

Credits

24 ways is the advent calendar for web
geeks. For twenty-four days each December
we publish a daily dose of web design and
development goodness to bring you all a
little Christmas cheer.

▪ 24 ways is brought to you by Perch CMS

▪ Produced by Drew McLellan, Brian Suda, Anna

Debenham and Owen Gregory.

▪ Designed by Paul Robert Lloyd.

▪ eBook published by edgeofmyseat.com and produced

by Rachel Andrew.

▪ Possible only with the help and dedication of our

authors.

2 24 ways 2013 edition

http://grabaperch.com/?ref=24w01
http://allinthehead.com/
http://suda.co.uk/
http://maban.co.uk/
http://maban.co.uk/
http://fullcreammilk.co.uk/
http://paulrobertlloyd.com/
http://edgeofmyseat.com
http://rachelandrew.co.uk/
http://24ways.org/authors/
http://24ways.org/authors/

2013

Scourge of browser vendors everywhere,
WaSP buzzed its last in March. Dave Shea’s
CSS Zen Garden celebrated its tenth
anniversary in May, and Google Glass was
released. Ever broad in its interests, 24 ways
tamed Grunt, URLs and GitHub Pages,
encouraged readers to write and publish
books, and leavened all that with goodies on
project management, web typography and
SVG.

URL Rewriting for the Fearful .. 5

Make Your Browser Dance..21

Coding Towards Accessibility...33

Git for Grown-ups ...48

JavaScript: Taking Off the Training Wheels58

Levelling Up ...67

Animating Vectors with SVG ..76

2013

24 ways 2013 edition 3

Kill It With Fire! What To Do With Those Dreaded

FAQs ...84

Keeping Parts of Your Codebase Private on GitHub95

Why Bother with Accessibility?..104

Grunt for People Who Think Things Like Grunt are Weird

and Hard ..124

The Responsive Hover Paradigm ...147

Data-driven Design with an Annual Survey.......................163

Home Kanban for Domestic Bliss ..177

In Their Own Write: Web Books and their Authors.......185

Credits and Recognition ..203

Project Hubs: A Home Base for Design Projects.............214

Get Started With GitHub Pages (Plus Bonus Jekyll)......224

How to Write a Book ..245

Untangling Web Typography ...255

Managing a Mind ..262

Bringing Design and Research Closer Together271

The Command Position Principle ..289

Run Ragged...297

4 24 ways 2013 edition

Drew McLellan 24ways.org/201301

1. URL Rewriting for the
Fearful

I think it was Marilyn Monroe who said, “If
you can’t handle me at my worst, please just
fix these rewrite rules, I’m getting an
internal server error.” Even the blonde
bombshell hated configuring URL rewrites
on her website, and I think most of us know
where she was coming from.

The majority of website projects I work on require some

amount of URL rewriting, and I find it mildly enjoyable — I

quite like a good rewrite rule. I suspect you may not share

my glee, so in this article we’re going to go back to basics

to try to make the whole rigmarole more understandable.

When we think about URL rewriting, usually that means

adding some rules to an .htaccess file for an Apache web

server. As that’s the most common case, that’s what I’ll be

sticking to here. If you work with a different server,

URL Rewriting for the Fearful

24 ways 2013 edition 5

http://24ways.org/201301

there’s often documentation specifically for translating

from Apache’s mod_rewrite rules. I even found an

automatic converter for nginx.

This isn’t going to be a comprehensive guide to every URL

rewriting problem you might ever have. That would take

us until Christmas. If you consider yourself a trial-and-

error dabbler in the HTTP 500-infested waters of URL

rewriting, then hopefully this will provide a little bit more

of a basis to help you figure out what you’re doing. If

you’ve ever found yourself staring at the white screen of

death after screwing up your .htaccess file, don’t worry.

As Michael Jackson once insipidly whined, you are not

alone.

THE BASICS

Rewrite rules form part of the Apache web server’s

configuration for a website, and can be placed in a number

of different locations as part of your virtual host

configuration. By far the simplest and most portable

option is to use an .htaccess file in your website root.

Provided your server has mod_rewrite available, all you

need to do to kick things off in your .htaccess file is:

RewriteEngine on

The general formula for a rewrite rule is:

6 24 ways 2013 edition

http://winginx.com/htaccess

RewriteRule URL/to/match URL/to/use/if/it/matches

[options]

When we talk about URL rewriting, we’re normally talking

about one of two things: redirecting the browser to a

different URL; or rewriting the URL internally to use a

particular file. We’ll look at those in turn.

Redirects

Redirects match an incoming URL, and then redirect the

user’s browser to a different address. These can be useful

for maintaining legacy URLs if content changes location as

part of a site redesign. Redirecting the old URL to the new

location makes sure that any incoming links, such as those

from search engines, continue to work.

In 1998, Sir Tim Berners-Lee wrote that Cool URIs don’t

change, encouraging us all to go the extra mile to make

sure links keep working forever. I think that sometimes it’s

fine to move things around — especially to correct bad

URL design choices of the past — provided that you can do

so while keeping those old URLs working. That’s where

redirects can help.

A redirect might look like this

RewriteRule ^article/used/to/be/here.php$ /article/now/

lives/here/ [R=301,L]

URL Rewriting for the Fearful

24 ways 2013 edition 7

http://www.w3.org/Provider/Style/URI.html
http://www.w3.org/Provider/Style/URI.html

Rewriting

By default, web servers closely map page URLs to the files

in your site. On receiving a request for http://example.com/

about/history.html the server goes to the configured folder

for the example.com website, and then goes into the about

folder and returns the history.html file.

A rewrite rule changes that process by breaking the direct

relationship between the URL and the file system. “When

there’s a request for /about/history.html” a rewrite rule

might say, “use the file /about_section.php instead.”

This opens up lots of possibilities for creative ways to map

URLs to the files that know how to serve up the page.

Most MVC frameworks will have a single rule to rewrite

all page URLs to one single file. That file will be a script

which kicks off the framework to figure out what to do to

serve the page.

RewriteRule ^for/this/url/$ /use/this/file.php [L]

MATCHING PATTERNS

By now you’ll have noted the weird ^ and $ characters

wrapped around the URL we’re trying to match. That’s

because what we’re actually using here is a pattern.

Technically, it is what’s called a Perl Compatible Regular

Expression (PCRE) or simply a regex or regexp. We’ll call it

a pattern because we’re not animals.

8 24 ways 2013 edition

What are these patterns? If I asked you to enter your

credit card expiry date as MM/YY then chances are you’d

wonder what I wanted your credit card details for, but

you’d know that I wanted a two-digit month, a slash, and a

two-digit year. That’s not a regular expression, but it’s the

same idea: using some placeholder characters to define

the pattern of the input you’re trying to match.

We’ve already met two regexp characters.

^̂

Matches the beginning of a string

$$

Matches the end of a string

When a pattern starts with ^ and ends with $ it’s to make

sure we match the complete URL start to finish, not just

part of it. There are lots of other ways to match, too:

[0-9][0-9]

Matches a number, 0–9. [2-4] would match numbers

2 to 4 inclusive.

[a-z][a-z]

Matches lowercase letters a–z

[A-Z][A-Z]

Matches uppercase letters A–Z

URL Rewriting for the Fearful

24 ways 2013 edition 9

[a-z0-9][a-z0-9]

Combining some of these, this matches letters a–z

and numbers 0–9

These are what we call character groups. The square

brackets basically tell the server to match from the

selection of characters within them. You can put any

specific characters you’re looking for within the brackets,

as well as the ranges shown above.

However, all these just match one single character. [0-9]

would match 8 but not 84 — to match 84 we’d need to use

[0-9] twice.

[0-9][0-9]

So, if we wanted to match 1984 we could to do this:

[0-9][0-9][0-9][0-9]

…but that’s getting silly. Instead, we can do this:

[0-9]{4}

That means any character between 0 and 9, four times. If

we wanted to match a number, but didn’t know how long

it might be (for example, a database ID in the URL) we

could use the + symbol, which means one or more.

[0-9]+

This now matches 1, 123 and 1234567.

10 24 ways 2013 edition

Putting it into practice

Let’s say we need to write a rule to match article URLs for

this website, and to rewrite them to use /article.php under

the hood. The articles all have URLs like this:

2013/article-title/

They start with a year (from 2005 up to 2013, currently),

a slash, and then have a URL-safe version of the article

title (a slug), ending in a slash. We’d match it like this:

^[0-9]{4}/[a-z0-9-]+/$

If that looks frightening, don’t worry. Breaking it down,

from the start of the URL (^) we’re looking for four

numbers ([0-9]{4}). Then a slash — that’s just literal —

and then anything lowercase a–z or 0–9 or a dash ([a-

z0-9-]) one or more times (+), ending in a slash (/$).

Putting that into a rewrite rule, we end up with this:

RewriteRule ^[0-9]{4}/[a-z0-9-]+/$ /article.php

We’re getting close now. We can match the article URLs

and rewrite them to use article.php. Now we just need to

make sure that article.php knows which article it’s

supposed to display.

URL Rewriting for the Fearful

24 ways 2013 edition 11

Capturing groups, and replacements

When rewriting URLs you’ll often want to take important

parts of the URL you’re matching and pass them along to

the script that handles the request. That’s usually done by

adding those parts of the URL on as query string

arguments. For our example, we want to make sure that

article.php knows the year and the article title we’re

looking for. That means we need to call it like this:

/article.php?year=2013&slug=article-title

To do this, we need to mark which parts of the pattern we

want to reuse in the destination. We do this with round

brackets or parentheses. By placing parentheses around

parts of the pattern we want to reuse, we create what’s

called a capturing group. To capture an important part of

the source URL to use in the destination, surround it in

parentheses.

