munn

▪ Questionnaire Design by A N Oppenheim

▪ Developing a Questionnaire by Bill Gillham

156 24 ways 2012 edition

http://books.google.co.uk/books?id=xVeFdy44qMEC&printsec=frontcover&dq=web+design+research&hl=en&sa=X&ei=bqOyULCzCPCA0AXZz4HADw&ved=0CEIQ6AEwAw
http://books.google.co.uk/books?id=9RtFR5wqVSoC&printsec=frontcover&dq=web+design+research&hl=en&sa=X&ei=bqOyULCzCPCA0AXZz4HADw&ved=0CE4Q6AEwBw#v=onepage&q=web%20design%20research&f=false
http://www.esomar.org/web/research_papers/book.php?id=2123
http://www.esomar.org/uploads/public/knowledge-and-standards/codes-and-guidelines/ESOMAR_Guideline-for-online-research.pdf
http://en.wikipedia.org/wiki/Online_questionnaires
http://www.amazon.co.uk/Using-Questionnaires-Small-scale-Research-Beginners/dp/1860030866/
http://www.amazon.co.uk/Using-Questionnaires-Small-scale-Research-Beginners/dp/1860030866/
http://www.amazon.co.uk/Questionnaire-Design-N-Oppenheim/dp/0826451764/
http://www.amazon.co.uk/Developing-Questionnaire-Real-World-Research/dp/0826496318/

ABOUT THE AUTHOR

Emma has been helping clients understand their audiences for

the better part of the last 14 years. She cut her research teeth

in the brave new world of online advertising, before moving to

the Audiences team at the BBC. She’s now the Research

Director at Mark Boulton Design and works as part of a small

but exceptional team creating great web experiences for clients

such as CERN, Al Jazeera and Global Witness. Emma is also the

Editor in Chief of indie publisher, Five Simple Steps.

Using Questionnaires for Design Research

24 ways 2012 edition 157

http://markboultondesign.com/
http://www.fivesimplesteps.com/

Nathan Ford 24ways.org/201215

15. A Harder-Working
Class

Class is only becoming more important.
Focusing on its original definition as an
attribute for grouping (or classifying) as well
as linking HTML to CSS, recent front-end
development practices are emphasizing
class as a vessel for structured, modularized
style packages. These patterns reduce the
need for repetitive declarations that can
seriously bloat file sizes, and instil human-
readable understanding of how the
interface, layout, and aesthetics are
constructed.

In the next handful of paragraphs, we will look at how

these emerging practices – such as object-oriented CSS

and SMACSS – are pushing the relevance of class. We will

also explore how HTML and CSS architecture can be

further simplified, performance can be boosted, and CSS

utility sharpened by combining class with the attribute

selector.

158 24 ways 2012 edition

http://24ways.org/201215
http://www.w3.org/TR/REC-html40/struct/global.html#h-7.5.2
https://github.com/stubbornella/oocss/wiki
http://smacss.com/

A PRIMER ON ATTRIBUTE SELECTORS

While attribute selectors were introduced in the CSS 2

spec, they are still considered rather exotic. These well-

established and well-supported features give us vastly

improved flexibility in targeting elements in CSS, and

offer us opportunities for smarter markup. With an

attribute selector, you can directly style an element based

on any of its unique – or uniquely shared – attributes,

without the need for an ID or extra classes. Unlike

pseudo-classes, pseudo-elements, and other exciting

features of CSS3, attribute selectors do not require any

browser-specific syntax or prefix, and are even supported

in Internet Explorer 7.

For example, say we want to target all anchor tags on a

page that link to our homepage. Where otherwise we

might need to manually identify and add classes to the

HTML for these specific links, we could simply write:

[href=index.html] { }

This selector reads: target every element that has an href

attribute of “index.html”.

Attribute selectors are more faceted, though, as they also

give us some very simple regular expression-like logic that

helps further narrow (or widen) a selector’s scope. In our

previous example, what if we wanted to also give

indicative styles to any anchor tag linking to an external

A Harder-Working Class

24 ways 2012 edition 159

http://www.w3.org/TR/CSS21/selector.html#attribute-selectors
http://www.w3.org/TR/CSS21/selector.html#attribute-selectors
http://www.w3.org/TR/CSS2/selector.html#pseudo-elements
http://www.w3.org/TR/CSS2/selector.html#pseudo-elements

site? With no way to know what the exact href value

would be for every external link, we need to use an

expression to match a common aspect of those links. In

this case, we know that all external links need to start

with “http”, so we can use that as a hook:

[href^=http] { }

The selector here reads: target every element that has an

href attribute that begins with “http” (which will also

include “https”). The ^= means “starts with”. There are a

few other simple expressions that give us a lot of

flexibility in targeting elements, and I have found that a

deep understanding of these and other selector types to

be very useful.

THE CLASS-ATTRIBUTE SELECTOR

By matching classes with the attribute selector, CSS can

be pushed to accomplish some exciting new feats. What I

call a class-attribute selector combines the advantages of

classes with attribute selectors by targeting the class

attribute, rather than a specific class. Instead of selecting

.urgent, you could select [class*=urgent]. The latter

may seem like a more verbose way of accomplishing the

former, but each would actually match two subtly

different groups of elements.

160 24 ways 2012 edition

http://net.tutsplus.com/tutorials/html-css-techniques/the-30-css-selectors-you-must-memorize/

Eric Meyer first explored the possibility of using classes

with attribute selectors over a decade ago. While his

interest in this technique mostly explored the different

facets of the syntax, I have found that using class-

attribute selectors can have distinct advantages over

either using an attribute selector or a straightforward

class selector.

First, let’s explore some of the subtleties of why we would

target class before other attributes:

▪ Classes are ubiquitous. They have been supported

since the HTML 4 spec was released in 1999. Newer

attributes, such as the custom data attribute, have only

recently begun to be adopted by browsers.

▪ Classes have multiple ways of being targeted. You can

use the class selector or attribute selector (.classname or

[class=classname]), allowing more flexible specificity

than resorting to an ID or !important.

▪ Classes are already widely used, so adding more classes

will usually require less markup than adding more

attributes.

▪ Classes were designed to abstractly group and specify

elements, making them the most appropriate attribute for

styling using object-oriented methods (as we will learn in

a moment).

A Harder-Working Class

24 ways 2012 edition 161

http://meyerweb.com/eric/articles/webrev/200008b.html

Also, as Meyer pointed out, we can use the class-attribute

selector to be more strict about class declarations. Of

these two elements:

<h2 class="very urgent">

<h2 class="urgent">

…only the second h2 would be selected by

[class=urgent], while .urgent would select both. The use

of = matches any element with the exact class value of

“urgent”. Eric explores these nuances further in his series

on attribute selectors, but perhaps more dramatic is the

added power that class-attribute selectors can bring to

our CSS.

MORE OBJECT-ORIENTED, MORE SCALABLE
AND MODULAR

Nicole Sullivan has been pushing abstracted, object-

oriented thinking in CSS development for years now. She

has shared stacks of knowledge on how behemoth sites

have seen impressive gains in maintenance overhead and

CSS file sizes by leaning heavier on classes derived from

common patterns. Jonathan Snook also speaks, writes

and is genuinely passionate about improving our markup

by using more stratified and modular class name

conventions. With SMACSS, he shows this to be highly

useful across sites – both complex and simple – that

exhibit repeated design patterns. Sullivan and Snook both

162 24 ways 2012 edition

http://www.stubbornella.org/content/
http://www.stubbornella.org/content/2011/04/28/our-best-practices-are-killing-us/
http://snook.ca/

push the use of class for styling over other attributes, and

many front-end developers are fast advocating such

thinking as best practice.

With class-attribute selectors, we can further abstract

our CSS, pushing its scalability. In his chapter on modules,

Snook gives the example of a .pod class that might

represent a certain set of styles. A .pod style set might be

used in varying contexts, leading to CSS that might

normally look like this:

.pod { }

form .pod { }

aside .pod { }

According to Snook, we can make these styles more

portable by targeting more verbose classes, rather than

context:

.pod { }

.pod-form { }

.pod-sidebar { }

…resulting in the following HTML:

<div class="pod">

<div class="pod pod-form">

<div class="pod pod-sidebar">

A Harder-Working Class

24 ways 2012 edition 163

http://smacss.com/book/type-module

This divorces the <div>’s styles from its context, making it

applicable to any situation in which it is needed. The

markup is clean and portable, and the classes are imbued

with meaning as to what module they belong to.

Using class-attribute selectors, we can simplify this

further:

[class*=pod] { }

.pod-form { }

.pod-sidebar { }

The *= tells the browser to look for any element with a

class attribute containing “pod”, so it matches “pod”, “pod-

form”, “pod-sidebar”, etc. This allows only one class per

element, resulting in simpler HTML:

<div class="pod">

<div class="pod-form">

<div class="pod-sidebar">

We could further abstract the concept of “form” and

“sidebar” adjustments if we knew that each of those

alterations would always need the same treatment.

/* Modules */

[class*=pod] { }

[class*=btn] { }

/* Alterations */

[class*=-form] { }

[class*=-sidebar] { }

164 24 ways 2012 edition

In this case, all elements with classes appended “-form” or

“-sidebar” would be altered in the same manner, allowing

the markup to stay simple:

<form>

<h2 class="pod-form">

<aside>

<h2 class="pod-sidebar">

50+ SHADES OF SPECIFICITY

Classes are just powerful enough to override element

selectors and default styling, but still leave room to be

trumped by IDs and !important styles. This makes them

more suitable for object-oriented patterns and helps

avoid messy specificity issues that can not only be a pain

for developers to maintain, but can also affect a site’s

performance. As Sullivan notes, “In almost every case,

classes work well and have fewer unintended

consequences than either IDs or element selectors”.

Proper use of specificity and cascade is crucial in building

straightforward, efficient CSS.

One interesting aspect of attribute selectors is that they

can be compounded for increasing levels of specificity.

Attribute selectors are assigned a specificity level of ten,

A Harder-Working Class

24 ways 2012 edition 165

http://coding.smashingmagazine.com/2007/07/27/css-specificity-things-you-should-know/

the same as class selectors, but both class and attribute

selectors can be chained together, giving them more and

more specificity with each link. Some examples:

.box { }

/* Specificity of 10 */

.box.promo { }

/* Specificity of 20 */

[class*=box] { }

/* Specificity of 10 */

[class*=box][class*=promo] { }

/* Specificity of 20 */

You can chain both types together, too:

.box[class*=promo] { }

/* Specificity of 20 */

I was amused to find, though, that you can chain the exact

same class and attribute selectors for infinite levels of

specificity

.box { }

/* Specificity of 10 */

.box.box { }

/* Specificity of 20 */

.box.box.box { }

/* Specificity of 30 */

166 24 ways 2012 edition

http://ncfwork.com/hackyhack/
http://ncfwork.com/hackyhack/

[class*=box] { }

/* Specificity of 10 */

[class*=box][class*=box] { }

/* Specificity of 20 */

[class*=box][class*=box][class*=box] { }

/* Specificity of 30 */

.box[class*=box].box[class*=box] { }

/* Specificity of 40 */

To override .box styles for promo, we wouldn’t need to add

an ID, change the order of .promo and .box in the CSS, or

resort to an !important style. Granted, any issue that

might need this fine level of specificity tweaking could

probably be better solved with clever cascades, but

having options never hurts.

SMARTER CSS

One of the most powerful aspects of the class-attribute

selector is its ability to expand the simple logic found in

CSS. When developing Gridset (an online tool for building

grids and outputting them as CSS), I realized that with the

right class name conventions, class-attribute selectors

would allow the CSS to be smart enough to automatically

adjust for column offsets without the need for extra

A Harder-Working Class

24 ways 2012 edition 167

http://gridsetapp.com

classes. This imbued the CSS output with logic that other

frameworks lacked, and makes a developer’s job much

easier.

Say you need an element that spans column five (c5) to

column six (c6) on your grid, and is preceded by an

element spanning column one (c1) to column three (c3).

The CSS can anticipate such a scenario:

.c1-c3 + .c5-c6 {

margin-left: 25%; /* …or the width of column four plus

two gutter widths */

}

…but to accommodate all of the margin offsets that could

span that same gap, we would need to write a rather

protracted list for just a six column grid:

.c1-c3 + .c5-c6,

.c1-c3 + .c5,

.c2-c3 + .c5-c6,

.c2-c3 + .c5,

.c3 + .c5-c6,

.c3 + .c5 {

margin-left: 25%;

}

Now imagine how the verbosity compounds when we

repeat this type of declaration for every possible margin

in a grid. The more columns added to the grid, the longer

this selector list would get, too, making the CSS harder for

168 24 ways 2012 edition

the developer to maintain and slowing the load time.

Using class-attribute selectors, though, this can be much

simpler:

[class*=c3] + [class*=c5] {

margin-left: 25%;

}

I’ve detailed how we extract as much logic as possible

from as little CSS as needed on the Gridset blog.

MORE FLEXIBLE SELECTORS

In a recent project, I was working with Drupal-generated

classes to change styles for certain special pages on a site.

Without being able to change the code base, I was left

trying to find some specific aspect of the generated HTML

to target. I noticed that every special page was given a

prefixed class, unique to the page, resulting in CSS like

this:

.specialpage-about,

.specialpage-contact,

.specialpage-info,

…

…and the list kept growing with each new special page.

Such bloat would lead to problems down the line, and add

development overhead to editorial decisions, which was a

situation we were trying to avoid. I was easily able to fix

this, though, with a concise class-attribute selector:

A Harder-Working Class

24 ways 2012 edition 169

https://gridsetapp.com/blog/big-brainy-css/

[class*=specialpage-]

The CSS was now flexible enough to accommodate both

the editorial needs of the client, and the development

restrictions of the CMS.

SELECTOR PERFORMANCE

As Snook tells us in his chapter on Selector Performance,

selectors are read by the browser from right to left,

matching every element that adheres to each rule (or part

of the selector). The more specific we can make the right-

most rules – and every other part of your selectors – the

more performant your CSS will be. So this selector:

.home-page .promo .main-header

…would be more performant than:

.home-page div header

…because there are likely many more header and div

elements on the page, but not so many elements with

those specific classes.

Now, the class-attribute selector could be more general

than a class selector, but not by much. I ran numerous

tests based on the work of Steve Souders (and a few

others) to test a class-attribute selector against a normal

class selector. Given that Javascript will freeze during

style rendering, I created a script that will add, then

170 24 ways 2012 edition

http://smacss.com/book/selectors
http://www.stevesouders.com/blog/2009/03/10/performance-impact-of-css-selectors/
http://css-tricks.com/efficiently-rendering-css/
http://blog.archive.jpsykes.com/153/more-css-performance-testing-pt-3/

remove, a stylesheet on a page 5000 times, and measure

only the time that elapses during the rendering freeze.

The script runs four tests, essentially: one where a class

selector and class-attribute Selector match a single

element, and one they match multiple elements on the

page.

After running the test over 100 times and averaging the

results, I have not seen a significant difference in

rendering times. (As of this writing, the class-attribute

selector has been 0.398% slower on average.) View the

results here.

Given the sheer amount of bytes potentially saved by

reducing selector lists, though, I am confident class-

attribute selectors could shorten load times on larger

sites and, at the very least, save precious development

time.

CONCLUSION

With its flexibility and broad remit, class has at times been

derided as too lenient, allowing CMSes and lazy

developers to fill its values with presentational hacks or

verbose gibberish. There have even been calls for an early

retirement. Class continues, though, to be one of our most

crucial tools.