Our pattern now looks like this, with parentheses around

the parts that match the year and slug, but ignoring the

slashes:

^([0-9]{4})/([a-z0-9-]+)/$

To use the capturing groups in the destination URL, we

use the dollar sign and the number of the group we want

to use. So, the first capturing group is $1, the second is $2

and so on. (The $ is unrelated to the end-of-pattern $ we

used before.)

12 24 ways 2013 edition

RewriteRule ^([0-9]{4})/([a-z0-9-]+)/$

/article.php?year=$1&slug=$2

The value of the year capturing group gets used as $1 and

the article title slug is $2. Had there been a third group,

that would be $3 and so on. In regexp parlance, these are

called back-references as they refer back to the pattern.

OPTIONS

Several brain-taxing minutes ago, I mentioned some

options as the final part of a rewrite rule. There are lots of

options (or flags) you can set to change how the rule is

processed. The most useful (to my mind) are:

R=301R=301

Perform an HTTP 301 redirect to send the user’s

browser to the new URL. A status of 301 means a

resource has moved permanently and so it’s a good

way of both redirecting the user to the new URL, and

letting search engines know to update their indexes.

LL

Last. If this rule matches, don’t bother processing the

following rules.

Options are set in square brackets at the end of the rule.

You can set multiple options by separating them with

commas:

URL Rewriting for the Fearful

24 ways 2013 edition 13

http://httpd.apache.org/docs/current/rewrite/flags.html
http://httpd.apache.org/docs/current/rewrite/flags.html

RewriteRule ^([0-9]{4})/([a-z0-9-]+)/$

/article.php?year=$1&slug=$2 [L]

or

RewriteRule ^about/([a-z0-9-]+).jsp/$ /about/$1/

[R=301,L]

COMMON PITFALLS

Once you’ve built up a few rewrite rules, things can start

to go wrong. You may have been there: a rule which looks

perfectly good is somehow not matching. One common

reason for this is hidden behind that [L] flag.

L for Last is a useful option to tell the rewrite engine to

stop once the rule has been matched. This is what it does

— the remaining rules in the .htaccess file are then

ignored. However, once a URL has been rewritten, the

entire set of rules are then run again on the new URL. If

the new URL matches any of the rules, that too will be

rewritten and on it goes.

One way to avoid this problem is to keep your ‘real’ pages

under a folder path that will never match one of your

rules, or that you can exclude from the rewrite rules.

14 24 ways 2013 edition

USEFUL SNIPPETS

I find myself reusing the same few rules over and over

again, just with minor changes. Here are some useful

examples to refer back to.

Excluding a directory

As mentioned above, if you’re rewriting lots of fancy URLs

to a collection of real files it can be helpful to put those

files in a folder and exclude it from rewrite rules. This

helps solve the issue of rewrite rules reapplying to your

newly rewritten URL. To exclude a directory, put a rule

like this at the top of your file, before your other rules.

Our files are in a folder called _source, the dash in the rule

means do nothing, and the L flag means the following rules

won’t be applied.

RewriteRule ^_source - [L]

This is also useful for excluding things like CMS folders

from your website’s rewrite rules

RewriteRule ^perch - [L]

Adding or removing www from the domain

Some folk like to use a www and others don’t. Usually, it’s

best to pick one and go with it, and redirect the one you

don’t want. On this site, we don’t use www.24ways.org so

we redirect those requests to 24ways.org.

URL Rewriting for the Fearful

24 ways 2013 edition 15

This uses a RewriteCond which is like an if for a rewrite

rule: “If this condition matches, then apply the following

rule.” In this case, it’s if the HTTP HOST (or domain name,

basically) matches this pattern, then redirect everything:

RewriteCond %{HTTP_HOST} ^www.24ways.org$ [NC]

RewriteRule ^(.*)$ http://24ways.org/$1 [R=301,L]

The [NC] flag means ‘no case’ — the match is case-

insensitive. The dots in the domain are escaped with a

backslash, as a dot is a regular expression character which

means match anything, so we escape it because we literally

mean a dot in this instance.

Removing file extensions

Sometimes all you need to do to tidy up a URL is strip off

the technology-specific file extension, so that /about/

history.php becomes /about/history. This is easily achieved

with the help of some more rewrite conditions.

RewriteCond %{REQUEST_FILENAME} !-f

RewriteCond %{REQUEST_FILENAME} !-d

RewriteCond %{REQUEST_FILENAME}.php -f

RewriteRule ^(.+)$ $1.php [L,QSA]

This says if the file being asked for isn’t a file (!-f) and if it

isn’t a directory (!-d) and if the file name plus .php is an

actual file (-f) then rewrite by adding .php on the end. The

QSA flag means ‘query string append’: append the existing

query string onto the rewritten URL.

16 24 ways 2013 edition

It’s these sorts of more generic catch-all rules that you

need to watch out for when your .htaccess gets rerun

after a successful match. Without care they can easily

rematch the newly rewritten URL.

LOGGING FOR WHEN IT ALL GOES WRONG

Although not possible within your .htaccess file, if you

have access to your Apache configuration files you can

enable rewrite logging. This can be useful to track down

where a rule is going wrong, if it’s matching incorrectly or

failing to match. It also gives you an overview of the

amount of work being done by the rewrite engine,

enabling you to rearrange your rules and maximise

performance.

RewriteEngine On

RewriteLog "/full/system/path/to/rewrite.log"

RewriteLogLevel 5

To be doubly clear: this will not work from an .htaccess

file — it needs to be added to the main Apache

configuration files. (I sometimes work using MAMP PRO

locally on my Mac, and this can be pasted into the snappily

named Customized virtual host general settings box in

the Advanced tab for your site.)

URL Rewriting for the Fearful

24 ways 2013 edition 17

The white screen of death

One of the most frustrating things when working with

rewrite rules is that when you make a mistake it can result

in the server returning an HTTP 500 Internal Server Error.

This in itself isn’t an error message, of course. It’s more of

a notification that an error has occurred. The real error

message can usually be found in your Apache error log.

If you have access to your server logs, check the Apache

error log and you’ll usually find a much more descriptive

error message, pointing you towards your mistake. (Again,

if using MAMP PRO, go to Server, Apache and the View

Log button.)

IN CONCLUSION

Rewriting URLs can be a bear, but the advantages are

clear. Keeping a tidy URL structure, disconnected from

the technology or file structure of your site can result in

URLs that are easier to use and easier to maintain into the

future.

If you’re redesigning a site, remember that cool URIs don’t

change, so budget some time to make sure that any

content you move has a rewrite rule associated with it to

keep any links working.

18 24 ways 2013 edition

Further reading

To find out more about URL rewriting and perhaps even

learn more about regular expressions, I can recommend

the following resources.

▪ From the horse’s mouth, the Apache mod_rewrite

documentation

▪ Particularly useful with that documentation is the

RewriteRule Flags listing

▪ You may wish to don sunglasses to follow the otherwise

comprehensive Regular-Expressions.info tutorial

▪ Friend of 24 ways, Neil Crosby has a mod_rewrite

Beginner’s Guide which I’ve found handy over the years.

As noted at the start, this isn’t a fully comprehensive

guide, but I hope it’s useful in finding your feet with a

powerful but sometimes annoying technology. Do you

have useful snippets you often use on projects? Feel free

to share them in the comments.

URL Rewriting for the Fearful

24 ways 2013 edition 19

http://httpd.apache.org/docs/current/rewrite/
http://httpd.apache.org/docs/current/rewrite/
http://httpd.apache.org/docs/current/rewrite/flags.html
http://www.regular-expressions.info/tutorial.html
http://neilcrosby.com/
http://www.workingwith.me.uk/articles/scripting/mod_rewrite
http://www.workingwith.me.uk/articles/scripting/mod_rewrite

ABOUT THE AUTHOR

Drew McLellan is lead developer on your favourite small CMS,

Perch. He is Director and Senior Developer at UK-based web

development agency edgeofmyseat.com, and formerly Group

Lead at the Web Standards Project. When not publishing 24

ways, Drew keeps a personal site covering web development

issues and themes, takes photos and tweets a lot.

20 24 ways 2013 edition

http://grabaperch.com/
http://allinthehead.com/
http://flickr.com/drewm/
http://twitter.com/drewm

Ruth John 24ways.org/201302

2. Make Your Browser
Dance

It was a crisp winter’s evening when I pulled
up alongside the pier. I stepped out of my
car and the bitterly cold sea air hit my face. I
walked around to the boot, opened it and
heaved out a heavy flight case. I slammed
the boot shut, locked the car and started
walking towards the venue.

This was it. My first gig. I thought about all those weeks of

preparation: editing video clips, creating 3-D objects,

making coloured patterns, then importing them all into

software and configuring effects to change as the music

did; targeting frequency, beat, velocity, modifying size,

colour, starting point; creating playlists of these… and

working out ways to mix them as the music played.

This was it. This was me VJing.

This was all a lifetime (well a decade!) ago.

Make Your Browser Dance

24 ways 2013 edition 21

http://24ways.org/201302
http://en.wikipedia.org/wiki/VJing

When I started web designing, VJing took a back seat. I

was more interested in interactive layouts, semantic

accessible HTML, learning all the IE bugs and mastering

the quirks that CSS has to offer. More recently, I have

been excited by background gradients, 3-D transforms,

the @keyframe directive, as well as new APIs such as

getUserMedia, indexedDB, the Web Audio API

But wait, have I just come full circle? Could it be possible,

with these wonderful new things in technologies I am

already familiar with, that I could VJ again, right here, in a

browser?