A Harder-Working Class

24 ways 2012 edition 171

http://dev.artequalswork.com/selectortest/
http://dev.artequalswork.com/selectortest/
http://coding.smashingmagazine.com/2012/06/19/classes-where-were-going-we-dont-need-classes/
http://coding.smashingmagazine.com/2012/06/19/classes-where-were-going-we-dont-need-classes/

Front-end developers are rightfully eager to expand

production abilities through innovations such as Sass or

LESS, but this should not preclude us from honing the

tools we already know as well. Every technique

demonstrated in this article was achievable over a decade

ago and most of the same thinking could be applied to IDs,

rels, or any other attribute (though the reasons listed

above give class an edge). The recent advent of methods

such as object-oriented CSS and SMACSS shows there is

still much room left to expand what simple HTML and CSS

can accomplish. Progress may not always be found in the

innovation of our tools, but through sharpening our

understanding of them.

ABOUT THE AUTHOR

172 24 ways 2012 edition

http://sass-lang.com/
http://lesscss.org/

Nathan Ford is Creative Director at Mark Boulton Design

where he helps a small, talented team of designers build

beautiful experiences for a queue of clients such as Al Jazeera,

ESPN, and CERN. He is also lead developer on Gridset, an online

tool for building grid systems. Read more of his infrequent

writing on his blog, Art=Work, where he shares thoughts and

tools to make working on the web a bit easier (hopefully), or

follow @nathan_ford on Twitter.

A Harder-Working Class

24 ways 2012 edition 173

http://www.markboultondesign.com/
http://gridsetapp.com
http://artequalswork.com
https://twitter.com/nathan_ford

Anna Powell-Smith 24ways.org/201216

16. How to Make Your
Site Look Half-Decent in
Half an Hour

Programmers like me are often intimidated
by design – but a little effort can give a huge
return on investment. Here are one coder’s
tips for making any site quickly look more
professional.

I am a programmer. I am not a designer. I have a degree in

computer science, and I don’t mind Comic Sans. (It looks

cheerful. Move on.)

But although I am a programmer, I want to make my sites

look attractive. This is partly out of vanity, and partly

realism. Vanity because I want people to think my work is

good, and realism because the research shows that people

won’t think a site is credible unless it also looks attractive.

174 24 ways 2012 edition

http://24ways.org/201216
http://www.sciencedirect.com/science/article/pii/S0306457307000568

For a very long time after I became a programmer, I was

scared of design. Design seemed to consist of complicated

rules that weren’t written down anywhere, plus an

unlearnable sense of taste, possessed only by a black-clad

elite.

But a little while ago, I decided to do my best to hack what

it took to make my own projects look vaguely attractive.

And although this doesn’t come close to the effect a

professional designer could achieve, gathering these

resources for improving a site’s look and feel has been

really helpful.

If I hadn’t figured out some basic design shortcuts, it’s

unlikely that a weekend hack of mine would have ended

up on page three of the Daily Mail. And too often now, I

see excellent programming projects that don’t reach the

audience they deserve, simply because their design

doesn’t match their execution.

So, if you are a developer, my Christmas present to you is

this: my own collection of hacks that, used rightly, can

make your personal programming projects look

professional, quickly. None are hard to learn, most are

free, and they let you focus on writing code.

How to Make Your Site Look Half-Decent in Half an Hour

24 ways 2012 edition 175

http://sizes.darkgreener.com
http://www.dailymail.co.uk/femail/article-2101091/At-What-size-really-clothes-shop---online-store.html

One thing to note about these tips, though. They are a

personal, pragmatic compilation. They are suggestions,

not a definitive guide. You will definitely get better results

by working with a professional designer, and by studying

design more deeply.

If you are a designer, I would love to hear your suggestions

for the best tools that I’ve missed, and I’d love to know

how we programmers can do things better.

With that, on to the tools…

1. USE BOOTSTRAP

If you’re not already using Bootstrap, start now. I really

think that Bootstrap is one of the most significant

technical achievements of the last few years: it

democratizes the whole process of web design.

Essentially, Bootstrap is a a grid system, with a bunch of

common elements. So you can lay your site out how you

want, drop in simple elements like forms and tables, and

get a good-looking, consistent result, without spending

hours fiddling with CSS. You just need HTML.

Another massive upside is that it makes it easy to make

any site responsive, so you don’t have to worry about

writing media queries. Go, get Bootstrap and check out

176 24 ways 2012 edition

http://twitter.github.com/bootstrap/
http://twitter.github.com/bootstrap/
http://twitter.github.com/bootstrap/getting-started.html#examples

the examples. To keep your site lightweight, you can

customize your download to include only the elements

you want.

If you have more time, then Mark Otto’s article on why

and how Bootstrap was created at Twitter is well worth a

read.

2. PIMP BOOTSTRAP

Using Bootstrap is already a significant advance on not

using Bootstrap, and massively reduces the tedium of

front-end development. But you also run the risk of

creating Yet Another Bootstrap Site, or Hack Day Design,

as it’s known.

If you’re really pressed for time, you could buy a theme

from Wrap Bootstrap. These are usually created by

professional designers, and will give a polish that we can’t

achieve ourselves. Your site won’t be unique, but it will

look good quickly.

Luckily, it’s pretty easy to make Bootstrap not look too

much like Bootstrap – using fonts, CSS effects,

background images, colour schemes and so on. Most of

the rest of this article covers different ways to achieve

this.

We are going to customize this Bootstrap example page.

How to Make Your Site Look Half-Decent in Half an Hour

24 ways 2012 edition 177

http://twitter.github.com/bootstrap/getting-started.html#examples
http://twitter.github.com/bootstrap/customize.html
http://www.alistapart.com/articles/building-twitter-bootstrap/
https://wrapbootstrap.com/
http://twitter.github.com/bootstrap/examples/marketing-narrow.html

This already has some custom CSS in the <head>. We’ll pull

it all out, and create a new CSS file, custom.css. Then we

add a reference to it in the header. Now we’re ready to

start customizing things.

3. FONTS

Web fonts are one of the quickest ways to make your site

look distinctive, modern, and less Bootstrappy, so we’ll

start there.

First, we can add some sweet fonts, from Google Web

Fonts. The intimidating bit is choosing fonts that look nice

together. Luckily, there are plenty of suggestions around

178 24 ways 2012 edition

http://24ways.anna.ps/01-initial/
http://www.google.com/webfonts
http://www.google.com/webfonts

the web: we’re going to use one of DesignShack’s

suggested free Google Fonts pairings. Our fonts are

Corben (for headings) and Nobile (for body copy).

Then we add these files to our <head>.

<link href="http://fonts.googleapis.com/

css?family=Corben:bold" rel="stylesheet" type="text/css">

<link href="http://fonts.googleapis.com/

css?family=Nobile" rel="stylesheet" type="text/css">

…and this to custom.css:

h1, h2, h3, h4, h5, h6 {

font-family: 'Corben', Georgia, Times, serif;

}

p, div {

font-family: 'Nobile', Helvetica, Arial, sans-serif;

}

Now our example looks like this. It’s not going to win any

design awards, but it’s immediately better:

How to Make Your Site Look Half-Decent in Half an Hour

24 ways 2012 edition 179

http://designshack.net/articles/css/10-great-google-font-combinations-you-can-copy/
http://designshack.net/articles/css/10-great-google-font-combinations-you-can-copy/

I also recommend the web font services Fontdeck, or

Typekit – these have a wider selection of fonts, and are

worth the investment if you regularly need to make sites

look good. For more font combinations, Just My Type

suggests appealing pairings from Typekit. Finally, you can

experiment with type pairing ideas at Type Connection.

For the design background on pairing fonts, Typekit’s post

is worth a read.

4. TEXTURES

An instant way to make a site look classy is to use

textures. You know the grey, stripy, indefinably elegant

background on 24ways.org? That.

180 24 ways 2012 edition

http://24ways.anna.ps/02-fonts/
http://fontdeck.com/
https://typekit.com/
http://daneden.me/type/
http://www.typeconnection.com/
http://blog.typekit.com/2012/05/23/type-study-pairing-typefaces/
http://blog.typekit.com/2012/05/23/type-study-pairing-typefaces/

If only there was a superb resource listing attractive, free,

ready-to-use textures… Oh wait, there’s Atle Mo’s Subtle

Patterns.

We’re going to use Cream Dust, for an effect that can only

be described as subtle. We download the file to a new

/img/ directory, then add this to the CSS file:

body {

background: url(/img/cream_dust.png) repeat 0 0;

}

Bang:

How to Make Your Site Look Half-Decent in Half an Hour

24 ways 2012 edition 181

http://subtlepatterns.com/
http://subtlepatterns.com/
http://subtlepatterns.com/cream_dust/
http://24ways.anna.ps/03-textures/

For some design background on patterns, I recommend

reading through Smashing Magazine’s guidelines on

textures. (TL;DR version: use textures to enhance beauty,

and clarify the information architecture of your site; but

don’t overdo it, or inadvertently obscure your text.)

Still more to do, though. Onwards.

5. ICONS

Last year’s 24 ways taught us to use icon fonts for our site

icons.

This is great for the time-pressed coder, because icon

fonts don’t just cut down on HTTP requests – they’re a lot

quicker to set up than image-based icons, too.

Bootstrap ships with an extensive, free for commercial

use icon set in the shape of Font Awesome. Its icons are

safe for screen readers, and can even be made to work in

IE7 if needed (we’re not going to bother here).

To start using these icons, just download Font Awesome,

and add the /fonts/ directory to your site and the font-

awesome.css file into your /css/ directory. Then add a

reference to the CSS file in your header:

<link rel="stylesheet" href="/css/font-awesome.css">

Finally, we’ll add a truck icon to the main action button, as

follows. Why a truck? Why not?

182 24 ways 2012 edition

http://www.smashingmagazine.com/2011/10/03/whys-hows-textures-web-design/
http://www.smashingmagazine.com/2011/10/03/whys-hows-textures-web-design/
http://24ways.org/2011/displaying-icons-with-fonts-and-data-attributes/
http://24ways.org/2011/displaying-icons-with-fonts-and-data-attributes/
http://fortawesome.github.com/Font-Awesome/

<i

class="icon-truck"></i> Sign up today

We’ll also tweak our CSS file to stop the icon nudging up

against the button text:

.jumbotron .btn i {

margin-right: 8px;

}

And this is how it looks:

Not the most exciting change ever, but it livens up the

page a bit. The licence is CC-BY-3.0, so we also include a

mention of Font Awesome and its URL in the source code.

How to Make Your Site Look Half-Decent in Half an Hour

24 ways 2012 edition 183

http://24ways.anna.ps/04-icons/

If you’d like something a little more distinctive, Shifticons

lets you pay a few cents for individual icons, with the

bonus that you only have to serve the icons you actually

use, which is more efficient. Its icons are also friendly to

screen readers, but won’t work in IE7.

6. CSS3

The next thing you could do is add some CSS3 goodness. It

can really help the key elements of the site stand out.

If you are pressed for time, just adding box-shadow and

text-shadow to emphasize headings and standouts can be

useful:

h1 {

text-shadow: 1px 1px 1px #ccc;

}

.div-that-you want-to-stand-out {

box-shadow: 0 0 1em 1em #ccc;

}

We have a little more time though, so we’re going to do

something more subtle. We’ll add a radial gradient behind

the main heading, using an online gradient editor.

The output is hefty, but you can see it in the CSS. Note

that we also need to add the following to our HTML, for

IE9 support:

184 24 ways 2012 edition

https://www.shifticons.com/
https://developer.mozilla.org/en-US/docs/CSS/box-shadow
https://developer.mozilla.org/en-US/docs/CSS/text-shadow
http://www.colorzilla.com/gradient-editor/

<!--[if gte IE 9]>

<style type="text/css">

.gradient {

filter: none;

}

</style>

<![endif]-->

And the effect – I don’t know what a designer would think,

but I like the way it makes the heading pop.

For a crash course in useful modern CSS effects, I highly

recommend CodeSchool’s online course in Functional

HTM5 and CSS3. It costs money ($25 a month to

subscribe), but it’s worth it for the time you’ll save. As a

bonus, you also get access to some excellent JavaScript,

Ruby and GitHub courses.

How to Make Your Site Look Half-Decent in Half an Hour

24 ways 2012 edition 185

http://24ways.anna.ps/05-css3/
http://www.codeschool.com/courses/functional-html5-css3
http://www.codeschool.com/courses/functional-html5-css3

(Incidentally, if you find yourself fighting with basic float

and display attributes in CSS – and there’s no shame in it,

CSS layout is not intuitive – I recommend the CSS Cross-

Country course at CodeSchool.)

7. ADD A TWIST

We could leave it there, but we’re going to add a

background image, and give the site some personality.

This is the area of design that I think many programmers

find most intimidating. How do we create the graphics and

photographs that a designer would use? The answer is

iStockPhoto and its competitors – online image libraries

where you can find and pay for images. They won’t be

unique, but for our purposes, that’s fine.

We’re going to use a Christmassy image. For a twist, we’re

going to use Backstretch to make it responsive.

We must pay for the image, then download it to our /img/

directory. Then, we set it as our <body>’s background-

image, by including a JavaScript file with just the following

line:

$.backstretch("/img/winter.jpg");

We also reset the subtle pattern to become the

background for our container image. It would look much

better transparent, so we can use this technique in GIMP

to make it see-through:

186 24 ways 2012 edition

http://www.codeschool.com/courses/css-cross-country
http://www.codeschool.com/courses/css-cross-country
http://istockphoto.com
http://www.istockphoto.com/stock-photo-1240825-winter-sun-v.php?st=d6033b2
http://srobbin.com/jquery-plugins/backstretch/
http://graphicdesign.stackexchange.com/questions/2422/make-image-partially-transparent-in-gimp

.container-narrow {

background: url(/img/cream_dust_transparent.png)

repeat 0 0;

}

We also fiddle with the padding on body and .container-

narrow a bit, and this is the result:

(Aside: If this were a real site, I’d want to buy images in

multiple sizes and ensure that Backstretch chose the most

appropriately sized image for our screen, perhaps using

responsive images.)

How to Make Your Site Look Half-Decent in Half an Hour

24 ways 2012 edition 187

http://24ways.anna.ps/06-photo/
http://24ways.org/2012/responsive-images-what-we-thought-we-needed/

How to find the effects that make a site interesting? I keep

a set of bookmarks for interesting JavaScript and CSS

effects I might want to use someday, from realistic

shadows to animating grids. The JavaScript Weekly

newsletter is a great source of ideas.

8. COLOUR SCHEMES

We’re just about getting there – though we’re probably

past half an hour now – but that button and that menu

still both look awfully Bootstrappy.

Real sites, with real designers, have a colour palette,

carefully chosen to harmonize and match the brand

profile. For our purposes, we’re just going to borrow some

colours from the image. We use Gimp’s colour picker tool

to identify the hex values of the blue of the snow. Then we

can use Color Scheme Designer to find contrasting, but

complementary, colours.

Finally, we use those colours for our central button. There

are lots of tools to help us do this, such as Bootstrap

Buttons. The new HTML is quite long, so I won’t paste it all

here, but you can find it in the CSS file.

We also reset the colour of the pills in the navigation

menu, which is a bit easier:

188 24 ways 2012 edition

http://indamix.github.com/real-shadow/
http://indamix.github.com/real-shadow/
http://isotope.metafizzy.co/
http://javascriptweekly.com/
http://colorschemedesigner.com/
http://charliepark.org/bootstrap_buttons/
http://charliepark.org/bootstrap_buttons/

.nav-pills > .active > a, .nav-pills > .active > a:hover

{

background-color: #FF9473;

}

I’m not sure if the result is great to be honest, but at least

we’ve lost those Bootstrap-blue buttons:

Another way to do it, if you didn’t have an image to match,

would be to borrow an attractive colour scheme.

Colourlovers is a community where people create and

share ready-made colour palettes.

How to Make Your Site Look Half-Decent in Half an Hour

24 ways 2012 edition 189

http://24ways.anna.ps/07-colours/
http://www.colourlovers.com/

The key thing is to find a palette with an open licence, so

you can legitimately use it. Unfortunately, you can’t

search for palettes by licence type, but many do have

open licences. Here’s a popular palette with a CC-BY-SA

licence that allows reuse with attribution.

As above, you can use the hex values from the palette in

your custom CSS, and bask in the newly colourful results.