Well, there’s only one thing to do: let’s try it!

LET’S TAKE TO THE DANCE FLOOR

Over the past couple of years working in The Lab I have

learned to take a much more iterative approach to

projects than before. One of my new favourite methods of

working is to create a proof of concept to make sure my

theory is feasible, before going on to create a full-blown

product. So let’s take the same approach here.

The main VJing functionality I want to recreate is

manipulating visuals in relation to sound. So for my POC I

need to create a visual, with parameters that can be

changed, then get some sound and see if I can analyse that

sound to detect some data, which I can then use to

manipulate the visual parameters. Easy, right?

22 24 ways 2013 edition

http://dev.w3.org/2011/webrtc/editor/getusermedia.html
http://www.w3.org/TR/IndexedDB/
https://dvcs.w3.org/hg/audio/raw-file/tip/webaudio/specification.html%E2%80%A6
https://thelab.o2.com/
http://en.wikipedia.org/wiki/Proof_of_concept

So, let’s start at the beginning: creating a simple visual.

For this I’m going to create a CSS animation. It’s just a

funky i element with the opacity being changed to make it

flash.

See the Pen Creating a light by Rumyra (@Rumyra) on

CodePen

A note about prefixes: I’ve left them out of the code

examples in this post to make them easier to read. Please

be aware that you may need them. I find a great resource

to find out if you do is caniuse.com. You can also check out

all the code for the examples in this article

START THE MUSIC

Well, that’s pretty easy so far. Next up: loading in some

sound. For this we’ll use the Web Audio API. The Web

Audio API is based around the concept of nodes. You have

a source node: the sound you are loading in; a destination

node: usually the device’s speakers; and any number of

processing nodes in between. All this processing that goes

on with the audio is sandboxed within the AudioContext.

So, let’s start by initialising our audio context.

var contextClass = window.AudioContext;

if (contextClass) {

//web audio api available.

var audioContext = new contextClass();

} else {

Make Your Browser Dance

24 ways 2013 edition 23

http://codepen.io/Rumyra/pen/BjwaL
http://codepen.io/Rumyra
http://codepen.io
http://caniuse.com/
https://github.com/Rumyra/dancing
https://dvcs.w3.org/hg/audio/raw-file/tip/webaudio/specification.html

//web audio api unavailable

//warn user to upgrade/change browser

}

Now let’s load our sound file into the new context we

created with an XMLHttpRequest.

function loadSound() {

//set audio file url

var audioFileUrl = '/octave.ogg';

//create new request

var request = new XMLHttpRequest();

request.open("GET", audioFileUrl, true);

request.responseType = "arraybuffer";

request.onload = function() {

//take from http request and decode into buffer

context.decodeAudioData(request.response,

function(buffer) {

audioBuffer = buffer;

});

}

request.send();

}

Phew! Now we’ve loaded in some sound! There are plenty

of things we can do with the Web Audio API: increase

volume; add filters; spatialisation. If you want to dig

deeper, the O’Reilly Web Audio API book by Boris Smus is

available to read online free.

24 24 ways 2013 edition

http://chimera.labs.oreilly.com/books/1234000001552
https://twitter.com/borismus

All we really want to do for this proof of concept,

however, is analyse the sound data. To do this we really

need to know what data we have.

LEARNING THE STEPS

Let’s take a minute to step back and remember our school

days and science class. I’m sure if I drew a picture of a

sound wave, we would all start nodding our heads.

The sound you hear is caused by pressure differences in

the particles in the air. Sound pushes these particles

together, causing vibrations. Amplitude is basically

Make Your Browser Dance

24 ways 2013 edition 25

strength of pressure. A simple example of change of

amplitude is when you increase the volume on your stereo

and the output wave increases in size.

This is great when everything is analogue, but the

waveform varies continuously and it’s not suitable for

digital processing: there’s an infinite set of values. For

digital processing, we need discrete numbers.

We have to sample the waveform at set time intervals,

and record data such as amplitude and frequency. Luckily

for us, just the fact we have a digital sound file means all

this hard work is done for us. What we’re doing in the

code above is piping that data in the audio context. All we

need to do now is access it.

We can do this with the Web Audio API’s analysing

functionality. Just pop in an analysing node before we

connect the source to its destination node.

function createAnalyser(source) {

//create analyser node

analyser = audioContext.createAnalyser();

//connect to source

source.connect(analyzer);

//pipe to speakers

analyser.connect(audioContext.destination);

}

The data I’m really interested in here is frequency. Later

we could look into amplitude or time, but for now I’m

going to stick with frequency.

26 24 ways 2013 edition

The analyser node gives us frequency data via the

getFrequencyByteData method.

DON’T FORGET TO COUNT!

To collect the data from the getFrequencyByteData

method, we need to pass in an empty array (a JavaScript

typed array is ideal). But how do we know how many

items the array will need when we create it?

This is really up to us and how high the resolution of

frequencies we want to analyse is. Remember we talked

about sampling the waveform; this happens at a certain

rate (sample rate) which you can find out via the audio

context’s sampleRate attribute. This is good to bear in

mind when you’re thinking about your resolution of

frequencies.

var sampleRate = audioContext.sampleRate;

Let’s say your file sample rate is 48,000, making the

maximum frequency in the file 24,000Hz (thanks to a

wonderful theorem from Dr Harry Nyquist, the maximum

frequency in the file is always half the sample rate). The

analyser array we’re creating will contain frequencies up

to this point. This is ideal as the human ear hears the

range 0–20,000hz.

Make Your Browser Dance

24 ways 2013 edition 27

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays
http://en.wikipedia.org/wiki/Sampling_rate
http://en.wikipedia.org/wiki/Harry_Nyquist
http://en.wikipedia.org/wiki/Hearing_range
http://en.wikipedia.org/wiki/Hearing_range

So, if we create an array which has 2,400 items, each

frequency recorded will be 10Hz apart. However, we are

going to create an array which is half the size of the FFT

(fast Fourier transform), which in this case is 2,048 which

is the default. You can set it via the fftSize property.

//set our FFT size

analyzer.fftSize = 2048;

//create an empty array with 1024 items

var frequencyData = new Uint8Array(1024);

So, with an array of 1,024 items, and a frequency range of

24,000Hz, we know each item is 24,000 ÷ 1,024 =

23.44Hz apart.

The thing is, we also want that array to be updated

constantly. We could use the setInterval or setTimeout

methods for this; however, I prefer the new and shiny

requestAnimationFrame.

function update() {

//constantly getting feedback from data

requestAnimationFrame(update);

analyzer.getByteFrequencyData(frequencyData);

}

PUTTING IT ALL TOGETHER

Sweet sticks! Now we have an array of frequencies from

the sound we loaded, updating as the sound plays. Now

we want that data to trigger our animation from earlier.

28 24 ways 2013 edition

http://en.wikipedia.org/wiki/Fast_Fourier_transform
http://www.paulirish.com/2011/requestanimationframe-for-smart-animating/

We can easily pause and run our CSS animation from

JavaScript:

element.style.webkitAnimationPlayState = "paused";

element.style.webkitAnimationPlayState = "running";

Unfortunately, this may not be ideal as our animation

might be a whole heap longer than just a flashing light. We

may want to target specific points within that animation

to have it stop and start in a visually pleasing way and

perhaps not smack bang in the middle.

There is no really easy way to do this at the moment as

Zach Saucier explains in this wonderful article. It takes

some jiggery pokery with setInterval to try to ascertain

how far through the CSS animation you are in percentage

terms.

This seems a bit much for our proof of concept, so let’s

backtrack a little. We know by the animation we’ve

created which CSS properties we want to change. This is

pretty easy to do directly with JavaScript.

element.style.opacity = "1";

element.style.opacity = "0.2";

So let’s start putting it all together. For this example I

want to trigger each light as a different frequency plays.

For this, I’ll loop through the HTML elements and change

the opacity style if the frequency gain goes over a certain

threshold.

Make Your Browser Dance

24 ways 2013 edition 29

http://zachsaucier.com/
http://css-tricks.com/controlling-css-animations-transitions-javascript/

//get light elements

var lights = document.getElementsByTagName('i');

var totalLights = lights.length;

for (var i=0; i<totalLights; i++) {

//get frequencyData key

var freqDataKey = i*8;

//if gain is over threshold for that frequency animate

light

if (frequencyData[freqDataKey] > 160){

//start animation on element

lights[i].style.opacity = "1";

} else {

lights[i].style.opacity = "0.2";

}

}

See all the code in action here. I suggest viewing in a

modern browser :)

Awesome! It is true — we can VJ in our browser!

LET’S DANCE!

So, let’s start to expand this simple example. First, I feel

the need to make lots of lights, rather than just a few. Also,

maybe we should try a sound file more suited to gigs or

clubs.

Check it out!

I don’t know about you, but I’m pretty excited — that’s just

a bit of HTML, CSS and JavaScript!

30 24 ways 2013 edition

http://dancing.rumyra.com/simple
http://dancing.rumyra.com/complex

The other thing to think about, of course, is the sound that

you would get at a venue. We don’t want to load sound

from a file, but rather pick up on what is playing in real

time. The easiest way to do this, I’ve found, is to capture

what my laptop’s mic is picking up and piping that back

into the audio context. We can do this by using

getUserMedia.

Let’s include this in this demo. If you make some noise

while viewing the demo, the lights will start to flash.

AND RELAX :)

There you have it. Sit back, play some music and enjoy the

Winamp like experience in front of you.