9. READ ON

With the above techniques, you can make a site that is

starting to look slightly more professional, pretty quickly.

If you have the time to invest, it’s well worth learning

some design principles, if only so that design seems less

intimidating and more like fun. As part of my design

learning, I read a few introductory design books aimed at

coders. The best I found was David Kadavy’s Design for

Hackers: Reverse-Engineering Beauty, which explains the

basic principles behind choosing colours, fonts, typefaces

and layout.

In the introduction to his book, David writes:

190 24 ways 2012 edition

http://www.colourlovers.com/palette/1930/cheer_up_emo_kid
http://designforhackers.com
http://designforhackers.com

No group stands to gain more from design
literacy than hackers do… The one subject that
is exceedingly frustrating for hackers to try to
learn is design. Hackers know that in order to
compete against corporate behemoths with
just a few lines of code, they need to have good,
clear design, but the resources with which to
learn design are simply hard to find.

Well said. If you have half a day to invest, rather than half

an hour, I recommend getting hold of David’s book.

And the journey is over. Perhaps that took slightly more

than half an hour, but with practice, using the above

techniques can become second nature. What useful tools

have I missed? Designers, how would you improve on the

above? I would love to know, so please give me your views

in the comments.

How to Make Your Site Look Half-Decent in Half an Hour

24 ways 2012 edition 191

ABOUT THE AUTHOR

Anna Powell-Smith is a freelance web developer, with a

background in literature and computer science. She likes

Python, JavaScript, data visualisation and online mapping.

Currently, she is excited about CartoDB and D3.js.

Earlier this year, her interactive visualisation of women’s

clothing sizes, What Size Am I?, was featured in the Guardian,

Daily Mail, and the Mirror. Another interactive on baby names

was featured in the Guardian and the Sun. Anna created the

only freely available online copy of Domesday Book, Open

Domesday.

Anna tweets as @darkgreener. You can see her work at

http://anna.ps.

192 24 ways 2012 edition

http://cartodb.com
http://d3js.org
http://sizes.darkgreener.com
http://www.guardian.co.uk/news/datablog/2012/feb/14/highstreet-clothes-size-chart
http://www.dailymail.co.uk/femail/article-2101091/At-What-size-really-clothes-shop---online-store.html
http://www.mirror.co.uk/3am/style/shopping/so-what-dress-size-do-you-really-688675
http://names.darkgreener.com
http://www.guardian.co.uk/news/datablog/2012/apr/25/baby-names-data
http://domesdaymap.co.uk
http://domesdaymap.co.uk
http://twitter.com/darkgreener
http://anna.ps

Brendan Dawes 24ways.org/201217

17. Cut Copy Paste

Long before I got into this design thing, I
was heavily into making my own music
inspired by the likes of Coldcut and Steinski.
I would scour local second-hand record
shops in search of obscure beats, loops and
bits of dialogue in the hope of finding that
killer sample I could then splice together
with other things to make a huge hit that
everyone would love. While it did eventually
lead to a record contract and getting to
release a few 12″ singles, ultimately I knew
I’d have to look for something else to pay
the bills.

I may not make my own records any more, but the

approach I took back then – finding (even stealing) things,

cutting and pasting them into interesting combinations –

is still at the centre of how I work, only these days it’s

pretty much bits of code rather than bits of vinyl. Over the

Cut Copy Paste

24 ways 2012 edition 193

http://24ways.org/201217

years I’ve stored these little bits of code (some I’ve found,

some I’ve created myself) in Evernote, ready to be dialled

up whenever I need them.

So when Drew got in touch and asked if I’d like to do

something for this year’s 24 ways I thought it might be

kind of cool to share with you a few of these snippets that

I find really useful. Think of these as a kind of coding mix

tape; but remember – don’t just copy as is: play around,

combine and remix them into other wonderful things.

Some of this stuff is dirty; some of it will make hardcore

programmers feel ill. For those people, remember this –

while you were complaining about the syntax, I made

something.

Create unique colours

Let’s start right away with something I stole. Well, actually

it was given away at the time by Matt Biddulph who was

then at Dopplr before Nokia destroyed it. Imagine you

have thousands of words and you want to assign each one

a unique colour. Well, Matt came up with a crazily simple

but effective way to do that using an MD5 hash. Just

encode said word using an MD5 hash, then take the first

six characters of the string you get back to create a

hexadecimal colour representation.

194 24 ways 2012 edition

https://twitter.com/mattb

I can’t guarantee that it will be a harmonious colour

palette, but it’s still really useful. The thing I love the most

about this technique is the left-field thinking of using an

encryption system to create colours! Here’s an example

using JavaScript:

// requires the MD5 library available at

http://pajhome.org.uk/crypt/md5

function MD5Hex(str){

result = MD5.hex(str).substring(0, 6);

return result;

}

Make something breathe using a sine wave

I never paid attention in school, especially during double

maths. As a matter of fact, the only time I received

corporal punishment – several strokes of the ruler – was

in maths class. Anyway, if they had shown me then how

beautiful mathematics actually is, I might have paid more

attention. Here’s a little example of how a sine wave can

be used to make something appear to breathe.

I recently used this on an Arduino project where an LED

ring surrounding a button would gently breathe. Because

of that it felt much more inviting. I love mathematics.

for(int i = 0; i<360; i++){

float rad = DEG_TO_RAD * i;

int sinOut = constrain((sin(rad) * 128) + 128, 0, 255);

Cut Copy Paste

24 ways 2012 edition 195

http://arduino.cc/

analogWrite(LED, sinOut);

delay(10);

}

Snap position to grid

This is so elegant I love it, and it was shown to me by Gary

Burgess, or Boom Boom as myself and others like to call

him. It snaps a position, in this case the X-position, to a

grid. Just define your grid size (say, twenty pixels) and

you’re good.

snappedXpos = floor(xPos / gridSize) * gridSize;

Calculate the distance between two objects

For me, interaction design is about the relationship

between two objects: you and another object; you and

another person; or simply one object to another. How

close these two things are to each other can be a handy

thing to know, allowing you to react to that information

within your design. Here’s how to calculate the distance

between two objects in a 2-D plane:

deltaX = round(p2.x-p1.x);

deltaY = round(p2.y-p1.y);

diff = round(sqrt((deltaX*deltaX)+(deltaY*deltaY)));

196 24 ways 2012 edition

http://twitter.com/gb_r
http://twitter.com/gb_r

Find the X- and Y-position between two objects

What if you have two objects and you want to place

something in-between them? A little bit of interruption

and disruption can be a good thing. This small piece of

code will allow you to place an object in-between two

other objects:

// set the position: 0.5 = half-way

float position = 0.5;

float x = x1 + (x2 - x1) *position;

float y = y1 + (y2 - y1) *position;

Distribute objects equally around a circle

More fun with maths, this time adding cosine to our friend

sine. Let’s say you want to create a circular navigation of

arbitrary elements (yeah, Jakob, you heard), or you want

to place images around a circle. Well, this piece of code

will do just that. You can adjust the size of the circle by

changing the distance variable and alter the number of

objects with the numberOfObjects variable. Example

below is for use in Processing.

// Example for Processing available for free download at

processing.org

void setup() {

size(800,800);

int numberOfObjects = 12;

Cut Copy Paste

24 ways 2012 edition 197

http://www.useit.com/
http://processing.org/

int distance = 100;

float inc = (TWO_PI)/numberOfObjects;

float x,y;

float a = 0;

for (int i=0; i < numberOfObjects; i++) {

x = (width/2) + sin(a)*distance;

y = (height/2) + cos(a)*distance;

ellipse(x,y,10,10);

a += inc;

}

}

Use modulus to make a grid

The modulus operator, represented by %, returns the

remainder of a division. Fallen into a coma yet? Hold on a

minute – this seemingly simple function is very powerful

in lots of ways. At a simple level, you can use it to

determine if a number is odd or even, great for creating

alternate row colours in a table for instance:

boolean checkForEven(numberToCheck) {

if (numberToCheck % 2 == 0)

return true;

} else {

return false;

}

}

198 24 ways 2012 edition

That’s all well and good, but here’s a use of modulus that

might very well blow your mind. Construct a grid with

only a few lines of code. Again the example is in

Processing but can easily be ported to any other language.

void setup() {

size(600,600);

int numItems = 120;

int numOfColumns = 12;

int xSpacing = 40;

int ySpacing = 40;

int totalWidth = xSpacing*numOfColumns;

for (int i=0; i < numItems; i++) {

ellipse(floor((i*xSpacing)%totalWidth),floor((i*xSpacing)/totalWidth)*ySpacing,10,10);

}

}

Not all the bits of code I keep around are for actual

graphical output. I also have things that are very

utilitarian, but which I still consider part of the design

process. Here’s a couple of things that I’ve found really

handy lately in my design workflow. They may be a little

specific, but I hope they demonstrate that it’s not about

working harder, it’s about working smarter.

Cut Copy Paste

24 ways 2012 edition 199

http://processing.org/

Merge CSV files into one file

Recently, I’ve had to work with huge – about 1GB – CSV

text files that I then needed to combine into one master

CSV file so I could then process the data. Opening up each

text file and then copying and pasting just seemed really

dumb, not to mention slow, so I thought there must be a

better way. After some Googling I found this command

line script that would combine .txt files into one file and

add a new line after each:

awk 1 *.txt > finalfile.txt

But that wasn’t what I was ideally after. I wanted to merge

the CSV files, keeping the first row of the first file (the

column headings) and then ignore the first row of

subsequent files. Sure enough I found the answer after

some Googling and it worked like a charm. Apologies to

the original author but I can’t remember where I found it,

but you, sir or madam, are awesome. Save this as a shell

script:

FIRST=

for FILE in *.csv

do

exec 5<"$FILE" # Open file

read LINE <&5 # Read first line

[-z "$FIRST"] && echo "$LINE" # Print it only

from first file

FIRST="no"

200 24 ways 2012 edition

cat <&5 # Print the rest directly to standard

output

exec 5<&- # Close file

Redirect stdout for this section into file.out

done > file.out

Create a symbolic link to another file or folder

Oftentimes, I’ll find myself hunting through a load of

directories to load a file to be processed, like a CSV file.

Use a symbolic link (in the Terminal) to place a link on your

desktop or wherever is most convenient and it’ll save you

loads of time. Especially great if you’re going through a

Java file dialogue box in Processing or something that

doesn’t allow the normal Mac dialog box or aliases.

cd /DirectoryYouWantShortcutToLiveIn

ln -s /Directory/You/Want/ShortcutTo/ TheShortcut

You can do it, in the mix

I hope you’ve found some of the above useful and that

they’ve inspired a few ideas here and there. Feel free to

tell me better ways of doing things or offer up any other

handy pieces of code. Most of all though, collect, remix

and combine the things you discover to make lovely new

things.

Cut Copy Paste

24 ways 2012 edition 201

ABOUT THE AUTHOR

Ever since his first experiences with the humble ZX81 back in

the early eighties, Brendan Dawes has continued to explore the

interplay of people, code, design and art through his work on

brendandawes.com where he publishes ideas, toys and projects

created from an eclectic mix of digital and analog objects. On

top of all that his Mum says he’s good with computers.

202 24 ways 2012 edition

http://brendandawes.com/

Rachel Andrew 24ways.org/201218

18. Giving Content
Priority with CSS3 Grid
Layout

Browser support for many of the modules
that are part of CSS3 have enabled us to use
CSS for many of the things we used to have
to use images for. The rise of mobile
browsers and the concept of responsive web
design has given us a whole new way of
looking at design for the web. However,
when it comes to layout, we haven’t moved
very far at all. We have talked for years
about separating our content and source
order from the presentation of that content,
yet most of us have had to make decisions
on source order in order to get a certain
visual layout.

Giving Content Priority with CSS3 Grid Layout

24 ways 2012 edition 203

http://24ways.org/201218

Owing to some interesting specifications making their

way through the W3C process at the moment, though,

there is hope of change on the horizon. In this article I’m

going to look at one CSS module, the CSS3 grid layout

module, that enables us to define a grid and place

elements on to it. This article comprises a practical

demonstration of the basics of grid layout, and also a

discussion of one way in which we can start thinking of

content in a more adaptive way.

Before we get started, it is important to note that, at the

time of writing, these examples work only in Internet

Explorer 10. CSS3 grid layout is a module created by

Microsoft, and implemented using the -ms prefix in IE10.

My examples will all use the -ms prefix, and not include

other prefixes simply because this is such an early stage

specification, and by the time there are implementations

in other browsers there may be inconsistencies. The

implementation I describe today may well change, but is

also there for your feedback.

If you don’t have access to IE10, then one way to view and

test these examples is by signing up for an account with

Browserstack – the free trial would give you time to have

a look. I have also included screenshots of all relevant

stages in creating the examples.

204 24 ways 2012 edition

http://dev.w3.org/csswg/css3-grid-layout/
http://dev.w3.org/csswg/css3-grid-layout/
http://www.browserstack.com/

WHAT IS CSS3 GRID LAYOUT?

CSS3 grid layout aims to let developers divide up a design

into a grid and place content on to that grid. Rather than

trying to fabricate a grid from floats, you can declare an

actual grid on a container element and then use that to

position the elements inside. Most importantly, the

source order of those elements does not matter.

Declaring a grid

We declare a grid using a new value for the display

property: display: grid. As we are using the IE10

implementation here, we need to prefix that value:

display: -ms-grid;.

Once we have declared our grid, we set up the columns

and rows using the grid-columns and grid-rows

properties.

.wrapper {

display: -ms-grid;

-ms-grid-columns: 200px 20px auto 20px 200px;

-ms-grid-rows: auto 1fr;

}

In the above example, I have declared a grid on the

.wrapper element. I have used the grid-columns property

to create a grid with a 200 pixel-wide column, a 20 pixel

gutter, a flexible width auto column that will stretch to fill

the available space, another 20 pixel-wide gutter and a

Giving Content Priority with CSS3 Grid Layout

24 ways 2012 edition 205

http://dev.w3.org/csswg/css3-grid-layout/

final 200 pixel sidebar: a flexible width layout with two

fixed width sidebars. Using the grid-rows property I have

created two rows: the first is set to auto so it will stretch

to fill whatever I put into it; the second row is set to 1fr, a

new value used in grids that means one fraction unit. In

this case, one fraction unit of the available space,

effectively whatever space is left.

Positioning items on the grid

Now I have a simple grid, I can pop items on to it. If I have

a <div> with a class of .main that I want to place into the

second row, and the flexible column set to auto I would

use the following CSS:

.content {

-ms-grid-column: 3;

-ms-grid-row: 2;

-ms-grid-row-span: 1;

}

If you are old-school, you may already have realised that

we are essentially creating an HTML table-like layout

structure using CSS. I found the concept of a table the

most helpful way to think about the grid layout module

when trying to work out how to place elements.

206 24 ways 2012 edition

CREATING GRID SYSTEMS

As soon as I started to play with CSS3 grid layout, I

wanted to see if I could use it to replicate a flexible grid

system like this fluid 16-column 960 grid system.

I started out by defining a grid on my wrapper element,

using fractions to make this grid fluid.

.wrapper {

width: 90%;

margin: 0 auto 0 auto;

display: -ms-grid;

-ms-grid-columns: 1fr (4.25fr 1fr)[16];

-ms-grid-rows: (auto 20px)[24];

}

Like the 960 grid system I was using as an example, my

grid starts with a gutter, followed by the first actual

column, plus another gutter repeated sixteen times. What

this means is that if I want to span two columns, as far as

the grid layout module is concerned that is actually three

columns: two wide columns, plus one gutter. So this needs

to be accounted for when positioning items.

I created a CSS class for each positioning option: column

position; rows position; and column span. For example:

.grid1 {-ms-grid-column: 2;} /* applying this class

positions an item in the first column (the gutter is

column 1) */

.grid2 {-ms-grid-column: 4;} /* 2nd column -

Giving Content Priority with CSS3 Grid Layout

24 ways 2012 edition 207

http://www.designinfluences.com/fluid960gs/16/fluid/none/

gutter|column 1|gutter */

.grid3 {-ms-grid-column: 6;} /* 3rd column -

gutter|column 1|gutter|column2|gutter */

.row1 {-ms-grid-row:1;}

.row2 {-ms-grid-row:3;}

.row3 {-ms-grid-row:5;}

.colspan1 {-ms-grid-column-span:1;}

.colspan2 {-ms-grid-column-span:3;}

.colspan3 {-ms-grid-column-span:5;}

I could then add multiple classes to each element to set

the position on on the grid.

208 24 ways 2012 edition

This then gives me a replica of the fluid grid using CSS3

grid layout. To see this working fire up IE10 and view

Example 1.

Giving Content Priority with CSS3 Grid Layout

24 ways 2012 edition 209

http://media.24ways.org/2012/andrew/example1.html
http://media.24ways.org/2012/andrew/example1.html

THIS WORKS, BUT…

This worked, but isn’t ideal. I considered not showing this

stage of my experiment – however, I think it clearly shows

how the grid layout module works and is a useful starting

point. That said, it’s not an approach I would take in

production. First, we have to add classes to our markup

that tie an element to a position on the grid. This might

not be too much of a problem if we are always going to

maintain the sixteen-column grid, though, as I will show

you that the real power of the grid layout module appears

once you start to redefine the grid, using different grids

based on media queries. If you drop to a six-column layout

for small screens, positioning items into column 16 makes

no sense any more.

CALCULATING GRID POSITION USING LESS

As we’ve seen, if you want to use a grid with main columns

and gutters, you have to take into account the spacing

between columns as well as the actual columns. This

means we have to do some calculating every time we

place an item on the grid. In my example above I got

around this by creating a CSS class for each position,

allowing me to think in sixteen rather than thirty-two

columns. But by using a CSS preprocessor, I can avoid

using all the classes yet still think in main columns.

210 24 ways 2012 edition

I’m using LESS for my example. My simple grid framework

consists of one simple mixin.

.position(@column,@row,@colspan,@rowspan) {

-ms-grid-column: @column*2;

-ms-grid-row: @row*2-1;

-ms-grid-column-span: @colspan*2-1;

-ms-grid-row-span: @rowspan*2-1;

}

My mixin takes four parameters: column; row; colspan;

and rowspan. So if I wanted to place an item on column

four, row three, spanning two columns and one row, I

would write the following CSS:

.box {

.position(4,3,2,1);

}

The mixin would return:

.box {

-ms-grid-column: 8;

-ms-grid-row: 5;

-ms-grid-column-span: 3;

-ms-grid-row-span: 1;

}

This saves me some typing and some maths. I could also

add other prefixed values into my mixin as other browsers

started to add support.

Giving Content Priority with CSS3 Grid Layout

24 ways 2012 edition 211

http://lesscss.org/

We can see this in action creating a new grid. Instead of

adding multiple classes to each element, I can add one

class; that class uses the mixin to create the position. I

have also played around with row spans using my mixin

and you can see we end up with a quite complicated

arrangement of boxes. Have a look at example two in

IE10. I’ve used the JavaScript LESS parser so that you can

view the actual LESS that I use. Note that I have needed to

escape the -ms prefixed properties with ~"" to get LESS to

accept them.

This is looking better. I don’t have direct positioning

information on each element in the markup, just a class

name – I’ve used grid(x), but it could be something far

more semantic. We can now take the example a step

further and redefine the grid based on screen width.

212 24 ways 2012 edition

http://media.24ways.org/2012/andrew/example2.html
http://media.24ways.org/2012/andrew/example2.html

MEDIA QUERIES AND THE GRID

This example uses exactly the same markup as the

previous example. However, we are now using media

queries to detect screen width and redefine the grid using

a different number of columns depending on that width.

I start out with a six-column grid, defining that on

.wrapper, then setting where the different items sit on

this grid:

.wrapper {

width: 90%;

margin: 0 auto 0 auto;

display: ~"-ms-grid"; /* escaped for the LESS parser

*/

-ms-grid-columns: ~"1fr (4.25fr 1fr)[6]"; /* escaped

for the LESS parser */

-ms-grid-rows: ~"(auto 20px)[40]"; /* escaped for

the LESS parser */

}

.grid1 { .position(1,1,1,1); }

.grid2 { .position(2,1,1,1); }

/* ... see example for all declarations ... */

Giving Content Priority with CSS3 Grid Layout

24 ways 2012 edition 213

214 24 ways 2012 edition

Using media queries, I redefine the grid to nine columns

when we hit a minimum width of 700 pixels.

@media only screen and (min-width: 700px) {

.wrapper {

-ms-grid-columns: ~"1fr (4.25fr 1fr)[9]";

-ms-grid-rows: ~"(auto 20px)[50]";

}

.grid1 { .position(1,1,1,1); }

.grid2 { .position(2,1,1,1); }

/* ... */

}

Giving Content Priority with CSS3 Grid Layout

24 ways 2012 edition 215

Finally, we redefine the grid for 960 pixels, back to the

sixteen-column grid we started out with.

@media only screen and (min-width: 940px) {

.wrapper {

-ms-grid-columns:~" 1fr (4.25fr 1fr)[16]";

-ms-grid-rows:~" (auto 20px)[24]";

}

.grid1 { .position(1,1,1,1); }

216 24 ways 2012 edition

.grid2 { .position(2,1,1,1); }

/* ... */

}

If you view example three in Internet Explorer 10 you can

see how the items reflow to fit the window size. You can

also see, looking at the final set of blocks, that source

order doesn’t matter. You can pick up a block from

anywhere and place it in any position on the grid.

LAYING OUT A SIMPLE WEBSITE

So far, like a toddler on Christmas Day, we’ve been playing

with boxes rather than thinking about what might be in

them. So let’s take a quick look at a more realistic layout,

in order to see why the CSS3 grid layout module can be

really useful. At this time of year, I am very excited to get

out of storage my collection of odd nativity sets,

prompting my family to suggest I might want to open a

museum. Should I ever do so, I’ll need a website, and here

is an example layout.

Giving Content Priority with CSS3 Grid Layout

24 ways 2012 edition 217

http://media.24ways.org/2012/andrew/example3.html

As I am using CSS3 grid layout, I can order my source in a

logical manner. In this example my document is as follows,

though these elements could be in any order I please:

<div class="wrapper">

<div class="welcome">

...

</div>

<article class="main">

...

</article>

<div class="info">

218 24 ways 2012 edition

...

</div>

<div class="ads">

...

</div>

</div>

For wide viewports I can use grid layout to create a

sidebar, with the important information about opening

times on the top righ,t with the ads displayed below it.

This creates the layout shown in the screenshot above.

@media only screen and (min-width: 940px) {

.wrapper {

-ms-grid-columns:~" 1fr (4.25fr 1fr)[16]";

-ms-grid-rows:~" (auto 20px)[24]";

}

.welcome {

.position(1,1,12,1);

padding: 0 5% 0 0;

}

.info {

.position(13,1,4,1);

border: 0;

padding:0;

}

.main {

.position(1,2,12,1);

padding: 0 5% 0 0;

}

.ads {

.position(13,2,4,1);

display: block;

Giving Content Priority with CSS3 Grid Layout

24 ways 2012 edition 219

margin-left: 0;

}

}

In a floated layout, a sidebar like this often ends up being

placed under the main content at smaller screen widths.

For my situation this is less than ideal. I want the

important information about opening times to end up

above the main article, and to push the ads below it. With

grid layout I can easily achieve this at the smallest width

.info ends up in row two and .ads in row five with the

article between.

.wrapper {

display: ~"-ms-grid";

-ms-grid-columns: ~"1fr (4.25fr 1fr)[4]";

-ms-grid-rows: ~"(auto 20px)[40]";

}

.welcome {

.position(1,1,4,1);

}

.info {

.position(1,2,4,1);

border: 4px solid #fff;

padding: 10px;

}

.content {

.position(1,3,4,5);

}

.main {

.position(1,3,4,1);

}

220 24 ways 2012 edition

.ads {

.position(1,4,4,1);

}

Giving Content Priority with CSS3 Grid Layout

24 ways 2012 edition 221

222 24 ways 2012 edition

Finally, as an extra tweak I add in a breakpoint at 600

pixels and nest a second grid on the ads area, arranging

those three images into a row when they sit below the

article at a screen width wider than the very narrow

mobile width but still too narrow to support a sidebar.

@media only screen and (min-width: 600px) {

.ads {

display: ~"-ms-grid";

-ms-grid-columns: ~"20px 1fr 20px 1fr 20px 1fr";

-ms-grid-rows: ~"1fr";

margin-left: -20px;

}

.ad:nth-child(1) {

.position(1,1,1,1);

}

.ad:nth-child(2) {

.position(2,1,1,1);

}

.ad:nth-child(3) {

.position(3,1,1,1);

}

}

View example four in Internet Explorer 10.

Giving Content Priority with CSS3 Grid Layout

24 ways 2012 edition 223

http://media.24ways.org/2012/andrew/example4.html

This is a very simple example to show how we can use CSS

grid layout without needing to add a lot of classes to our

document. It also demonstrates how we can mainpulate

the content depending on the context in which the user is

viewing it.

LAYOUT, SOURCE ORDER AND THE IDEA OF
CONTENT PRIORITY

CSS3 grid layout isn’t the only module that starts to move

us away from the issue of visual layout being linked to

source order. However, with good support in Internet

Explorer 10, it is a nice way to start looking at how this

might work. If you look at the grid layout module as

224 24 ways 2012 edition

something to be used in conjunction with the flexible box

layout module and the very interesting CSS regions and

exclusions specifications, we have, tantalizingly on the

horizon, a powerful set of tools for layout.

I am particularly keen on the potential separation of

source order from layout as it dovetails rather neatly into

something I spend a lot of time thinking about. As a CMS

developer, working on larger scale projects as well as our

CMS product Perch, I am interested in how we better

enable content editors to create content for the web. In

particular, I search for better ways to help them create

adaptive content; content that will work in a variety of

contexts rather than being tied to one representation of

that content.

If the concept of adaptive content is new to you, then

Karen McGrane’s presentation Adapting Ourselves to

Adaptive Content is the place to start. Karen talks about

needing to think of content as chunks, that might be used

in many different places, displayed differently depending

on context.

I absolutely agree with Karen’s approach to content. We

have always attempted to move content editors away

from thinking about creating a page and previewing it on

the desktop. However at some point content does need to

be published as a page, or a collection of content if you

prefer, and bits of that content have priority. Particularly

Giving Content Priority with CSS3 Grid Layout

24 ways 2012 edition 225

http://www.w3.org/TR/css3-flexbox/
http://www.w3.org/TR/css3-flexbox/
http://dev.w3.org/csswg/css3-regions/
http://dev.w3.org/csswg/css3-exclusions/
http://grabaperch.com/
http://karenmcgrane.com/2012/09/04/adapting-ourselves-to-adaptive-content-video-slides-and-transcript-oh-my/
http://karenmcgrane.com/2012/09/04/adapting-ourselves-to-adaptive-content-video-slides-and-transcript-oh-my/

in a small screen context, content gets linearized, we can

only show so much at a time, and we need to make sure

important content rises to the top. In the case of my

example, I wanted to ensure that the address information

was clearly visible without scrolling around too much.

Dropping it with the entire sidebar to the bottom of the

page would not have been so helpful, though neither

would moving the whole sidebar to the top of the screen

so a visitor had to scroll past advertising to get to the

article.

If our layout is linked to our source order, then enabling

the content editor to make decisions about priority is

really hard. Only a system that can do some regeneration

of the source order on the server-side – perhaps by way of

multiple templates – can allow those kinds of decisions to

be made. For larger systems this might be a possibility; for

smaller ones, or when using an off-the-shelf CMS, it is less

likely to be. Fortunately, any system that allows some

form of custom field type can be used to pop a class on to

an element, and with CSS grid layout that is all that is

needed to be able to target that element and drop it into

the right place when the content is viewed, be that on a

desktop or a mobile device.

This approach can move us away from forcing editors to

think visually. At the moment, I might have to explain to an

editor that if a certain piece of content needs to come first

when viewed on a mobile device, it needs to be placed in

226 24 ways 2012 edition

the sidebar area, tying it to a particular layout and design.

I have to do this because we have to enforce fairly strict

rules around source order to make the mechanics of the

responsive design work. If I can instead advise an editor to

flag important content as high priority in the CMS, then I

can make decisions elsewhere as to how that is displayed,

and we can maintain the visual hierarchy across all the

different ways content might be rendered.

WHY FRUSTRATE OURSELVES WITH
SPECIFICATIONS WE CAN’T YET USE IN
PRODUCTION?

The CSS3 grid layout specification is listed under the

Exploring section of the list of current work of the CSS

Working Group. While discussing a module at this stage

might seem a bit pointless if we can’t use it in production

work, there is a very real reason for doing so. If those of us

who will ultimately be developing sites with these tools

find out about them early enough, then we can start to

give our feedback to the people responsible for the

specification. There is information on the same page

about how to get involved with the disussions.

So, if you have a bit of time this holiday season, why not

have a play with the CSS3 grid layout module? I have

outlined here some of my thoughts on how grid layout and

other modules that separate layout from source order can

be used in the work that I do. Likewise, wherever in the

Giving Content Priority with CSS3 Grid Layout

24 ways 2012 edition 227

http://www.w3.org/Style/CSS/current-work.en.html
http://www.w3.org/Style/CSS/current-work.en.html
http://www.w3.org/Style/CSS/current-work.en.html#contribute

stack you work, playing with and thinking about new

specifications means you can think about how you would

use them to enhance your work. Spot a problem? Think

that a change to the specification would improve things

for a specific use case? Then you have something you

could post to www-style to add to the discussion around

this module.

All the examples are on CodePen so feel free to play

around and fork them.

ABOUT THE AUTHOR

Rachel Andrew is a Director of edgeofmyseat.com, a UK web

development consultancy and creators of the small content

management system, Perch. She is the author of a number of

228 24 ways 2012 edition

http://codepen.io/rachelandrew/tag/24%20ways
http://grabaperch.com

books, most recently The Profitable Side Project Handbook and

CSS3 Layout Modules, and is a regular columnist for A List

Apart.

When not writing about business and technology on her blog at

rachelandrew.co.uk or speaking at conferences, you will usually

find Rachel running up and down one of the giant hills in Bristol.

Giving Content Priority with CSS3 Grid Layout

24 ways 2012 edition 229

http://rachelandrew.co.uk/books
http://rachelandrew.co.uk/books/the-profitable-side-project
http://rachelandrew.co.uk/books/css3-layout-modules
http://alistapart.com/author/rachelandrew
http://alistapart.com/author/rachelandrew
http://rachelandrew.co.uk
http://lanyrd.com/profile/rachelandrew/

Brian Suda 24ways.org/201219

19. Direction, Distance
and Destinations

With all these new smartphones in the
hands of lost and confused owners, we need
a better way to represent distances and
directions to destinations. The immediate
examples that jump to mind are augmented
reality apps which let you see another world
through your phone’s camera. While this is
interesting, there is a simpler way: letting
people know how far away they are and if
they are getting warmer or colder.

In the app world, you can easily tap into the phone’s array

of sensors such as the GPS and compass, but what people

rarely know is that you can do the same with HTML. The

native versus web app debate will never subside, but at

least we can show you how to replicate some of the

functionality progressively in HTML and JavaScript.

In this tutorial, we’ll walk through how to create a simple

webpage listing distances and directions of a few popular

locations around the world. We’ll use JavaScript to access

230 24 ways 2012 edition

http://24ways.org/201219

the device’s geolocation API and also attempt to access

the compass to get a heading. Both of these APIs are

documented, to be included in the W3C geolocation API

specification, and can be used on both desktop and mobile

devices today.

To get started, we need a list of a few locations around the

world. I have chosen the highest mountain peak on each

continent so you can see a diverse set of distances and

directions.