So, where do we go from here? I already have a wealth of

ideas. We haven’t started with canvas, SVG or the 3-D

features of CSS. There are other things we can detect

from the audio as well. And yes, OK, it’s questionable

whether the browser is the best environment for this. For

one, I’m using a whole bunch of nonsensical HTML

elements (maybe each animation could be held within a

web component in the future). But hey, it’s fun, and it

looks cool and sometimes I think it’s OK to just dance.

Make Your Browser Dance

24 ways 2013 edition 31

http://dancing.rumyra.com/linein
http://www.youtube.com/watch?v=cKqKrH0O9yg

ABOUT THE AUTHOR

Ruth John wireframes, designs and codes for The Lab at O2

(Telefonica). She also tweets and blogs a bit too. You can often

find her chatting about web development, building apps and

how an extra div is not the answer to your styling problems.

Either that or the lesser known Thundercats characters.

32 24 ways 2013 edition

https://thelab.o2.com/
https://twitter.com/rumyra
http://rumyrashead.com/

Charlie Perrins 24ways.org/201303

3. Coding Towards
Accessibility

“Can we make it AAA-compliant?” – does
this question strike fear into your heart?
Maybe for no other reason than because you
will soon have to wade through the
impenetrable WCAG documentation once
again, to find out exactly what AAA-
compliant means?

I’m not here to talk about that.

The Web Content Accessibility Guidelines are a

comprehensive and peer-reviewed resource which we’re

lucky to have at our fingertips. But they are also a pig to

read, and they may have contributed to the sense of

mystery and dread with which some developers associate

the word accessibility.

Coding Towards Accessibility

24 ways 2013 edition 33

http://24ways.org/201303
http://www.w3.org/TR/WCAG20/

This Christmas, I want to share with you some thoughts

and some practical tips for building accessible interfaces

which you can start using today, without having to do a

ton of reading or changing your tools and workflow.

But first, let’s clear up a couple of misconceptions.

DREARY, FLAT EXPERIENCES

I recently built a front-end framework for the Post Office.

This was a great gig for a developer, but when I found out

about my client’s stringent accessibility requirements I

was concerned that I’d have to scale back what was quite

a complex set of visual designs.

Sites like Jakob Neilsen’s old workhorse useit.com and

even the pioneering GOV.UK may have to shoulder some

of the blame for this. They put a premium on usability and

accessibility over visual flourish. (Although, in fairness to

Mr Neilsen, his new site nngroup.com is really quite a

snazzy affair, comparatively.)

Of course, there are other reasons for these sites’

aesthetics — and it’s not because of the limitations of the

form. You can make an accessible site look as glossy or as

plain as you want it to look. It’s always our own ingenuity

and attention to detail that are going to be the limiting

factors.

34 24 ways 2013 edition

http://web.archive.org/web/20120103104605/http%3A//www.useit.com/
http://gov.uk
http://www.nngroup.com/

SYNECDOCHE

We must always guard against the tendency to assume

that catering to screen readers means we have the whole

accessibility ballgame covered.

There’s so much more to accessibility than assistive

technology, as you know. And within the field of assistive

technology there are plenty of other devices for us to

consider.

Planning to accommodate all these users and devices can

be daunting. When I first started working in this field I

thought that the breadth of technology was prohibitive. I

didn’t even know what a screen reader looked like. (I

assumed they were big and heavy, perhaps like an old

typewriter, and certainly they would be expensive and

difficult to fathom.) This is nonsense, of course. Screen

reader emulators are readily available as browser

extensions and can be activated in seconds. Chromevox

and Fangs are both excellent and you should download

one or the other right now.

But the really good news is that you can emulate many

other types of assistive technology without downloading

a byte. And this is where we move from misconceptions

into some (hopefully) useful advice.

Coding Towards Accessibility

24 ways 2013 edition 35

http://en.wikipedia.org/wiki/Web_accessibility#Assistive_technologies_used_for_web_browsing
http://www.chromevox.com
https://addons.mozilla.org/en-us/firefox/addon/fangs-screen-reader-emulator

THE MOUSE TRAP

The simplest and most effective way to improve your

abilities as a developer of accessible interfaces is to

unplug your mouse.

Keyboard operation has its own WCAG chapter, because

most users of assistive technology are navigating the web

using only their keyboards. You can go some way towards

putting yourself into their shoes so easily — just by

ditching a peripheral.

Learning this was a lightbulb moment for me. When I build

interfaces I am constantly flicking between code and the

browser, testing or viewing the changes I have made.

Now, instead of checking a new element once, I check it

twice: once with my mouse and then again without.

DON’T JUST :HOVER

The reality is that when you first start doing this you can

find your site becomes unusable straightaway. It’s easy to

lose track of which element is in focus as you hit the tab

key repeatedly.

One of the easiest changes you can make to your coding

practice is to add :focus and :active pseudo-classes to

every hover state that you write. I’m still amazed at how

36 24 ways 2013 edition

http://www.w3.org/TR/UNDERSTANDING-WCAG20/keyboard-operation.html

many sites fail to provide a decent focus state for links

(and despite previous 24 ways authors in 2007 and 2009

writing on this same issue!).

You may find that in some cases it makes sense to have

something other than, or in addition to, the hover state on

focus, but start with the hover state that your designer

has taken the time to provide you with. It’s a tiny change

and there is no downside. So instead of this:

.my-cool-link:hover {

background-color: MistyRose ;

}

…try writing this:

.my-cool-link:hover,

.my-cool-link:focus,

.my-cool-link:active {

background-color: MistyRose ;

}

I’ve toyed with the idea of making a Sass mixin to take

care of this for me, but I haven’t yet. I worry that people

reading my code won’t see that I’m explicitly defining my

focus and active states so I take the hit and write my

hover rules out longhand.

Coding Towards Accessibility

24 ways 2013 edition 37

http://24ways.org/2007/css-for-accessibility
http://24ways.org/2009/dont-lose-your-focus

JAVASCRIPT CAN PLAY, TOO

This was another revelation for me. Keyboard-only

navigation doesn’t necessitate a JavaScript-free

experience, and up-to-date screen readers can execute

JavaScript. So we’re able to create complex JavaScript-

driven interfaces which all users can interact with.

Some of the hard work has already been done for us. First,

there are already conventions around keyboard-driven

interfaces. Think about the last time you viewed a photo

album on Facebook. You can use the arrow keys to switch

between photos, and the escape key closes whichever

lightbox-y UI thing Facebook is showing its photos in this

week. Arrow keys (up/down as well as left/right) for

progression through content; Escape to back out of

something; Enter or space bar to indicate a positive

intention — these are established keyboard conventions

which we can apply to our interfaces to improve their

accessiblity.

Of course, by doing so we are improving our interfaces in

general, giving all users the option to switch between

keyboard and mouse actions as and when it suits them.

Second, this guy wants to help you out. Hans Hillen is a

developer who has done a great deal of work around

accessibility and JavaScript-powered interfaces. Along

with The Paciello Group he has created a version of the

38 24 ways 2013 edition

https://www.facebook.com/media/set/?set=a.334006256376.160015.328740356376
https://www.facebook.com/media/set/?set=a.334006256376.160015.328740356376
https://twitter.com/hanshillen
http://www.paciellogroup.com
http://hanshillen.github.io/jqtest

jQuery UI library which has been fully optimised for

keyboard navigation and screen reader use. It’s a fantastic

reference which I revisit all the time

I’m not a huge fan of the jQuery UI library. It’s a pain to

style and the code is a bit bloated. So I’ve not used this

demo as a code resource to copy wholesale. I use it by

playing with the various components and seeing how they

react to keyboard controls. Each component is also fully

marked up with the relevant ARIA roles to improve screen

reader announcement where possible (more on this

below).

Coding for accessibility promotes good habits

This is a another observation around accessibility and

JavaScript. I noticed an improvement in the structure and

abstraction of my code when I started adding keyboard

controls to my interface elements.

Your code has to become more modular and event-driven,

because any number of events could trigger the same

interaction. A mouse-click, the Enter key and the space

bar could all conceivably trigger the same open function

on a collapsed accordion element. (And you want to keep

things DRY, don’t you?)

If you aren’t already in the habit of separating out your

interface functionality into discrete functions, you will be

soon.

Coding Towards Accessibility

24 ways 2013 edition 39

http://hanshillen.github.io/jqtest

var doSomethingCool = function(){

// Do something cool here.

}

// Bind function to a button click - pretty vanilla

$('.myCoolButton').on('click', function(){

doSomethingCool();

return false;

});

// Bind the same function to a range of keypresses

$(document).keyup(function(e){

switch(e.keyCode) {

case 13: // enter

case 32: // spacebar

doSomethingCool();

break;

case 27: // escape

doSomethingElse();

break;

}

});

To be honest, if you’re doing complex UI stuff with

JavaScript these days, or if you’ve been building any

responsive interfaces which rely on JavaScript, then you

are most likely working with an application framework

such as Backbone, Angular or Ember, so an abstraced and

event-driven application structure will be familar to you.

It should be super easy for you to start helping out your

keyboard-only users if you aren’t already — just add a few

more event bindings into your UI layer!

40 24 ways 2013 edition

http://backbonejs.org/
http://angularjs.org/
http://emberjs.com/

MANIPULATING THE TAB ORDER

So, you’ve adjusted your mindset and now you test every

change to your codebase using a keyboard as well as a

mouse. You’ve applied all your hover states to :focus and

:active so you can see where you’re tabbing on the page,

and your interactive components react seamlessly to a

mixture of mouse and keyboard commands. Feels good,

right?