Mountain °Latitude °Longitude

Kilimanjaro -3.075833 37.353333

Vinson Massif -78.525483-85.617147

Puncak Jaya -4.078889 137.158333

Everest 27.988056 86.925278

Elbrus 43.355 42.439167

Mount McKinley63.0695 -151.0074

Aconcagua -32.653431-70.011083

Source: Wikipedia

We can put those into an HTML list to be styled and

accessed by JavaScript to create some distance and

directions calculations.

Direction, Distance and Destinations

24 ways 2012 edition 231

http://en.wikipedia.org/wiki/Seven_Summits

The next thing we need to do is check to see if the

browser and operating system have geolocation support.

To do this we test to see if the function is available or not

using a single JavaScript if statement.

<script>

// If this is true, then the method is supported and we

can try to access the location

if (navigator.geolocation) {

navigator.geolocation.getCurrentPosition(geo_success,

geo_error);

}

</script>

The if statement will be false if geolocation support is not

present, and then it is up to you to do something else

instead as a fallback. For this example, we’ll do nothing

since our page should work as is and only get

progressively better if more functionality is available.

The if statement will be true if there is support and

therefore will continue inside the curly brackets to try to

get the location. This should prompt the reader to accept

or deny the request to get their location. If they say no,

the second function callback is processed, in this case a

function called geo_error; whereas if the location is

available, it fires the geo_success function callback.

The function geo_error(){ } isn’t that exciting. You can

handle this in any way you see fit. The success function is

more interesting. We get a position object passed into the

232 24 ways 2012 edition

function which contains a series of exciting attributes,

namely the latitude and longitude of the device’s current

location.

function geo_success(position){

gLat = position.coords.latitude;

gLon = position.coords.longitude;

}

Now, in the variables gLat and gLon we have the user’s

approximate geographical position. We can use this

information to start to calculate some distances between

where they are and all the destinations.

At the time of writing, you can also get

position.coords.heading, but on Windows and iOS

devices this returned NULL. In the future, if and when this

is supported, this is also where you can easily grab the

compass information.

Inside the geo_success function, we want to loop through

the HTML to get all of the mountain peaks’ latitudes and

longitudes and compute the distance.

...

$('.geo').each(function(){

// Get the lat/lon from the HTML

tLat = $(this).find('.lat').html()

tLon = $(this).find('.lon').html()

// compute the distances between the current location

and this points location

Direction, Distance and Destinations

24 ways 2012 edition 233

dist = distance(tLat,tLon,gLat,gLon);

// set the return values into something useful

d = parseInt(dist[0]*10)/10;

a = parseFloat(dist[1]);

// display the value in the HTML and style the arrow

$(this).find('.distance').html(d+' km away');

$(this).find('.direction').css('-webkit-transform','rotate(-'

+ a + 'deg)');

// store the arc for later use if compass is available

$(this).attr('data-arc',a);

}

In the variable d we have the distance between the

current location and the location of the mountain peak

based on the Haversine Formula. The variable a is the arc,

which has a value from 0 to 359.99. This will be useful

later if we have compass support. Given these two values

we have a distance and a heading to style the HTML.

The next thing we want to do is check to see if the device

has a compass and then get access to the the current

heading. As we’ll see, there are several ways to do this,

some of which work on certain devices but not others.

The W3C geolocation spec says that, along with the

coordinates, there are several other attributes: accuracy;

altitude; and heading. Heading is the direction to true

north, which is different than magnetic north! WebKit

234 24 ways 2012 edition

http://en.wikipedia.org/wiki/Haversine_formula

and Windows return NULL for the heading value, but

WebKit has an experimental method to fetch the heading.

If you get into accessing these sensors, you’ll have to try

to catch a few of these methods to finally get a value.

Assuming you do, we can move on to the more interesting

display opportunities.

In an ideal world, this would succeed and set a variable

we’ll call compassHeading to get a value between 0 and

359.99 degrees. Now we know which direction north is,

we also know the direction relative to north of the path to

our destination, so we can can subtract the two values to

get an arrow to display on the screen. But we’re not

finished yet: we also need to get the device’s orientation

(landscape or portrait) and subtract the correct amount

from the angle for the arrow. Once we have a value, we

can use CSS to rotate the arrow the correct number of

degrees.

-webkit-transform: rotate(-180deg)

Not all devices support a standard way to access compass

information, so in the meantime we need to use a work

around. On iOS, you can use the experimental event

method e.webkitCompassHeading. We want the compass

to update in real time as the device is moved around, so

we’ll put this inside an event listener.

Direction, Distance and Destinations

24 ways 2012 edition 235

window.addEventListener('deviceorientation', function(e)

{

// Loop through all the locations on the page

$('.geo').each(function(){

// get the arc value from north we computed and

stored earlier

destination_arc = parseInt($(this).attr('data-arc'))

compassHeading = e.webkitCompassHeading +

window.orientation + destination_arc;

// find the arrow element and rotate it accordingly

$(this).find('.direction').css('-webkit-transform','rotate(-'

+ compassHeading + 'deg)');

}

}

As the device is rotated, the compass arrow will

constantly be updated. If you want to see an example, you

can have a look at this page which shows the distances to

all the peaks on each continent.

With progressive enhancement, we slowly layer on

additional functionality as we go. The reader will first see

the list of locations with a latitude and longitude. If the

device is capable and permissions allow, it will then

compute the distance. If a compass is available, with the

correct permissions it will then add the final layer which is

direction.

You should consider this code a stub for your projects. If

you are making a hyperlocal webpage with restaurant

locations, for example, then consider adding these

236 24 ways 2012 edition

http://media.24ways.org/2012/suda/demo.html

features. Knowing not only how far away a place is, but

also the direction can be hugely important, and since the

compass is always active, it acts as a guide to the location.

FUTURE DEVELOPMENTS

Improvements to this could include setting a timer and

recalling the

navigator.geolocation.getCurrentPosition() function

and updating the distances. I chose very distant

mountains so kilometres made sense, but you can divide

again by 1,000 to convert to metres if you are dealing with

much nearer places. Walking or driving would change the

distances so the ability to refresh would be important.

It is outside the scope of this article, but if you manage to

get this HTML to work offline, then you can make a nice

web app which sits on your devices’ homescreens and

works even without an internet connection. This could be

ideal for travellers in an unknown city looking for your

destination. Just with offline storage, base64 encoding

and data URIs, it is possible to embed plenty of design and

functionality into a small offline webpage.

Now you know how to use JavaScript to look up a

destination’s location and figure out the distance and

direction – never get lost again.

Direction, Distance and Destinations

24 ways 2012 edition 237

ABOUT THE AUTHOR

Brian Suda is a master informatician working to make the web a

better place little by little everyday. Since discovering the

Internet in the mid-90s, Brian Suda has spent a good portion of

each day connected to it. His own little patch of Internet is

http://suda.co.uk, where many of his past projects and crazy

ideas can be found.

Photo: Jeremy Keith

238 24 ways 2012 edition

http://suda.co.uk
http://www.flickr.com/photos/adactio/2829352818/

Erin Kissane 24ways.org/201220

20. Content Planning
Demystified

The first thing you learn as a junior editor is
that you can’t do everything yourself. You
must rely on someone else to do at least part
of what must be done: the long-range
planning, the initial drafting or shooting or
recording, the editing, the production, the
final polish. All of those pieces of work that
belong to someone else take quite a lot of
time — days, weeks, sometimes months. If
you’re the sort of person who wrote college
term papers the night before they were due,
this can come as a bit of a shock. To my
twenty-two-year-old self, it certainly did.

It turns out that the only real way to avoid a trainwreck

with editorial work is to get ahead of the trouble, line

everything up carefully, and leave oodles of room for all

the pieces to connect on time. The same is true of content

strategy, content planning, and just about everything to

Content Planning Demystified

24 ways 2012 edition 239

http://24ways.org/201220

do with content on the web, except for the writing itself —

and that, too, usually takes far longer than anyone

expects. If you’re not a professional editor and you

suddenly find yourself dealing with content creation,

you’re almost certainly going to underestimate the time

and effort involved, or to skip something important in the

planning process that pops up to bite you later.

Without good content, it doesn’t matter how well

designed or coded your web project is, because it won’t be

doing the thing it’s meant to do. And even if content is far

from your specialty, you may well end up being the only

one willing to coordinate it far enough in advance to avoid

a chaotic ending. Whether you’re hiring writers and

editors for a big project, working with a small client, or

coaxing some editorial help out of a co-worker, getting the

planning work done correctly — and ahead of time — will

allow you to orchestrate a glorious ballet of togetherness,

instead of feverishly scraping together something to put

on your site when the deadline looms. So get out the

graph paper and the pocket protector, because we’re

going to go Full Nerd on this problem.

KNOW YOUR POISON

Anyone who’s seen a project delayed for six months by

content trouble, or derailed by content that’s bland and

unhelpful, knows this stuff can make you feel like a dead

sock. To get ahead of the problem, you’re going to have to

240 24 ways 2012 edition

learn to spot common problems and plan your way around

them. On web projects without a dedicated editorial lead,

you’re likely to encounter content that is:

▪ Useless – Content that doesn’t serve your readers’

needs in some way is pointless. And because it takes up

your time and crowds out genuinely helpful things, it’s

actually damaging. The logic is simple: you can make

content that’s all about you, and that serves your stated

messaging goals, but if no one is motivated to read it, it’s a

waste of everyone’s time.

▪ Badly written – When you publish articles or

instructions or other content that is too stiffly formal,

overly wordy, hard to understand, offensive,

unintentionally cheesy, or otherwise off in tone or style,

you’re doing two things. First, you’re weakening the

information you’re trying to convey by making it obscure

or annoying. Second — and this one is even more

damaging — you’re demonstrating bad taste. When you

get the cultural elements of publishing wrong, you

encourage your readers to believe that you either don’t

understand them or don’t care about getting it wrong.

▪ Gooey – Content strategists have been talking about

structured content (that’s chunks versus blobs) for years.

If you’re publishing more than a few dozen pages without

thinking through the structure of your content, you’re

probably missing a chance to improve your long-term

efficiency. If you’re publishing more than a couple of

Content Planning Demystified

24 ways 2012 edition 241

http://www.slideshare.net/KMcGrane/adapting-ourselves-to-adaptive-content-12133365

thousand pages without taking care of your content

structure, you’re probably doing a lot more manual

wrangling (or cumbersome CMS work) than you need to

be, especially when it comes to cross-platform publishing.

▪ Unregulated – If you’re not tracking what works and

what doesn’t — and especially if you don’t know what

“works” means for your project or organization — you’re

almost certainly getting worse results than you should be,

for more work.

▪ Overabundant – As demonstrated by the cinnamon

challenge, too much of a delicious thing can be a giant and

publicly embarrassing disaster. For most projects and

organizations, if you’re making more stuff than your

readers can handle, or if you’re spreading your creative

and editorial resources too thinly, that’s bad. Spammers,

content farms, and barrel-bottom tabloids have their own

special math, the side effects of which include insomnia,

irritability, and crying in traffic while silently mouthing

Wilson Phillips lyrics.

PREVENT ALL PREVENTABLE DAMAGE

Once you know what kind of trouble to look for, you can

prevent a lot of it by doing some smart planning well

before someone starts writing (or recording or shooting

video).

242 24 ways 2012 edition

▪ To prevent uselessness: Know your readers and decide

what you’re trying to accomplish — with your website as a

whole, and with each piece of content, always. Once you

know what you’re trying to achieve, you can evaluate your

work as you go to make sure that it’s actually doing the

right thing. (I’ve written a lot more about this for A List

Apart and in The Elements of Content Strategy.)

▪ To prevent bad writing: Establish a consistent and

appropriate style using examples (and a style guide if you

need one), designate an editor, hire good writers, and

make time for quality control. Kate Kiefer’s style guide for

MailChimp is a superb example of style-wrangling that

everyone can use.

▪ To prevent repulsive goo: Give your content as much

structure as possible, and know how structure relates to

your entire publishing ecosystem, including all those

mobile devices. Sara Wachter-Boettcher’s Content

Everywhere and Karen McGrane’s Content Strategy for

Mobile offer brilliant yet friendly introductions to the wide

world of structured content.

▪ To prevent unregulated chaos: Measure everything

that matters to your project, your client, your

organization, and especially your readers — not generic

measures of someone else’s success. Measure it all

regularly. Be disciplined. Adjust at regular intervals. Rick

Allen’s series on content strategy analytics is an excellent

place to begin (part one; part two).

Content Planning Demystified

24 ways 2012 edition 243

http://www.alistapart.com/articles/content-templates-to-the-rescue/
http://www.alistapart.com/articles/content-templates-to-the-rescue/
http://www.abookapart.com/products/the-elements-of-content-strategy
http://voiceandtone.com/
http://voiceandtone.com/
http://rosenfeldmedia.com/books/content-everywhere/
http://rosenfeldmedia.com/books/content-everywhere/
http://www.abookapart.com/products/content-strategy-for-mobile
http://www.abookapart.com/products/content-strategy-for-mobile
http://meetcontent.com/blog/web-analytics-what-is-it-good-for/
http://meetcontent.com/blog/a-web-analytics-framework-for-content-analysis/

▪ To prevent overabundance: Stop trying to do

everything and focus on giving your readers just a few

things they want and genuinely need. Don’t establish a

schedule your writers might not be able to keep, and focus

on differentiating yourself with quality, not quantity. (And

while you’re at it, scratch the auto-posting to social

networks and the cross-posting between them. It’s about

as engaging as an automated phone system.)

At a slightly higher level, pick the right content person (or

team) for the work. If you really only need a few pages of

copy, find a smart writer who does good work for multi-

platform readers. If you’re slinging tens of thousands of

pages of content, get someone with field experience in

high-level editorial planning and the ability to turn blobs

into chunks and melted goo into Legos. If you’re starting a

project that involves making a lot of content over time,

bring in someone with journalism experience (or get your

client to do so).

“But wait!” you may say. “I’m not hiring anyone. I have to

do this all myself.” That’s not uncommon at all. The bad

news is, you have to learn a bunch of stuff. The good news

is, you get to learn a bunch of awesome stuff. Figure out

what the project needs, just as though you were going to

hire someone, and then give yourself time to get up to

speed. If it’s a really complicated project, you’re probably

going to have trouble unless you eventually get

244 24 ways 2012 edition

professional help. But if it’s small and you can do it in

steps, you can certainly do much better by giving yourself

a plan and working on the things that matter most.

PLAN FOR THE MARATHON, NOT THE SPRINT

Launching with awesome content is a tiny fraction of a

victory, which is why it’s so important that your content

not be gooey or unregulated. It also means that if you

don’t plan for a realistic publication schedule, you are

going to slam into reality in a really unpleasant way not

too long after you’ve begun. If you’re asking people to

make words (or videos or whatever) for you, they’re going

to have to do less of something else, so plan for that

beforehand.

And while you’re at it, unless publishing is your core

business, ditch the feed-the-beast plan that leads to fluffy

blog posts and spiritless, unhelpful social media content.

It’s antisocial for your reading community, offers short-

term gains at best, and will burn you out or lower your

standards until you don’t even know you’re doing lousy

work. Good content is expensive, no matter how you do it,

but spreading yourself too thin is a much worse

investment than doing a smaller thing well and gradually

building up a body of superb content that people want to

share and keep and return to.

Content Planning Demystified

24 ways 2012 edition 245

ABOUT THE AUTHOR

Erin Kissane edits magazines, websites, does content strategy

for institutions and companies, and reads a lot. She currently

edits Contents magazine and Knight-Mozilla OpenNews’s

Source community site for journalists who code. She was

formerly editorial director at Happy Cog Studios and a lead

content strategist at Brain Traffic, and she edited A List

Apart magazine for a long time. She lives in Brooklyn and

tweets at @Kissane.

246 24 ways 2012 edition

http://contentsmagazine.com/
http://source.mozillaopennews.org/en-US/
http://alistapart.com/
http://alistapart.com/
http://twitter.com/kissane

Nathan Peretic 24ways.org/201221

21. Infinite Canvas:
Moving Beyond the Page

Remember Web 2.0? I do. In fact, that
phrase neatly bifurcates my life on the
internet. Pre-2.0, I was occupied by chatting
on AOL and eventually by learning HTML so
I could build sites on Geocities. Around
2002, however, I saw a WYSIWYG demo in
Dreamweaver. The instructor was dragging
boxes and images around a canvas. With a
few clicks he was able to build a dynamic,
single-page interface. Coming from the
world of tables and inline HTML styles, I was
stunned.

As I entered college the next year, the web was

blossoming: broadband, Wi-Fi, mobile (proud PDA owner,

right here), CSS, Ajax, Bloglines, Gmail and, soon, Google

Maps. I was a technology fanatic and a hobbyist web

Infinite Canvas: Moving Beyond the Page

24 ways 2012 edition 247

http://24ways.org/201221
http://en.wikipedia.org/wiki/Web_2.0

developer. For me, the web had long been informational. It

was now rapidly becoming something else, something

more: sophisticated, presentational, actionable.

In 2003 we watched as the internet changed. The

predominant theme of those early Web 2.0 years was the

withering of Internet Explorer 6 and the triumph of web

standards. Upon cresting that mountain, we looked

around and collectively breathed the rarefied air of

pristine HMTL and CSS, uncontaminated by toxic hacks

and forks – only to immediately begin hurtling down the

other side at what is, frankly, terrifying speed.

Ten years later, we are still riding that rocket. Our days

(and nights) are spent cramming for exams on CSS3 and

RWD and Sass and RESS. We are the proud, frazzled

owners of tiny pocket computers that annihilate the best

laptops we could have imagined, and the architects of

websites that are no longer restricted to big screens nor

even segregated by device. We dragoon our sites into

working any time, anywhere. At this point, we can hardly

ask the spec developers to slow down to allow us to catch

our breath, nor should we. It is, without a doubt, a most

wonderful time to be a web developer.

But despite the newfound luxury of rounded corners,

gradients, embeddable fonts, low-level graphics APIs, and,

glory be, shadows, the canyon between HTML and native

appears to be as wide as ever. The improvements in HTML

248 24 ways 2012 edition

and CSS have, for the most part, been conveniences

rather than fundamental shifts. What I’d like to do now, if

you’ll allow me, is outline just a few of the remaining gaps

that continue to separate web sites and applications from

their native companions.

WHAT I’D LIKE FOR CHRISTMAS

There is one irritant which is the grandfather of them all,

the one from which all others flow and have their being,

and it is, simply, the page refresh. That’s right, the

foundational principle of the web is our single greatest

foe. To paraphrase a patron saint of designers

everywhere, if you see a page refresh, we blew it.

The page refresh brings with it, of course, many noble and

lovely benefits: addressability, for one; and pagination, for

another. (See also caching, resource loading, and probably

half a dozen others.) Still, those concerns can be answered

(and arguably answered more compellingly) by replacing

the weary page with the young and hearty document.

Flash may be dead, but it has many lessons yet to

bequeath.

Preparing a single document when the site loads allows us

to engage the visitor in a smooth and engrossing

experience. We have long known this, of course. Twitter

was not the first to attempt, via JavaScript, to envelop the

user in a single-page application, nor the first to abandon

Infinite Canvas: Moving Beyond the Page

24 ways 2012 edition 249

http://www.fullstopinteractive.com/blog/2010/02/the-withering-away-of-flash/

it. Our shared task is to move those technologies down

the stack, to make them more primitive, so that the next

Twitter can be built with the most basic combination of

HTML and CSS rather than relying on complicated, slow,

and unreliable scripted solutions.

So, let’s take a look at what we can do, right now, that we

might have a better idea of where our current tools fall

short.

A PRINT MAGAZINE IN HTML CLOTHING

Like many others, I suspect, one of my earliest

experiences with publishing was laying out newsletters

and newspapers on a computer for print. If you’ve ever

used InDesign or Quark or even Microsoft Publisher,

you’ll remember reflowing content from page to page.

The advent of the internet signaled, in many ways, the

abandonment of that model. Articles were no longer

constrained by the physical limitations of paper. In

shedding our chains, however, it is arguable that we’ve

lost something useful. We had a self-contained and

complete package, a closed loop. It was a thing that could

be handled and finished, and doing so provided a sense of

accomplishment that our modern, infinitely scrolling,

ever-fractal web of content has stolen.

250 24 ways 2012 edition

For our purposes today, we will treat 24 ways as the

online equivalent of that newspaper or magazine. A single

year’s worth of articles could easily be considered an

issue. Right now, navigating between articles means

clicking on the article you’d like to view and being taken to

that specific address via a page reload. If Drew wanted to,

it wouldn’t be difficult to update the page in place (via

JavaScript) and change the address (again via JavaScript

with the History API) to reflect the new content found at

the new location. But what if Drew wanted to do that

without JavaScript? And what if he wanted the site to not

merely load the content but actually whisk you along the

page in a compelling and delightful way, à la the Mag+

demo we all saw a few years ago when the iPad was first

introduced? Uh, no.

We’re all familiar with websites that have attempted to go

beyond the page by weaving many chunks of content

together into a large document and for good reason.

There is tremendous appeal in opening and exploring the

canvas beyond the edges of our screens.

In one rather straightforward example from last year,

Mozilla contacted Full Stop to build a website promoting

Aza Raskin’s proposal for a set of Creative Commons-

style privacy icons. Like a lot of the sites we build

(including our own), the amount of information we were

presenting was minimal. In these instances, we encourage

our clients to consider including everything on a single

Infinite Canvas: Moving Beyond the Page

24 ways 2012 edition 251

http://www.whatwg.org/specs/web-apps/current-work/multipage/history.html
http://vimeo.com/10630568
http://vimeo.com/10630568
http://www.azarask.in/blog/post/is-a-creative-commons-for-privacy-possible/
http://fullstopinteractive.com

page. The result was a horizontally driven site that was, if

not whimsical, at least clever and attractive to the

intended audience. An experience that is taken for

granted when using device-native technology is utterly,

maddeningly impossible to replicate on the web without

jumping through JavaScript hoops.

In another, more complex example, we again had the

pleasure of working with Aza earlier this year, this time on

a redesign of the Massive Health website. Our assignment

was to design and build a site that communicated

Massive’s commitment to modern personal health. The

site had to be visually and interactively stunning while

maintaining a usable and clear interface for the casual

visitor. Our solution was to extend the infinite company

logo into a ribbon that carried the visitor through the site

narrative. It also meant we’d be asking the browser to

accommodate something it was never designed to handle:

a non-linear design. (Be sure to play around. There’s a lot

going on under the hood. We were also this close to a ZUI,

if WebKit didn’t freak out when pages were scaled beyond

10×.) Despite the apparent and deliberate design

simplicity, the techniques necessary to implement it are

anything but. From updating the URL to moving the

visitor from section to section, we’re firmly in JavaScript

territory. And that’s a shame.

252 24 ways 2012 edition

http://www.fullstopinteractive.com/clients/mozilla/privacyicons/
http://www.fullstopinteractive.com/clients/massive/

WHAT CAN WE DO?

We might not be able to specify these layouts in HTML

and CSS just yet, but that doesn’t mean we can’t learn a

few new tricks while we wait. Let’s see how close we can

come to recreating the privacy icons design, the Massive

design, or the Mag+ design without resorting to

JavaScript.

A HORIZONTALLY PAGINATED SITE

The first thing we’re going to need is the concept of a page

within our HTML document. Using plain old HTML and

CSS, we can stack a series of <div>s sideways (with a little

assist from our new friend, the viewport-width unit, not

that he was strictly necessary). All we need to know is

how many pages we have. (And, boy, wouldn’t it be nice to

be able to know that without having to predetermine it or

use JavaScript?)

.window {

overflow: hidden;

width: 100%;

}

.pages {

width: 200vw;

}

.page {

float: left;

Infinite Canvas: Moving Beyond the Page

24 ways 2012 edition 253

http://media.24ways.org/2012/peretic/example-1.html
http://www.w3.org/TR/css3-values/#viewport-relative-lengths

overflow: hidden;

width: 100vw;

}

If you look carefully, you’ll see that the conceit we’ll use in

the rest of the demos is in place. Despite the document

containing multiple pages, only one is visible at any given

time. This allows us to keep the user focused on the task

(or content) at hand.

By the way, you’ll need to use a modern, WebKit-based

browser for these demos. I recommend downloading the

WebKit nightly builds, Chrome Canary, or being

comfortable with setting flags in Chrome.

A HORIZONTALLY PAGINATED SITE, WITH
TRANSITIONS

Ah, here’s the rub. We have functional navigation, but

precious few cues for the user. It’s not much good shoving

the visitor around various parts of the document if they

don’t get the pleasant whooshing experience of the

journey. You might be thinking, what about that new CSS

selector, target-something…? Well, my friend, you’re on

the right track. Let’s test it. We’re going to need to use a

bit of sleight of hand. While we’d like to simply offset the

containing element by the number of pages we’re moving

(like we did on Massive), CSS alone can’t give us that

254 24 ways 2012 edition

http://nightly.webkit.org/
http://nightly.webkit.org/
https://tools.google.com/dlpage/chromesxs/
http://blogs.adobe.com/cantrell/archives/2012/07/all-about-chrome-flags.html
http://media.24ways.org/2012/peretic/example-2.html#page-1

information, and that means we’re going to need to fake it

by expanding and collapsing pages as you navigate. Here

are the bits we’re going to need:

.page {

-webkit-transition: width 1s; // Naturally you're

going to want to include all the relevant prefixes here

float: left;

left: 0;

overflow: hidden;

position: relative;

width: 100vw;

}

.page:not(:target) {

width: 0;

}

Ah, but we’re not fooling anyone with that trick. As soon

as you move beyond a single page, the visitor’s disbelief

comes tumbling down when the linear page transitions

are unaffected by the distance the pages are allegedly

traveling. And you may have already noticed an even more

fatal flaw: I secretly linked you to the first page rather

than the unadorned URL. If you visit the same page with

no URL fragment, you get a blank screen. Sure, we could

force a redirect with some server-side trickery, but that

feels like cheating. Perhaps if we had the CSS4 subject

selector we could apply styles to the parent based on the

child being targeted by the URL. We might also need a few

Infinite Canvas: Moving Beyond the Page

24 ways 2012 edition 255

http://dev.w3.org/csswg/selectors4/#subject
http://dev.w3.org/csswg/selectors4/#subject

more abilities, like determining the total number of pages

and having relative sibling selectors (e.g. nth-sibling), but

we’d sure be a lot closer.

A HORIZONTALLY PAGINATED SITE, WITH
TRANSITIONS – NO CHEATING

Well, what other cards can we play? How about the

checkbox hack? Sure, it’s a garish trick, but it might be the

best we can do today. Check it out.

label {

cursor: pointer;

}

input {

display: none;

}

input:not(:checked) + .page {

max-height: 100vh;

width: 0;

}

Finally, we can see the first page thanks to the state we

are able to set on the appropriate radio button. Of course,

now we don’t have URLs, so maybe this isn’t a winning

plan after all. While our HTML and CSS toolkit may feel

primitive at the moment, we certainly don’t want to

sacrifice the addressability of the web. If there’s one

bedrock principle, that’s it.

256 24 ways 2012 edition

http://css-tricks.com/the-checkbox-hack/
http://css-tricks.com/the-checkbox-hack/
http://media.24ways.org/2012/peretic/example-3.html

A HORIZONTALLY PAGINATED SITE, WITH
TRANSITIONS – NO CHEATING AND A
GORGEOUS HOMEPAGE

Gorgeous may not be the right word, but our little

magazine is finally shaping up. Thanks to the CSS regions

spec, we’ve got an exciting new power, the ability to begin

an article in one place and bend it to our will. (Remember,

your everyday browser isn’t going to work for these

demos. Try the WebKit nightly build to see what we’re

talking about.) As with the rest of the examples, we’re

clearly abusing these features. Off-canvas layouts (you

can thank Luke Wroblewski for the name) are simply not

considered to be normal patterns… yet.

Here’s a quick look at what’s going on:

.excerpt-container {

float: left;

padding: 2em;

position: relative;

width: 100%;

}

.excerpt {

height: 16em;

}

.excerpt_name_article-1,

.page-1 .article-flow-region {

-webkit-flow-from: article-1;

}

Infinite Canvas: Moving Beyond the Page

24 ways 2012 edition 257

http://media.24ways.org/2012/peretic/example-4.html
http://media.24ways.org/2012/peretic/example-4.html
http://dev.w3.org/csswg/css3-regions/
http://dev.w3.org/csswg/css3-regions/
http://nightly.webkit.org/
http://www.lukew.com/ff/entry.asp?1569

.article-content_for_article-1 {

-webkit-flow-into: article-1;

}

The regions pattern is comprised of at least three

components: a beginning; an ending; and a source. Using

CSS, we’re able to define specific elements that should be

available for the content to flow through. If magazine-

style layouts are something you’re interested in learning

more about (and you should be), be sure to check out the

great work Adobe has been doing.

LOOKING FORWARD, AND BACKWARD

As designers, builders, and consumers of the web, we

share a desire to see the usability and enjoyability of

websites continue to rise. We are incredibly lucky to be

working in a time when a three-month-old website can be

laughably outdated. Our goal ought to be to improve upon

both the weaknesses and the strengths of the web

platform. We seek not only smoother transitions and

larger canvases, but fine-grained addressability. Our URLs

should point directly and unambiguously to specific

content elements, be they pages, sections, paragraphs or

words. Moreover, off-screen design patterns are essential

to accommodating and empowering the multitude of

devices we use to access the web. We should express the

desire that interpage links take advantage of the CSS

transitions which have been put to such good effect in

258 24 ways 2012 edition

http://html.adobe.com/webstandards/cssregions/
http://html.adobe.com/webstandards/cssregions/

every other aspect of our designs. Transitions aren’t just

nice to have, they’re table stakes in the highly competitive

world of native applications.

The tools and technologies we have right now allow us to

create smart, beautiful, useful webpages. With a little

help, we can begin removing the seams and sutures that

bind the web to an earlier, less sophisticated generation.

ABOUT THE AUTHOR

Co-founder of Full Stop Interactive, a web shop in Pittsburgh,

PA, and United Pixelworkers, a fake union for people who make

the things we see on our screens every day. Developer, writer,

reluctant businessman. Nathan Peretic would rather be

reading.

Infinite Canvas: Moving Beyond the Page

24 ways 2012 edition 259

http://fullstopinteractive.com
http://unitedpixelworkers.com
http://nathanperetic.com

Anna Debenham 24ways.org/201222

22. Unwrapping the Wii U
Browser

The Wii U was released on 18 November 2012
in the US, and 30 November in the UK. It’s
the first eighth generation home console,
the first mainstream second-screen device,
and it has some really impressive browser
specs.

Consoles are not just for games now: they’re marketed as

complete entertainment solutions. Internet connectivity

and browser functionality have gone from a nice-to-have

feature in game consoles to a selling point. In Nintendo’s

case, they see it as a challenge to design an experience

that’s better than browsing on a desktop.

Let’s make a browser that users can use on a
daily basis, something that can really handle
everything we’ve come to expect from a
browser and do it more naturally.
Sasaki – Iwata Asks on Nintendo.com

260 24 ways 2012 edition

http://24ways.org/201222
http://en.wikipedia.org/wiki/History_of_video_game_consoles_(eighth_generation)
http://www.youtube.com/watch?v=gzh053rMXdo
http://iwataasks.nintendo.com/interviews/#/wiiu/internet-browser/0/0

With 11% of people using console browsers to visit

websites, it’s important to consider these devices right

from the start of projects. Browsing the web on a TV or

handheld console is a very different experience to

browsing on a desktop or a mobile phone, and has many

usability implications.