There’s another level of optimisation to consider:

manipulating the tab order. Certain DOM elements are

naturally part of the tab order, and others are excluded.

Links and input elements are the main elements included

in the tab order, and static elements like paragraphs and

headings are excluded. What if you want to make a static

element ‘tabbable’?

A good example would be in an expandable accordion

component. Each section of the accordion should be

separated by a heading, and there’s no reason to make

that heading into a link simply because it’s interactive.

<div class="accordion-widget">

<h3>Tyrannosaurus</h3>

<p>Tyrannosaurus; meaning "tyrant lizard"...<p>

<h3>Utahraptor</h3>

<p>Utahraptor is a genus of theropod dinosaurs...<p>

<h3>Dromiceiomimus</h3>

Coding Towards Accessibility

24 ways 2013 edition 41

<p>Ornithomimus is a genus of ornithomimid

dinosaurs...<p>

</div>

Adding the heading elements to the tab order is trivial.

We just set their tabindex attribute to zero. You could do

this on the server or the client. I prefer to do it with

JavaScript as part of the accordion setup and initialisation

process.

$('.accordion-widget h3').attr('tabindex', '0');

You can apply this trick in reverse and take elements out

of the tab order by setting their tabindex attribute to −1,

or change the tab order completely by using other

integers. This should be done with great care, if at all. You

have to be sure that the markup you remove from the tab

order comes out because it genuinely improves the

keyboard interaction experience. This is hard to validate

without user testing. The danger is that developers will

try to sweep complicated parts of the UI under the carpet

by taking them out of the tab order. This would be

considered a dark pattern — at least on my team!

42 24 ways 2013 edition

http://darkpatterns.org

A FAREWELL ARIA

This is where things can get complex, and I’m no expert on

the ARIA specification: I feel like I’ve only dipped my toe

into this aspect of coding for accessibility. But, as with

WCAG, I’d like to demystify things a little bit to encourage

you to look into this area further yourself.

ARIA roles are of most benefit to screen reader users,

because they modify and augment screen reader

announcements.

Let’s take our dinosaur accordion from the previous

section. The markup is semantic, so a screen reader that

can’t handle JavaScript will announce all the content

within the accordion, no problem.

But modern screen readers can deal with JavaScript, and

this means that all the lovely dino information beneath

each heading has probably been hidden on

document.ready, when the accordion initialised. It might

have been hidden using display:none, which prevents a

screen reader from announcing content. If that’s as far as

you have gone, then you’ve committed an accessibility sin

by hiding content from screen readers. Your user will hear

a set of headings being announced, with no content in

between. It would sound something like this if you were

using Chromevox:

Coding Towards Accessibility

24 ways 2013 edition 43

http://www.w3.org/TR/wai-aria
http://www.w3.org/TR/wai-aria/roles

> Tyrannosaurus. Heading Three.

> Utahraptor. Heading Three.

> Dromiceiomimus. Heading Three.

We can add some ARIA magic to the markup to improve

this, using the tablist role. Start by adding a role of

tablist to the widget, and roles of tab and tabpanel to

the headings and paragraphs respectively. Set boolean

values for aria-selected, aria-hidden and aria-

expanded. The markup could end up looking something

like this.

<div class="accordion-widget" role="tablist">

<!-- T-rex -->

<h3 role="tab"

tabindex="0"

id="tab-2"

aria-controls="panel-2"

aria-selected="false">Utahraptor</h3>

<p role="tabpanel"

id="panel-2"

aria-labelledby="tab-2"

aria-expanded="false"

aria-hidden="true">Utahraptor is a genus of theropod

dinosaurs...</p>

<!-- Dromiceiomimus -->

</div>

Now, if a screen reader user encounters this markup they

will hear the following:

44 24 ways 2013 edition

http://www.w3.org/TR/wai-aria/roles#tablist

> Tyrannosaurus. Tab not selected; one of three.

> Utahraptor. Tab not selected; two of three.

> Dromiceiomimus. Tab not selected; three of three.

You could add arrow key events to help the user browse

up and down the tab list items until they find one they like.

Your accordion open() function should update the ARIA

boolean values as well as adding whatever classes and

animations you have built in as standard. Your users know

that unselected tabs are meant to be interacted with, so if

a user triggers the open function (say, by hitting Enter or

the space bar on the second item) they will hear this:

> Utahraptor. Selected; two of three.

The paragraph element for the expanded item will not be

hidden by your CSS, which means it will be announced as

normal by the screen reader.

This kind of thing makes so much more sense when you

have a working example to play with. Again, I refer you to

the fantastic resource that Hans Hillen has put together:

this is his take on an accessible accordion, on which much

of my example is based.

CONCLUSION

Getting complex interfaces right for all of your users can

be difficult — there’s no point pretending otherwise. And

there’s no substitute for user testing with real users who

Coding Towards Accessibility

24 ways 2013 edition 45

http://hanshillen.github.io/jqtest/#goto_accordion

navigate the web using assistive technology every day.

This kind of testing can be time-consuming to recruit for

and to conduct. On top of this, we now have accessibility

on mobile devices to contend with. That’s a huge area in

itself, and it’s one which I have not yet had a chance to

research properly.

So, there’s lots to learn, and there’s lots to do to get it

right. But don’t be disheartened. If you have read this far

then I’ll leave you with one final piece of advice: don’t

wait.

Don’t wait until you’re building a site which mandates

AAA-compliance to try this stuff out. Don’t wait for a

client with the will or the budget to conduct the full

spectrum of user testing to come along. Unplug your

mouse, and start playing with your interfaces in a new

way. You’ll be surprised at the things that you learn and

the issues you uncover.

And the next time an true accessibility project comes

along, you will be way ahead of the game.

46 24 ways 2013 edition

ABOUT THE AUTHOR

Charlie Perrins is Technical Director at Dare. He’s a front-end

developer by trade, and a nut for semantic and readable code.

He writes and talks about technologies old and new to anyone

who’ll listen. Most recently he’s spoken at events run by Faber &

Faber and at Front End London.

Charlie tweets pretty regularly, but is an unreliable blogger. His

crowning achievement in self-publishing came some five years

ago and was entitled simply ‘The Bacon Project’.

Photo by Steve Whittington

Coding Towards Accessibility

24 ways 2013 edition 47

http://www.thisisdare.com
http://www.frontendlondon.co.uk
https://twitter.com/charlieperrins
http://www.charlieperrins.com/category/bacon
https://twitter.com/stevetwiters

Emma Jane Westby 24ways.org/201304

4. Git for Grown-ups

You are a clever and talented person. You
create beautiful designs, or perhaps you
have architected a system that even my cat
could use. Your peers adore you. Your clients
love you. But, until now, you haven’t *&^#^!
been able to make Git work. It makes you
angry inside that you have to ask your co-
worker, again, for that *&^#^! command to
upload your work.

It’s not you. It’s Git. Promise.

Yes, this is an article about the popular version control

system, Git. But unlike just about every other article

written about Git, I’m not going to give you the top five

commands that you need to memorize; and I’m not going

to tell you all your problems would be solved if only you

were using this GUI wrapper or that particular workflow.

You see, I’ve come to a grand realization: when we teach

Git, we’re doing it wrong.

48 24 ways 2013 edition

http://24ways.org/201304

Let me back up for a second and tell you a little bit about

the field of adult education. (Bear with me, it gets good

and will leave you feeling both empowered and

righteous.) Andragogy, unlike pedagogy, is a learner-

driven educational experience. There are six main tenets

to adult education:

1. Adults prefer to know why they are learning

something.

2. The foundation of the learning activities should

include experience.

3. Adults prefer to be able to plan and evaluate their own

instruction.

4. Adults are more interested in learning things which

directly impact their daily activities.

5. Adults prefer learning to be oriented not towards

content, but towards problems.

6. Adults relate more to their own motivators than to

external ones.

Nowhere in this list does it include “memorize the five

most popular Git commands”. And yet this is how we

teach version control: init, add, commit, branch, push.

You’re an expert! Sound familiar? In the hierarchy of

learning, memorizing commands is the lowest, or most

basic, form of learning. At the peak of learning you are

able to not just analyze and evaluate a problem space, but

create your own understanding in relation to your

existing body of knowledge.

Git for Grown-ups

24 ways 2013 edition 49

“Fine,” I can hear you saying to yourself. “But I’m here to

learn about version control.” Right you are! So how can we

use this knowledge to master Git? First of all: I give you

permission to use Git as a tool. A tool which you control

and which you assign tasks to. A tool like a hammer, or a

saw. Yes, your mastery of your tools will shape the kinds

of interactions you have with your work, and your peers.

But it’s yours to control. Git was written by kernel

developers for kernel development. The web world has

adopted Git, but it is not a tool designed for us and by us.

It’s no Sass, y’know? Git wasn’t developed out of our

frustration with managing CSS files in an increasingly

complex ecosystem of components and atomic design. So,

as you work through the next part of this article, give

yourself a bit of a break. We’re in this together, and it’s

going to be OK.

We’re going to do a little activity. We’re going to create

your perfect Git cheatsheet.

I want you to start by writing down a list of all the people

on your code team. This list may include:

▪ developers

▪ designers

▪ project managers

▪ clients

50 24 ways 2013 edition

Next, I want you to write down a list of all the ways you

interact with your team. Maybe you’re a solo developer

and you do all the tasks. Maybe you only do a few things.