CONSOLE BROWSER TESTING

When I’m testing a console browser, one of the first things

I do is run Niels Leenheer’s HTML5 test and Lea Verou’s

CSS3 test. I use these benchmarks as a rough comparison

of the standards each browser supports.

In October, IE9 came out for the Xbox 360, scoring 120/

500 in the HTML5 test and 32% in the CSS3 test. The PS

Vita also had an update to its browser in recent weeks,

jumping from 58/500 to 243/500 in the HTML5 test, and

32% to 55% in the CSS3 test. Manufacturers have been

stepping up their game, trying to make their browsing

experiences better.

To give you an idea of how the Wii U currently compares

to other devices, here are the test results of the other TV

consoles I’ve tested. I’ve written more in-depth notes on

TV and portable console browsers separately.

Unwrapping the Wii U Browser

24 ways 2012 edition 261

http://www.alistapart.com/articles/testing-websites-in-game-console-browsers/
http://www.alistapart.com/articles/testing-websites-in-game-console-browsers/
http://maban.co.uk/73
http://html5test.com/
http://css3test.com/
http://css3test.com/
http://www.xbox.com/en-GB/Xbox360
http://uk.playstation.com/psvita/
http://uk.playstation.com/psvita/
http://console.maban.co.uk

Year of
release

HTML5
score

CSS3
score

Notes

Wii
U

2012 258/

500

48% Runs a Netfront browser

(WebKit).

Wii 2006 89/500 Wouldn’t

run

Runs an Opera browser.

PS3 2006 68/500 38% Runs a Netfront browser

(WebKit).

Xbox
360

2005 120/

500

32% A browser for the Xbox (IE9)

was only recently released in

October 2012. The Kinect

provides voice and gesture

support. There’s also

SmartGlass, a second-screen

app for platforms including

Android and iOS.

The Wii U browser is Nintendo’s fifth attempt at a console

browser. Based on these tests, it’s already looking

promising.

WHY CONSOLE BROWSERS USED TO SUCK

It takes a lot of system memory to run a good browser,

and the problem of older consoles is that they don’t have

much memory available. The original Nintendo DS needs

a memory expansion pack just to run the browser,

262 24 ways 2012 edition

http://en.wikipedia.org/wiki/Wii_U_Internet_Browser
http://en.wikipedia.org/wiki/Nintendo_DS_%26_DSi_Browser#DS_memory_expansion_pak

because the 4MB it has on board isn’t enough. I noticed

that even on newer devices, some sites fail to load

because the system runs out of memory.

The Wii came out six years ago with an Opera browser.

Still being used today and with such low resources

available, the latest browser features can’t reasonably be

supported. There’s also pressure to add features such as

tabs, and enable gamers to use the browser while a game

is paused. Nintendo’s browser team have the advantage

of higher specs to play with on their new console (1GB of

memory dedicated to games, 1GB for the system), which

makes it easier to support the latest standards. But it’s

still a challenge to fit everything in.

…even though we have more memory, the
amount of memory we can use for the browser
is limited compared to a PC, so we’ve worked in
ways that efficiently allocates the available
memory per tab. To work on this, the
experience working on the browser for the
Nintendo 3DS system under a limited memory
constraint helped us greatly.
Sasaki – Iwata Asks on Nintendo.com

Unwrapping the Wii U Browser

24 ways 2012 edition 263

http://iwataasks.nintendo.com/interviews/#/wiiu/internet-browser/0/0

IN THE BOX

The Wii U consists of a console unit which plugs into a TV

(the first to support HD), and a wireless controller known

as a gamepad. The gamepad is a lot bigger than typical TV

console controllers, and it has a touchscreen on the front.

The touchscreen is resistive, responding to pressure

rather than electrical current. It’s intended to be used

with a stylus (provided) but fingers can be used.

It might look a bit like one, but the gamepad isn’t a

portable console designed to be taken out like the PS Vita.

The gamepad can be used as a standalone screen with the

TV switched off, as long as it’s within range of the console

unit – it basically piggybacks off it.

264 24 ways 2012 edition

It’s surprisingly lightweight for its size. It has a wealth of

detectors including 9-axis control. Sensors wake the

device from sleep when it’s picked up. There’s also a

camera on the front, and a headphone port and speakers,

with audio coming through both the TV and the gamepad

giving a surround sound feel.

Up to six tabs can be opened at once, and the browser can

be used while games are paused. There’s a really nice little

feature here – the current game’s name is saved as a

search option, so it’s really quick to look up contextual

content such as walk-throughs.

CONTROLS

Only one gamepad can be used to control the browser,

but if there are Wiimotes connected, they can be used as

pointers. This doesn’t let the user do anything except

point (they each get a little hand icon with a number on it

displayed on the screen), but it’s interesting that multiple

people can be interacting with a site at once.

Unwrapping the Wii U Browser

24 ways 2012 edition 265

See a bigger version

The gamepad can also be used as a simple TV remote

control, with basic functions such as bringing up the

programme guide, adjusting volume and changing

channel. I found the simplified interface much more

usable than a full-featured remote control.

I’m used to scrolling being sluggish on consoles, but the

Wii U feels almost as snappy as a desktop browser. Sites

load considerably faster compared with others I’ve tested.

266 24 ways 2012 edition

http://media.24ways.org/2012/debenham/diagramxl.png

Tilt-scroll

Holding down ZL and ZR while tilting the screen activates

an Instapaper-style tilt to scroll for going up and down the

page quickly, useful for navigating very long pages.

SECOND SCREEN

The TV mirrors most of what’s on the gamepad, although

the TV screen just displays the contents of the browser

window, while the gamepad displays the site along with

the browser toolbar.

When the user with the gamepad is typing, the keyboard

is hidden from the TV screen – there’s just a bit of text at

the top indicating what’s happening on the gamepad.

Pressing X draws an on-screen curtain over the TV, hiding

the content that’s on the gamepad from the TV. Pressing

X again opens the curtains, revealing what’s on the

gamepad. Holding the button down plays a drumroll

before it’s released and the curtains are opened. I can

imagine this being used in meetings as a fun presentation

tool.

Unwrapping the Wii U Browser

24 ways 2012 edition 267

In a sense, browsing is a personal activity, but
you get the idea that people will be coming and
going through the room. When I first saw the
curtain function, it made a huge impression on
me. I walked around with it all over the
company saying, “They’ve really come up with
something amazing!”
Iwata – Iwata Asks on Nintendo.com

268 24 ways 2012 edition

http://iwataasks.nintendo.com/interviews/#/wiiu/internet-browser/0/1

TEXT

Writing text

Unlike the capacitive screens on smartphones, the Wii U’s

resistive screen needs to be pressed harder than you’re

probably used to for registering a touch event. The

gamepad screen is big, which makes it much easier to type

on this device than other handheld consoles, even without

the stylus. It’s still more fiddly than a full-sized keyboard

though. When you’re designing forms, consider the extra

difficulty console users experience.

Unwrapping the Wii U Browser

24 ways 2012 edition 269

Although TV screens are physically big, they are typically

viewed from further away than desktop screens. This

makes readability an issue, so Nintendo have provided not

one, but four ways to zoom in and out:

▪ Double-tapping on the screen.

▪ Tapping the on-screen zoom icons in the browser

toolbar.

▪ Pressing the + and - buttons on the device.

▪ Moving the right analogue stick up and down.

As well as making it easy to zoom in and out, Nintendo

have done a few other things to improve the reading

experience on the TV.

System font

One thing you’ll notice pretty quickly is that the browser

lacks all the fonts we’re used to falling back to. Serif fonts

are replaced with the system’s sans-serif font. I couldn’t

get Typekit’s font loading method to work but Fontdeck,

which works slightly differently, does display custom

fonts.

270 24 ways 2012 edition

https://typekit.com/
http://fontdeck.com/

The system font has been optimised for reading at a distance
and is easy to distinguish because the lowercase e has a quirky
little tilt.

Don’t lose :focus

Using the D-pad to navigate is similar to using a keyboard.

Individual links are focused on, with a blue outline drawn

around them.

The recently redesigned An Event Apart site is an

example that improves the experience for keyboard and

D-pad users. They’ve added a yellow background colour

to links on focus. It feels nicer than the default blue

outline on its own.

Unwrapping the Wii U Browser

24 ways 2012 edition 271

http://aneventapart.com/

MEDIA

This year, television overtook PCs as the primary way to

watch online video content. TV is the natural environment

for video, and 42% of online TVs in the US are connected

to the internet via a console. Unfortunately, the <video>

tag isn’t supported in most console browsers, and those

that have Flash installed often have such an old version

that the video won’t play.

I suspect this has been a big driver in getting console

browsers to support web standards. The Wii U is designed

with video content in mind. It doesn’t support Flash but it

does support the HTML5 <video> tag.

Some video formats can’t be played, but those that are

supported bring up an optimised interface with a custom

scrub bar. This is where the device switches from

mirroring the TV to being a second screen. The full-screen

video is displayed on the TV, and the interface on the

gamepad.

The really clever bit is that while a video is playing, the

gamepad user can keep the video playing on the TV

screen while searching for another video or browsing the

web. This is the same for images too.

272 24 ways 2012 edition

https://www.npd.com/wps/portal/npd/us/news/press-releases/tvs-overtake-pcs-as-the-primary-screen-for-home-viewing-of-online-video/
https://www.npd.com/wps/portal/npd/us/news/press-releases/tvs-overtake-pcs-as-the-primary-screen-for-home-viewing-of-online-video/
http://allthingsd.com/20121219/your-internet-is-already-on-your-tv/
http://allthingsd.com/20121219/your-internet-is-already-on-your-tv/

On the left, the video is being shown full-screen on the TV and
gamepad. Only the gamepad gets the scrub bar. Clicking the
slide up/down button (circled) lets the gamepad user browse
the web while the video on the TV continues to play full-screen,
as shown in the image on the right.

There’s support for SVG images, and they look great on a

high-definition TV screen. However, there’s currently no

way to save or download files.

PREPARING FOR CONSOLE USERS

I wasn’t expecting to be quite as impressed as I am by this

browser. It’s encouraging to see console makers investing

time into improving the experience as well as the

standards support. In the same way there was an

explosion in mobile browser use as the experience got

better, I’m sure we’ll see the same with console browsers

as the experience improves.

Unwrapping the Wii U Browser

24 ways 2012 edition 273

The value of detection

Consoles offer a range of inputs including gesture, voice

and controller buttons. That means we have to think

about more diverse methods of input than just touch and

click.

This is where I could tell you to add some detection

methods such as user agent string sniffing to target a

different experience for console users. But the majority of

the time, that really isn’t necessary. TV console browsers

are getting a lot better at compensating for the living

room environment, and they’re designed to work with

websites that haven’t been optimised for this context.

Rather than tighten our grip on optimising experiences

for every device out there, we’ve got to be pragmatic.

There are so many new devices coming out every week,

our designs need to be future-proof rather than fixed to a

particular device in time.

274 24 ways 2012 edition

Even fuzzy device detection isn’t reliable – the PS Vita declares
itself to be mobile, a mobile device and a Kindle Fire tablet,
while the two DS devices state they’re neither mobile nor
mobile phones nor tablets, but computers. They’re weird
outliers, but they’re still important devices to consider.

Thinking broadly about how our designs will be interacted

with and viewed on a TV screen can help improve that

experience for everyone. This is about accessibility.

Considering how someone uses a site with a D-pad, we

can improve the experience for keyboard users. When we

think about colour contrast and text legibility on TV

screens, we can apply that for anyone who reads content

on the web. So why just offer this to the TV users?

Unwrapping the Wii U Browser

24 ways 2012 edition 275

https://developers.google.com/tv/web/docs/design_for_tv
https://developers.google.com/tv/web/docs/design_for_tv
http://24ways.org/2012/colour-accessibility/

Playing with the browser

…we want to prove to them through this Wii U
Internet Browser that browsing itself can be an
entertainment.
Iwata – Iwata Asks on Nintendo.com

Although I’m cautious about designing experiences for

specific devices, it’s fun to experiment with the

technology available. Nintendo have promised web

developers access to the Wii U’s buttons and sensors.

There’s already some JavaScript documentation, and a

demo for you to try.

If you’re interested in making your own games, thanks to

web standards, a lot of HTML5 games work already on

the device. Matt Hackett wrote up his experience of

testing the game he built, and he talks about some of

features the browser lacks. There’s certainly an incentive

there for console manufacturers to improve their HTML5

support so more games can be played in their browser.

What excites me about consoles is that it’s like looking at

what might be available to us in future browsers. As well

as thinking about how our sites work on small screens, we

should also consider big screens. We’re already figuring

out how images should work at different screen widths

and connection speeds, but we’ve also got some

interesting challenges ahead of us catering for second

screen experiences and 3D-enabled devices.

276 24 ways 2012 edition

http://iwataasks.nintendo.com/interviews/#/wiiu/internet-browser/0/2
http://iwataasks.nintendo.com/interviews/#/wiiu/internet-browser/0/2
http://iwataasks.nintendo.com/interviews/#/wiiu/internet-browser/0/2
http://wiiubrew.org/wiki/Internet_Browser#Wii_U_Scripting_Functionality
http://www.nintendo.co.jp/wiiu/hardware/features/internetbrowser/sample.html
http://www.lostdecadegames.com/wii-u-browser/
http://vimeo.com/44036520
http://vimeo.com/44036520
http://news.cnet.com/8301-33692_3-57446945-305/e3-2012-year-of-the-second-screen-with-xbox-smart-glass-and-wii-u/
http://news.cnet.com/8301-33692_3-57446945-305/e3-2012-year-of-the-second-screen-with-xbox-smart-glass-and-wii-u/
http://console.maban.co.uk/device/3dsxl.php

So, this Christmas, if you’re huddled round the game

console or a smart TV, give the browser in it a try.

ABOUT THE AUTHOR

Anna Debenham is a freelance front-end developer living in

Brighton in the UK.

She’s the author of Front-end Style Guides, and when she’s not

playing on them, she’s testing as many game console browsers

as she can get her hands on.

Unwrapping the Wii U Browser

24 ways 2012 edition 277

http://www.fivesimplesteps.com/products/front-end-style-guides
http://console.maban.co.uk/

Andrew Clarke 24ways.org/201223

23. Monkey Business

“Too expensive.” “Over-priced.” “A bit
rich.”

They all mean the same thing.

When you say that something’s too expensive, you’re

doing much more than commenting on a price. You’re

questioning the explicit or implicit value of a product or a

service. You’re asking, “Will I get out of it what you want

me to pay for it?” You’re questioning the competency,

judgement and possibly even integrity of the individual or

company that gave you that price, even though you don’t

realise it. You might not be saying it explicitly, but what

you’re implying is, “Have you made a mistake?”, “Am I

getting the best deal?”, “Are you being honest with me?”,

“Could I get this cheaper?”

Finally, you’re being dishonest, because deep down you

know all too well that there’s no such thing as too

expensive.

Why?

278 24 ways 2012 edition

http://24ways.org/201223

It doesn’t matter what you’re questioning the price of. It

could be a product, a service or the cost of an hour, day or

week of someone’s time. Whatever you’re buying, too

expensive is always an excuse. Saying it shifts

acceptability of a price back to the person who gave it.

What you should say, but are too afraid to admit, is:

▪ “It’s more money than I wanted to pay.”

▪ “It’s more than I estimated it would cost.”

▪ “It’s more than I can afford.”

Everyone who’s given a price for a product or service will

have been told at some point that it’s too expensive. It’s

never comfortable to hear that. Thoughts come thick and

fast: “What do I do?” “How do I react?” “Do I really want

the business?” “Am I prepared to negotiate?” “How much

am I willing to compromise?”

It’s easy to be defensive when someone questions a price,

but before you react, stay calm and remember that if

someone says what you’re offering is too expensive,

they’re saying more about themselves and their situation

than they are about your price. Learn to read that

situation and how to follow up with the right questions.

Imagine you’ve quoted someone for a week of your time.

“That’s too expensive,” they respond. How should you

handle that? Think about what they might otherwise be

saying.

Monkey Business

24 ways 2012 edition 279

◆◆◆

“It’s more money than I want to pay” may mean that they

don’t understand the value of your service. How could you

respond?

Start by asking what similar projects they’ve worked on

and the type of people they worked with. Find out what

they paid and what they got for their money, because it’s

possible what you offer is different from what they had

before. Ask if they saw a return on that previous

investment. Maybe their problem isn’t with your headline

price, but the value they think they’ll receive. Put the

emphasis on value and shift the conversation to what

they’ll gain, rather than what they’ll spend.

It’s also possible they can’t distinguish your service from

those of your competitors, so now would be a great time

to explain the differences. Do you work faster? Explain

how that could help them launch faster, get customers

faster, make money faster. Do you include more?

Emphasise that, and how unique the experience of

working with you will be.

◆◆◆

“It’s more than I estimated it would cost” could mean that

your customer hasn’t done their research properly. You’d

never suggest that to them, of course, but you should ask

how they’ve arrived at their estimate. Did they base it on

280 24 ways 2012 edition

work they’ve purchased previously? How long ago was

that? Does it come from comparable work or from a

different sector?

Help your customer by explaining how you arrived at your

estimate. Break down each element and while you’re

doing that, emphasise the parts of your process that you

know will appeal to them. If you know that they’ve had

difficulty with something in the past, explain how your

approach will benefit them. People almost always value a

positive experience more than the money they’ll save.

◆◆◆

“It’s more than I can afford” could mean they can’t afford

what you offer at all, but it could also mean they can’t

afford it right now or all at once. So ask if they could

afford what you’re asking if they spread payment over a

longer period? Ask, “Would that mean you’ll give me the

business?”

It’s possible they’re asking for too much for what they can

afford to pay. Will they compromise? Can you reach an

agreement on something less? Ask, “If we can agree

what’s in and what’s out, will you give me the business?”

What can they afford? When you know, you’re in a good

position to decide if the deal makes good business sense,

for both of you. Ask, “If I can match that price, will you

give me the business?”

Monkey Business

24 ways 2012 edition 281

There’s no such thing as “a bit rich”, only ways for you to

get to know your customer better. There’s no such thing

as “over-priced”, only opportunities for you to explain

yourself better. You should relish those opportunities.

There’s really also no such thing as “too expensive”, just

ways to set the tone for your relationship and help you

develop that relationship to a point where money will be

less of a deciding factor.

UNFINISHED BUSINESS

Join me and my co-host Anna Debenham next year for

Unfinished Business, a new discussion show about the

business end of working in web, design and creative

industries.

282 24 ways 2012 edition

http://www.maban.co.uk
http://unfinished.bz/

ABOUT THE AUTHOR

Andrew Clarke runs Stuff and Nonsense, a tiny web design

company where they make fashionably flexible websites.

Andrew’s the author of Transcending CSS and Hardboiled Web

Design and hosts the popular weekly podcast Unfinished

Business where he discusses the business side of web, design

and creative industries with his guests. He tweets as

@malarkey.

Monkey Business

24 ways 2012 edition 283

http://stuffandnonsense.co.uk/
http://unfinished.bz/
http://unfinished.bz/
http://twitter.com/malarkey

Jon Tan 24ways.org/201224

24. Science!

Sometimes we want to capture people’s
attention at a glance to communicate
something fast. At other times we want to
have the interface fade away into the
background, letting people paint pictures in
their minds with our words (if you’ll forgive
a little flowery festive flourish).

I tend to distinguish between these two broad objectives

as designing for impact on the one hand, and designing for

immersion on the other. What defines them is

interruption. Impact needs an attention-grabbing

interruption. Immersion requires us to remove

interruption from the interface. Careful design

deliberately interrupts but doesn’t accidentally disrupt. If

that seems to make sense to you, then you’ll find the

following snippets of science as useful as I did.

SACCADES AND FIXATIONS

As you’re reading this your eyes are skipping along the

lines in tiny jumps. During each jump everything is

blurred. Each jump ends in a small pause so your brain can

284 24 ways 2012 edition

http://24ways.org/201224

take a snapshot of the letters. It arranges them into

words, and then parses out the meaning — fast — in

around a quarter of a second.

The jumps are called saccades. The pauses are called

fixations. Sometimes we take regressive saccades,

skipping back to reread. There’s a simple example in the

excellent little book, Detail in Typography, by Jost Hochuli.

If you want to explore the science of reading in much

more depth, I recommend the excellent paper, “The

Science of Word Recognition”, by Dr Kevin Larson of

Microsoft.

Science!

24 ways 2012 edition 285

http://www.hyphenpress.co.uk/books/978-0-907259-34-3
http://media.24ways.org/2012/tan/fig1.jpg
http://www.microsoft.com/typography/ctfonts/wordrecognition.aspx
http://www.microsoft.com/typography/ctfonts/wordrecognition.aspx

To design for legibility and readability is to design for

saccades and fixations. It’s the craft of making it easy for

people’s brains to extract meaning, using techniques like

good contrast, font size, spacing and structure, and only

interrupting the reading experience deliberately.

SCAN PATHS

At some point when visiting 24 ways you probably

scanned the screen to get orientated. The journey your

eyes took is known as a scan path. Scan paths are made up

of saccades and fixations. Right now you’re following a

scan path as you read, along one line, and down to the

next. This is a map of the scan paths found by Olivier Le

Meur from observing people looking at Rembrandt’s

Leçon d’anatomie:

286 24 ways 2012 edition

http://people.irisa.fr/Olivier.Le_Meur/
http://people.irisa.fr/Olivier.Le_Meur/

For websites, the scan path is a little different. This is an

aggregate scan path of Google from LC Technologies:

Science!

24 ways 2012 edition 287

http://www.eyegaze.com/products/market-research-usability/attachment/lct-google-search-scan-path-full-2/

The average shape of a website scan path becomes

clearer in this average scan path taken by forty-six people

during research by the Poynter Institute, the Estlow

Center for Journalism & New Media, and Eyetools:

288 24 ways 2012 edition

http://media.24ways.org/2012/tan/fig4.gif
http://www.poynter.org/
http://estlow.org/
http://estlow.org/
http://eyetools.com/

Just like when we read text arranged left to right in a

vertical column, scan paths follow a roughly Z-shaped

pattern from the top left to bottom right. Sometimes we

skip back to reread a word or sentence, or glance again at

a specific element, but the Z-shaped scan path persists.

Designing for scan paths is to organise content to help

people move through an interface to get orientated, and

to read.

The elements that are important enough to need impact

must interrupt the scan path and clearly call attention to

themselves. However, they don’t always need to clip

people round the ear from multiple directions at once to

Science!

24 ways 2012 edition 289

get attention. It helps to list elements by importance. That

gives us an interruption hierarchy to work with. Elements

can then interrupt the design with degrees of contrast to

the rest of the content using either positioning,

treatment, or both. Ta-da! Impact achieved, but gently. No

clips round the ear required.

SWINGING MOOD

Human beings are resilient. Among the immersion and

occasional interruptions, we even like a little disruption,

especially if it’s absurd and funny. The Ling’s Cars website

proves it. In fact, we’re so resilient that we can work

around all kinds of mayhem to get a seemingly simple task

done.

In one study, “The Aesthetics of Reading” (PDF, 480Kb),

Dr Kevin Larson of Microsoft and Dr Rosalind Picard of

MIT explored the effect of good typography on mood.

Two versions of the New Yorker ePeriodical were created.

One was typeset well and the other poorly.

290 24 ways 2012 edition

http://www.lingscars.com/
http://affect.media.mit.edu/pdfs/05.larson-picard.pdf

They engaged twenty volunteers — half male, half female

— and showed the good version to half of the participants.

The other half saw the poor version.

The good doctors found that, “there are important

differences between good and poor typography that

appear to have little effect on common performance

measures such as reading speed and comprehension.” In

short, good typography didn’t help people read faster or

comprehend better.

Oh. On the face of it that seems to invalidate what we

designers do. Hold your horses, though! They also found

that “the participants who received the good typography

performed better on relative subjective duration and on

certain cognitive tasks”, and that “good typography

induces a good mood.”

This means that even though there were no actual

differences in reading speed and comprehension, the

people who read the version with good typography

Science!

24 ways 2012 edition 291

http://media.24ways.org/2012/tan/fig6.gif

thought that it took less time to read, and were induced

into a good mood by doing so. Not only that, but by being

in a good mood, people were more capable of completing

creative tasks faster.

That was a revelation to me. It means that the study

showed there is a positive, measurable, emotional and

perceptual benefit to good typography and design. To

paraphrase: time and tasks fly when you’re having fun!

292 24 ways 2012 edition

Source: Nationaal Archief of the Netherlands: Cheering man after the

first goal, Netherlands vs. Belgium, Amsterdam, 1931.

So, among all my talk of saccades, fixations, scan paths

and typesetting, there is science, and the science helps us

qualify our design decisions when we need to, and do our

jobs better. The science helps us understand how people

will interact with our work, and what the actual benefits

Science!

24 ways 2012 edition 293

http://www.flickr.com/photos/nationaalarchief/4681460803/

are for them, and the products or organisations we serve.

Good design equals a subjectively quicker experience, a

good mood, objectively faster completion of tasks, and

happiness for everyone. Thank you, science!

ABOUT THE AUTHOR

Jon Tan is a designer and typographer who co-founded the web

fonts service, Fontdeck. He’s a partner in Fictive Kin, where he

works with friends making things like Brooklyn Beta and

Mapalong.

His addiction to web typography has led him to share snippets

of type news via @t8y. He also writes for publications like

Typographica and 8 Faces, speaks at international events like

An Event Apart, and works with such organisations as the BBC.

294 24 ways 2012 edition

http://jontangerine.com/
http://fontdeck.com/
http://fictivekin.com/
http://brooklynbeta.org/
http://mapalong.com/
http://twitter.com/t8y
http://typographica.org/
http://8faces.com/
http://aneventapart.com/speakers/jon-tan

Jon is based in Mild Bunch HQ, the co-working studio he

started in Bristol, UK. He can often be found wrestling with his

two sons, losing, then celebrating the fact as @jontangerine on

Twitter.

Science!

24 ways 2012 edition 295

http://mildbunch.org/
http://twitter.com/jontangerine

	Credits
	2012
	HTML5 Video Bumpers
	Adding bumpers to a video
	HTML5 bumpers
	Wrong
	Swappin’ it
	Beefing it up
	But, my video!
	Tidying things up
	The end credits
	About the author

	Starting Your Project on the Right Foot (and Keeping It There)
	Jump-starting a project
	Design is design
	If all else fails, start with the footer
	Save the details
	Have a plan when you start and stop designing
	Content is king
	About the author

	Being Prepared To Contribute
	Blessed are the curators
	Here’s my soapbox
	About the author

	Colour Accessibility
	What is colour blindness?
	How does it happen?
	What does it look like?
	What can we do?
	Include colour names and show examples
	Avoid colour-specific instructions
	Don’t rely on colour coding
	Provide alternatives and customization
	Pay attention to contrast
	Check with a simulator

	About the author

	Responsive Responsive Design
	Create a culture of performance
	Embrace the pain
	Watch for low-hanging fruit
	Be careful with images
	Conditional loading
	Go vanilla?
	Start thinking beyond visual aesthetics
	About the author

	Flashless Animation
	Animation in a Flashless world
	The walk cycle
	The background
	The music
	Really impress your friends by adding a run cycle
	The run cycle
	The music: extended play with HTML5 audio sprites
	The load screen
	The background
	Voilà! The finished animation!

	About the author

	Think First, Code Later
	Minimum viable planning
	What the framework?
	Deleting jQuery
	There is no right answer
	About the author

	Giving CSS Animations and Transitions Their Place
	Same eggs, more baskets
	If we don’t need it, why load it?
	Summing it all up
	About the author

	Should We Be Reactive?
	Evolution
	Embracing flexibility
	The real world
	Now we have data…
	The reactive web?
	Reality bites
	It’s all about communication
	The bottom line
	About the author

	Fluent Design through Early Prototyping
	Speaking fluent design
	Wireframes are incomplete sentences
	A prototype is multiple complete sentences
	How to make a prototype in no time and with no effort
	Prototyping drawbacks, and perceived drawbacks
	What to do next
	About the author

	Responsive Images: What We Thought We Needed
	Enter Scrooge
	1. We need better formats, not more markup
	2. Art direction doesn’t belong in markup
	3. The size of a display has little relation to the size of an image
	4. We haven’t lived with the problem long enough
	5. Images and the web aesthetic
	Building for the future
	About the author

	Design Systems
	Responsive design: where we’ve been going wrong
	Design systems: the principles
	What are design systems?
	Components you might keep the same across viewports
	Components you might differentiate across viewports
	Content: it must always be the same

	The practical: core visual components
	Typography first
	Where typography meets layout
	Grids and layouts
	Shape or form
	Colour

	The process
	Detaching design considerations from viewport widths
	Design in the browser
	Mock-ups and breakpoints

	The future
	About the author

	Redesigning the Media Query
	Thinking in Columns
	Demo

	Responsive Images
	Demo

	Creating a Framework
	Perspective Regained
	About the author

	Using Questionnaires for Design Research
	How do you ask the right questions?
	So let’s get started!
	Who are you designing for?
	Where do I start?
	Why run a survey?

	OK, what should I do first?
	What it is about
	What it is not about

	Kinds of questions
	What to ask
	How to ask
	Look and feel
	Ethical considerations
	Tools
	Analysis
	Write a report

	Top 10 things to remember when using questionnaires for design research:
	Some useful resources for further study
	Online research
	Market research books on questionnaire design

	About the author

	A Harder-Working Class
	A primer on attribute selectors
	The class-attribute selector
	More object-oriented, more scalable and modular
	50+ shades of specificity
	Smarter CSS
	More flexible selectors
	Selector performance
	Conclusion
	About the author

	How to Make Your Site Look Half-Decent in Half an Hour
	1. Use Bootstrap
	2. Pimp Bootstrap
	3. Fonts
	4. Textures
	5. Icons
	6. CSS3
	7. Add a twist
	8. Colour schemes
	9. Read on
	About the author

	Cut Copy Paste
	Create unique colours
	Make something breathe using a sine wave
	Snap position to grid
	Calculate the distance between two objects
	Find the X- and Y-position between two objects
	Distribute objects equally around a circle
	Use modulus to make a grid
	Merge CSV files into one file
	Create a symbolic link to another file or folder
	You can do it, in the mix
	About the author

	Giving Content Priority with CSS3 Grid Layout
	What is CSS3 grid layout?
	Declaring a grid
	Positioning items on the grid

	Creating grid systems
	This works, but…
	Calculating grid position using LESS
	Media queries and the grid
	Laying out a simple website
	Layout, source order and the idea of content priority
	Why frustrate ourselves with specifications we can’t yet use in production?
	About the author

	Direction, Distance and Destinations
	Future developments
	About the author

	Content Planning Demystified
	Know your poison
	Prevent all preventable damage
	Plan for the marathon, not the sprint
	About the author

	Infinite Canvas: Moving Beyond the Page
	What I’d like for Christmas
	A print magazine in HTML clothing
	What can we do?
	A horizontally paginated site
	A horizontally paginated site, with transitions
	A horizontally paginated site, with transitions – no cheating
	A horizontally paginated site, with transitions – no cheating and a gorgeous homepage
	Looking forward, and backward
	About the author

	Unwrapping the Wii U Browser
	Console browser testing
	Why console browsers used to suck
	In the box
	Controls
	Tilt-scroll

	Second screen
	Text
	Writing text
	System font
	Don’t lose :focus

	Media
	Preparing for console users
	The value of detection
	Playing with the browser

	About the author

	Monkey Business
	Unfinished Business
	About the author

	Science!
	Saccades and fixations
	Scan paths
	Swinging mood
	About the author