But I want you to write down a list of all the tasks you’re

actually responsible for. For example, my list looks like

this:

▪ writing code

▪ reviewing code

▪ publishing tested code to your server(s)

▪ troubleshooting broken code

The next list will end up being a series of boxes in a

diagram. But to start, I want you to write down a list of

your tools and constraints. This list potentially has a lot of

noun-like items and verb-like items:

▪ code hosting system (Bitbucket? GitHub? Unfuddle?

self-hosted?)

▪ server ecosystem (dev/staging/live)

▪ automated testing systems or review gates

▪ automated build systems (that Jenkins dude people

keep referring to)

Brilliant! Now you’ve got your actors and your actions, it’s

time to shuffle them into a diagram. There are many

popular workflow patterns. None are inherently right or

wrong; rather, some are more or less appropriate for what

you are trying to accomplish.

Git for Grown-ups

24 ways 2013 edition 51

http://jenkins-ci.org/

Centralized workflow

Everyone saves to a single place. This workflow may mean

no version control, or a very rudimentary version control

system which only ever has a single copy of the work

available to the team at any point in time.

Branching workflow

Everyone works from a copy of the same place, merging

their changes into the main copy as their work is

completed. Think of the branches as a motorcycle sidecar:

they’re along for the ride and probably cannot exist in

isolation of the main project for long without serious

danger coming to the either the driver or sidecar

passenger. Branches are a fundamental concept in version

control — they allow you to work on new features, bug

fixes, and experimental changes within a single repository,

but without forcing the changes onto others working

from the same branch.

52 24 ways 2013 edition

Forking workflow

Everyone works from their own, independent repository.

A fork is an exact duplicate of a repository that a

developer can make their own changes to. It can be kept

up to date with additional changes made in other

repositories, but it cannot force its changes onto

another’s repository. A fork is a complete repository

which can use its own workflow strategies. If developers

wish to merge their work with the main project, they must

make a request of some kind (submit a patch, or a pull

request) which the project collaborators may choose to

adopt or reject. This workflow is popular for open source

projects as it enforces a review process.

Gitflow workflow

A specific workflow convention which includes five

streams of parallel coding efforts: master, development,

feature branches, release branches, and hot fixes. This

workflow is often simplified down to a few elements by

web teams, but may be used wholesale by software

product teams. The original article describing this

workflow was written by Vincent Driessen back in

January 2010.

Git for Grown-ups

24 ways 2013 edition 53

http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/

But these workflows aren’t about you yet, are they? So

let’s make the connections.

From the list of people on your team you identified earlier,

draw a little circle. Give each of these circles some eyes

and a smile. Now I want you to draw arrows between each

of these people in the direction that code (ideally) flows.

Does your designer create responsive prototypes which

are pushed to the developer? Draw an arrow to represent

this.

Chances are high that you don’t just have people on your

team, but you also have some kind of infrastructure.

Hopefully you wrote about it earlier. For each of the

servers and code repositories in your infrastructure, draw

a square. Now, add to your diagram the relationships

between the people and each of the machines in the

infrastructure. Who can deploy code to the live server?

How does it really get there? I bet it goes through some

kind of code hosting system, such as GitHub. Draw in

those arrows.

But wait!

54 24 ways 2013 edition

The code that’s on your development machine isn’t the

same as the live code. This is where we introduce the

concept of a branch in version control. In Git, a repository

contains all of the code (sort of). A branch is a fragment of

the code that has been worked on in isolation to the other

branches within a repository. Often branches will have

elements in common. When we compare two (or more)

branches, we are asking about the difference (or diff)

between these two slivers. Often the master branch is

used on production, and the development branch is used

on our dev server. The difference between these two

branches is the untested code that is not yet deployed.

On your diagram, see if you can colour-code according to

the branch names at each of the locations within your

infrastructure. You might find it useful to make a few

different copies of the diagram to isolate each of the tasks

you need to perform. For example: our team has a peer

review process that each branch must go through before

it is merged into the shared development branch.

Finally, we are ready to add the Git commands necessary

to make sense of the arrows in our diagram. If we are

bringing code to our own workstation we will issue one of

the following commands: clone (the first time we bring

code to our workstation) or pull. Remembering that a

repository contains all branches, we will issue the

command checkout to switch from one branch to another

within our own workstation. If we want to share a

Git for Grown-ups

24 ways 2013 edition 55

particular branch with one of our team mates, we will

push this branch back to the place we retrieved it from

(the origin). Along each of the arrows in your diagram,

write the name of the command you are are going to use

when you perform that particular task.

From here, it’s up to you to be selfish. Before asking Git

what command it would like you to use, sketch the

diagram of what you want. Git is your tool, you are not

Git’s tool. Draw the diagram. Communicate your tasks

with your team as explicitly as you can. Insist on being a

selfish adult learner — demand that others explain to you,

in ways that are relevant to you, how to do the things you

need to do today.

56 24 ways 2013 edition

ABOUT THE AUTHOR

Emma Jane Westby is an author, an educator, and a part-time

beekeeper. Her latest videos, Collaborating with Git: Crafting

Workflows at the Command Line, are now available from

O’Reilly. You can follow her adventures on Twitter at

@emmajanehw.

Git for Grown-ups

24 ways 2013 edition 57

http://gitforteams.com
http://shop.oreilly.com/product/0636920034872.do
http://shop.oreilly.com/product/0636920034872.do
http://twitter.com/emmajanehw

Tom Ashworth 24ways.org/201305

5. JavaScript: Taking Off
the Training Wheels

JavaScript is the third pillar of front-end
web development. Of those pillars, it is both
the most powerful and the most complex, so
it’s understandable that when 24 ways
asked, “What one thing do you wish you had
more time to learn about?”, a number of you
answered “JavaScript!”

This article aims to help you feel happy writing JavaScript,

and maybe even without libraries like jQuery. I can’t

comprehensively explain JavaScript itself without writing

a book, but I hope this serves as a springboard from which

you can jump to other great resources.

WHY LEARN JAVASCRIPT?

So what’s in it for you? Why take the next step and learn

the fundamentals?

58 24 ways 2013 edition

http://24ways.org/201305

Confidence with jQuery

If nothing else, learning JavaScript will improve your

jQuery code; you’ll be comfortable writing jQuery from

scratch and feel happy bending others’ code to your own

purposes. Writing efficient, fast and bug-free jQuery is

also made much easier when you have a good

appreciation of JavaScript, because you can look at what

jQuery is really doing. Understanding how JavaScript

works lets you write better jQuery because you know

what it’s doing behind the scenes. When you need to leave

the beaten track, you can do so with confidence.

In fact, you could say that jQuery’s ultimate goal is not to

exist: it was invented at a time when web APIs were very

inconsistent and hard to work with. That’s slowly

changing as new APIs are introduced, and hopefully there

will come a time when jQuery isn’t needed.

An example of one such change is the introduction of the

very useful document.querySelectorAll. Like jQuery, it

converts a CSS selector into a list of matching elements.

Here’s a comparison of some jQuery code and the

equivalent without.

$('.counter').each(function (index) {

$(this).text(index + 1);

});

var counters = document.querySelectorAll('.counter');

JavaScript: Taking Off the Training Wheels

24 ways 2013 edition 59

[].slice.call(counters).forEach(function (elem, index) {

elem.textContent = index + 1;

});

Solving problems no one else has!

When you have to go to the internet to solve a problem,

you’re forever stuck reusing code other people wrote to

solve a slightly different problem to your own. Learning

JavaScript will allow you to solve problems in your own

way, and begin to do things nobody else ever has.

Node.js

Node.js is a non-browser environment for running

JavaScript, and it can do just about anything! But if that

sounds daunting, don’t worry: the Node community is

thriving, very friendly and willing to help.

I think Node is incredibly exciting. It enables you, with one

language, to build complete websites with complex and

feature-filled front- and back-ends. Projects that let users

log in or need a database are within your grasp, and Node

has a great ecosystem of library authors to help you build

incredible things. Exciting!

Here’s an example web server written with Node. http is a

module that allows you to create servers and, like

jQuery’s $.ajax, make requests. It’s a small amount of

60 24 ways 2013 edition

code to do something complex and, while working with

Node is different from writing front-end code, it’s

certainly not out of your reach.

var http = require('http');

http.createServer(function (req, res) {

res.writeHead(200, {'Content-Type': 'text/plain'});

res.end('Hello World');

}).listen(1337);

console.log('Server running at http://localhost:1337/');

Grunt and other website tools

Node has brought in something of a renaissance in tools

that run in the command line, like Yeoman and Grunt.

Both of these rely heavily on Node, and I’ll talk a little bit

about Grunt here.

Grunt is a task runner, and many people use it for

compiling Sass or compressing their site’s JavaScript and

images. It’s pretty cool. You configure Grunt via the

gruntfile.js, so JavaScript skills will come in handy, and

since Grunt supports plug-ins built with JavaScript,

knowing it unlocks the bucketloads of power Grunt has to

offer.

JavaScript: Taking Off the Training Wheels

24 ways 2013 edition 61

http://yeoman.io/
http://gruntjs.com/

WAYS TO IMPROVE YOUR SKILLS

So you know you want to learn JavaScript, but what are

some good ways to learn and improve? I think the answer

to that is different for different people, but here are some

ideas.

Rebuild a jQuery app

Converting a jQuery project to non-jQuery code is a great

way to explore how you modify elements on the page and

make requests to the server for data. My advice is to focus

on making it work in one modern browser initially, and

then go cross-browser if you’re feeling adventurous.

There are many resources for directly comparing jQuery

and non-jQuery code, like Jeffrey Way’s jQuery to

JavaScript article.

Find a mentor

If you think you’d work better on a one-to-one basis then

finding yourself a mentor could be a brilliant way to learn.

The JavaScript community is very friendly and many

people will be more than happy to give you their time. I’d

look out for someone who’s active and friendly on Twitter,

and does the kind of work you’d like to do. Introduce

yourself over Twitter or send them an email. I wouldn’t

62 24 ways 2013 edition

http://net.tutsplus.com/tutorials/javascript-ajax/from-jquery-to-javascript-a-reference/
http://net.tutsplus.com/tutorials/javascript-ajax/from-jquery-to-javascript-a-reference/

expect a full tutoring course (although that is another

option!) but they’ll be very glad to answer a question and

any follow-ups every now and then.

Go to a workshop

Many conferences and local meet-ups run workshops,

hosted by experts in a particular field. See if there’s one in

your area. Workshops are great because you can ask

direct questions, and you’re in an environment where

others are learning just like you are — no need to learn

alone!

Set yourself challenges

This is one way I like to learn new things. I have a new

thing that I’m not very good at, so I pick something that I

think is just out of my reach and I try to build it. It’s

learning by doing and, even if you fail, it can be

enormously valuable.

WHERE TO START?

If you’ve decided learning JavaScript is an important step

for you, your next question may well be where to go from

here.

JavaScript: Taking Off the Training Wheels

24 ways 2013 edition 63

I’ve collected some links to resources I know of or use,

with some discussion about why you might want to check

a particular site out. I hope this serves as a springboard

for you to go out and learn as much as you want.

Beginner

If you’re just getting started with JavaScript, I’d

recommend heading to one of these places. They cover

the basics and, in some cases, a little more advanced stuff.

They’re all reputable sources (although, I’ve included

something I wrote — you can decide about that one!) and

will not lead you astray.

▪ jQuery’s JavaScript 101 is a great first resource for

JavaScript that will give you everything you need to work

with jQuery like a pro.

▪ Codecademy’s JavaScript Track is a small but useful

JavaScript course. If you like learning interactively, this

could be one for you.

▪ HTMLDog’s JavaScript Tutorials take you right through

from the basics of code to a brief introduction to newer

technology like Node and Angular. [Disclaimer: I wrote

this stuff, so it comes with a hazard warning!]

▪ The tuts+ jQuery to JavaScript mentioned earlier is

great for seeing how jQuery code looks when converted

to pure JavaScript.

64 24 ways 2013 edition

http://learn.jquery.com/javascript-101/
http://www.codecademy.com/tracks/javascript
http://htmldog.com/guides/javascript/
http://net.tutsplus.com/tutorials/javascript-ajax/from-jquery-to-javascript-a-reference/

Getting in-depth

For more comprehensive documentation and help I’d

recommend adding these places to your list of go-tos.

▪ MDN: the Mozilla Developer Network is the first place

I go for many JavaScript questions. I mostly find myself

there via a search, but it’s a great place to just go and

browse.

▪ Axel Rauschmayer’s 2ality is a stunning collection of

articles that will take you deep into JavaScript. It’s

certainly worth looking at.

▪ Addy Osmani’s JavaScript Design Patterns is a

comprehensive collection of patterns for writing high

quality JavaScript, particularly as you (I hope) start to

write bigger and more complex applications.

AND FINALLY…

I think the key to learning anything is curiosity and

perseverance. If you have a question, go out and search

for the answer, even if you have no idea where to start.

Keep going and going and eventually you’ll get there. I bet

you’ll learn a whole lot along the way. Good luck!

Many thanks to the people who gave me their time when I

was working on this article: Tom Oakley, Jack Franklin,

Ben Howdle and Laura Kalbag.

JavaScript: Taking Off the Training Wheels

24 ways 2013 edition 65

https://developer.mozilla.org/en-US/
http://www.2ality.com/
http://addyosmani.com/resources/essentialjsdesignpatterns/book/

ABOUT THE AUTHOR

Tom is a front-end engineer at Twitter, working on TweetDeck.

That means his consumption of Javascript is way higher than

the recommended daily amount, bordering on deadly. When not

working he plays the tuba in a New Orleans brass band, and

enjoys taking the train between Brighton and London.

66 24 ways 2013 edition

Ashley Baxter 24ways.org/201306

6. Levelling Up

Hello, 24 ways. I’m Ashley and I sell
property insurance. I’m interrupting your
Christmas countdown with an article about
rental property software and a guy, Pete,
who selflessly encouraged me to build my
first web app. It doesn’t sound at all festive,
or — considering I’ve used both
“insurance” and “rental property” —
interesting, but do stick with me. There’s
eggnog at the end.

I run a property insurance business, Brokers Direct. It’s a

small operation, but well established. We’ve been selling

landlord insurance on the web for over thirteen years, for

twelve of which we have provided our clients with third-

party software for managing their rental property

portfolios. Free. Of. Charge.

It sounds like a sweet deal for our customers, but it isn’t.

At least, not any more. The third-party software is victim

to years of neglect by its vendor. Its questionable

Levelling Up

24 ways 2013 edition 67

http://24ways.org/201306
http://www.brokersdirect.net/

interface, garish visuals and, ahem, clip art icons have

suffered from a lack of updates. While it was never a

contender for software of the year, I’ve steadily grown too

embarrassed to associate my business with it.

6-1. The third-party rental property software we distributed

I wanted to offer my customers a simple, clean and

lightweight alternative. In an industry that’s dominated by

dated and bloated software, it seemed only logical that I

should build my own rental property tool.

THE LONG LEARNING-TO-CODE SLOG

Learning a programming language is daunting, the source

of my frustration stemming from a non-programming

background. Generally, tutorials assume a degree of

68 24 ways 2013 edition

familiarity with programming, whether it be tools,

conventions or basic skills. I had none and, at the time,

there was nothing on the web really geared towards a

novice. I reached the point where I genuinely thought I

was just not cut out for coding. Surrendering to my

feelings of self-doubt and frustration, I sourced a local

Rails developer, Pete, to build it for me.

Pete brought a pack of index cards to our meeting. Index

cards that would represent each feature the rental

property software would launch with.

“OK,” he began. “We’ll need a user model, tenant model,

authentication, tenant and property relationships…” A

dozen index cards with a dozen features lined the coffee

Levelling Up

24 ways 2013 edition 69

table in a grid-like format. Logical, comprehensible,

achievable. Seeing the app laid out in a digestible manner

made it seem surmountable. Maybe I could do this.

“I’ve been trying to learn Rails…”, I piped up.

I don’t know why I said it. I was fully prepared to hire Pete

to do the hard work for me. But Pete, unprompted,

gathered the index cards and neatly stacked them

together, coasting them across the table towards me. “You

should build this”.

Pete, a full-time freelance developer at the time, was

turning down a paying job in favour of encouraging me to

learn to code. Looking back, I didn’t realise how significant

this moment was.

That evening, I took Pete’s index cards home to make a

start on my app, slowly evolving each of the cards into a

working feature. Building the app solo, I turned to Stack

Overflow to solve the inevitable coding hurdles I

encountered, as well as calling on a supportive Rails

community. Whether they provided direct solutions to my

programming woes, or simply planted a seed on how to

solve a problem, I kept coding. Many months later, and

after several more doubtful moments, Lodger was born.

70 24 ways 2013 edition

http://stackoverflow.com/
http://stackoverflow.com/
http://lodgerapp.co.uk/

6-2. Property overview of my app, Lodger.

IF I CAN DO IT, SO CAN YOU

I misspent a lot of time building Twitter and blogging

applications (apparently, all Rails tutorials centre around

Twitter and blogging). If I could rewind and impart some

advice to myself, this is what I’d say.

There’s no magic formula

“I haven’t quite grasped Rails routing. I should tackle

another tutorial.”

Making excuses — or procrastination — is something we

are all guilty of. I was waiting for a programming book that

would magically deposit a grasp of the entire Ruby syntax

in my head. I kept buying books thinking each one would

Levelling Up

24 ways 2013 edition 71

be the one where it all clicked. I now have a bookshelf full

of Ruby material, all of which I’ve barely read, and none of

which got me any closer to launching my web app. Put

simply, there’s no magic formula.

Break it down

Whatever it is you want to build, break it down into

digestible chunks. Taking Pete’s method as an example,

having an index card represent an individual feature

helped me tremendously. Tackle one at a time. Even if

each feature takes you a month to build, and you have

eight features to launch with, after eight months you’ll

have your MVP. Remember, if you do nothing each day, it

adds up to nothing.

Have a tangible product to build

I have a wonderful habit of writing down personal notes,

usually to express my feelings at the time or to log an idea,

only to uncover them months or years down the line, long

after I forgot I had written them. I made a timely

discovery while writing this article, discovering this gem

while flicking through a battered Moleskine:

“I don’t seem to be making good progress with
learning Rails, but development still excites
me. I should maybe stop doing tutorials and
work towards building a specific app.”

72 24 ways 2013 edition

Having a real product to work on, like I did with Lodger,

means you have something tangible to apply the

techniques you are learning. I found this prevented me

from flitting aimlessly between tutorials and books, which

is an easy area to accidentally remain in.

Team up

If possible, team up with a designer and create something

together. Designers are great at presenting features in a

way you’d never have considered. You will learn a lot from

making their designs come to life.

YOUR HOMEWORK FOR THE HOLIDAY

Despite having a web app under my belt, I am not a

programmer. I tinker with code, piecing enough bits of it

together to make something functional. And that’s OK!

I’m not excusing sloppiness, but if we aimed for perfection

every time, we’d never execute any of our ideas.

As the holidays approach and you’ve exhausted yet

another viewing of The Muppet Christmas Carol (or is

that just my guilty pleasure at Christmas?), you may have

time on your hands. Time to explore an idea you’ve been

sitting on, but — plagued with procrastination and doubt

— have yet to bring to life. This holiday, I am here to say to

you what Pete said to me.

You should build this.

Levelling Up

24 ways 2013 edition 73

You don’t need to be the next Mark Zuckerberg or Larry

Page. You just have to learn enough to get it done.

PS: I lied about the eggnogg, but try capturing somebody’s

attention when you tell them you sell property insurance!

ABOUT THE AUTHOR

An unusual combination of insurer and photographer, Ashley’s

big girl’s job is running insurance broker Brokers Direct. She has

also been known to photograph weddings under the Girl With A

74 24 ways 2013 edition

http://brokersdirect.co.uk
http://girlwithacamera.co.uk

Camera alias. Ashley reserves what little leisure time she has

for Xbox, weightlifting and convincing people that working in

insurance isn’t as mundane as it sounds.

Ashley tweets as @iamashley and prefers dogs over cats.

Levelling Up

24 ways 2013 edition 75

http://girlwithacamera.co.uk
http://twitter.com/iamashley

Brian Suda 24ways.org/201307

7. Animating Vectors
with SVG

It is almost 2014 and fifteen years ago the
W3C started to develop a web-based scalable
vector graphics (SVG) format. As web
technologies go, this one is pretty old and
well entrenched.

See the Pen yJflC by Drew McLellan (@drewm) on

CodePen

Embed not working on your device? Try direct.

Unlike rasterized images, SVG files will stay crisp and

sharp at any resolution. With high-DPI phones, tablets

and monitors, all those rasterized icons are starting to

look a bit old and blocky. There are several options to get

simpler, decorative pieces to render smoothly and

respond to various device widths, shapes and sizes.

Symbol fonts are one option; the other is SVG.

76 24 ways 2013 edition

http://24ways.org/201307
http://codepen.io/drewm/pen/yJflC
http://codepen.io/drewm
http://codepen.io
http://media.24ways.org/2013/suda/animate.html

I’m a big fan of SVG. SVG is an XML format, which means it

is possible to write by hand or to script. The most common

way to create an SVG file is through the use of various

drawing applications like Illustrator, Inkscape or Sketch.

All of them open and save the SVG format.

But, if SVG is so great, why doesn’t it get more attention?

The simple answer is that for a long time it wasn’t well

supported, so no one touched the technology. SVG’s

adoption has always been hampered by browser support,

but that’s not the case any more. Every modern browser

(at least three versions back) supports SVG. Even IE9.

Although the browsers support SVG, it is implemented in

many different ways.

SVG IN HTML

Some browsers allow you to embed SVG right in the

HTML: the <svg> element. Treating SVG as a first-class

citizen works — sometimes. Another way to embed SVG is

via the element; using the src attribute, you can

refer to an SVG file. Again, this only works sometimes and

leaves you in a tight space if you need to have a fallback

for older browsers. The most common solution is to use

the <object> element, with the data attribute referencing

the SVG file. When a browser does not support this, it falls

back to the content inside the <object>. This could be a

rasterized fallback . This method gets you the best

Animating Vectors with SVG

24 ways 2013 edition 77

http://caniuse.com/#search=svg

of both worlds: a nice vector image with an alternative

rasterized image for browsers that don’t support SVG.

The downside is that you need to manage both formats,

and some browsers will download both the SVG and the

rasterized version, becoming a performance problem.

Alexey Ten came up with a brilliant little trick that uses

inline SVG combined with an SVG <image> element. This

has an SVG href pointing to the vector SVG

representation and a src attribute to the rasterized

version. Older browsers will rewrite the <image> element

as and use the rasterized src attribute, but modern

browsers will show the vector SVG.

<svg width="96" height="96">

<image xlink:href="svg.svg" src="svg.png" width="96"

height="96"/>

</svg>

It is a great workaround for most situations. You will have

to determine the browsers you want or need to support

and consider performance issues to decide which method

is best for you.

SO IT CAN BE USED IN HTML. WHY?

There are two compelling reasons why vector graphics in

the form of icons and symbols are going to be important

on the web. With higher resolution screens, going from

72dpi to 200, 300, even over 400dpi, your rasterized

78 24 ways 2013 edition

http://lynn.ru/examples/svg/en.html

icons are looking a little too blocky. As we zoom and print,

we expect the visuals on the site to also stay smooth and

crisp.

The other main reason vector graphics are useful is

scaling. As responsive websites become the norm, we

need a way to dynamically readjust the heights, widths

and styles of various elements. SVG handles this perfectly,

since vectors remain smooth when changing size.

SVG files are text-based, so they’re small and can be

gzipped nicely. There are also techniques for creating SVG

sprites to further squeeze out performance gains. But

SVG really shines when you begin to couple it with

JavaScript. Since SVG elements are part of the DOM, they

can be interacted with just like any other element you are

used to.

The folks at Vox Media had an ingenious little trick with

their SVG for a Playstation and Xbox One reviews. I’ve

used the same technique for the 24 ways example. Vox

Media spent a lot of time creating SVG line art of the two

consoles, but once in place the artwork scaled and resized

beautifully.

They still had another trick up their sleeves. In their

example, they knew each console was line art, so they

used SVG’s line dash property to simulate the lines being

drawn by animating the growth of the line by small

percentage increments until the lines were complete.

Animating Vectors with SVG

24 ways 2013 edition 79

http://product.voxmedia.com/post/68085482982/polygon-feature-design-svg-animations-for-fun-and
http://www.polygon.com/a/ps4-review
http://www.polygon.com/a/xbox-one-review

This is a great example of a situation where the

alternatives wouldn’t be as straightforward to implement.

Using an animated GIF would create a heavy file since it

would need to contain all the frames of the animation at a

large size to permit scaling; even then, smooth aliasing

would be lost. canvas and plenty of JavaScript would be

another alternative, but this is a rasterized format. It

would need be redrawn at each scale, which is certainly

possible, but smoothness would be lost when zooming or

printing.

The HTML, SVG and JavaScript for this example is less

than 4KB! Let’s have a quick look at the code:

<script>

var current_frame = 0;

var total_frames = 60;

var path = new Array();

var length = new Array();

for(var i=0; i<4;i++){

path[i] = document.getElementById('i'+i);

l = path[i].getTotalLength();

length[i] = l;

path[i].style.strokeDasharray = l + ' ' + l;

path[i].style.strokeDashoffset = l;

}

var handle = 0;

var draw = function() {

var progress = current_frame/total_frames;

if (progress > 1) {

window.cancelAnimationFrame(handle);

80 24 ways 2013 edition

} else {

current_frame++;

for(var j=0; j<path.length;j++){

path[j].style.strokeDashoffset =

Math.floor(length[j] * (1 - progress));

}

handle = window.requestAnimationFrame(draw);

}

};

draw();

</script>

First, we need to initialize a few variables to set the

current frame, the number of frames, how fast the

animation will run, and we get each of the paths based on

their IDs. With those paths, we set the dash and dash

offset.

path[i].style.strokeDasharray = l + ' ' + l;

path[i].style.strokeDashoffset = l;

We start the line as a dash, which effectively makes it

blank or invisible.

Next, we move to the draw() function. This is where the

magic happens. We want to increment the frame to move

us forward in the animation and check it’s not finished. If

it continues, we then take a percentage of the distance

based on the frame and then set the dash offset to this

new percentage. This gives the illusion that the line is

being drawn. Then we have an animation callback, which

starts the draw process over again.

Animating Vectors with SVG

24 ways 2013 edition 81

That’s it! It will work with any SVG <path> element that

you can draw.

LIBRARIES TO GET YOU STARTED

If you aren’t sure where to start with SVG, there are

several libraries out there to help. They also abstract all

browser compatibility issues to make your life easier.

▪ Raphaël

▪ Snap.svg

▪ svg.js

You can also get most vector applications to export SVG.

This means that you can continue your normal workflows,

but instead of flattening the image as a PNG or bringing it

over to Photoshop to rasterize, you can keep all your hard

work as vectors and reap the benefits of SVG.

82 24 ways 2013 edition

http://raphaeljs.com
http://snapsvg.io
http://www.svgjs.com

ABOUT THE AUTHOR

Brian Suda is a master informatician working to make the web a

better place little by little everyday. Since discovering the

Internet in the mid-90s, Brian Suda has spent a good portion of

each day connected to it. His own little patch of Internet is

http://suda.co.uk, where many of his past projects and crazy

ideas can be found.

Photo: Jeremy Keith

Animating Vectors with SVG

24 ways 2013 edition 83

http://suda.co.uk
http://www.flickr.com/photos/adactio/2829352818/

Lisa Maria Martin 24ways.org/201308

8. Kill It With Fire! What
To Do With Those
Dreaded FAQs

In the mid-1640s, a man named Matthew
Hopkins attempted to rid England of the
devil’s influence, primarily by demanding
payment for the service of tying women to
chairs and tossing them into lakes.

Unsurprisingly, his methods garnered criticism. Hopkins

defended himself in The Discovery of Witches in 1647,

subtitled “Certaine Queries answered, which have been

and are likely to be objected against MATTHEW

HOPKINS, in his way of finding out Witches.”

Each “querie” was written in the voice of an imagined

detractor, and answered in the voice of an imagined

defender (always referring to himself as “the discoverer,”

or “him”):

84 24 ways 2013 edition

http://24ways.org/201308
http://www.gutenberg.org/catalog/world/readfile?fk_files=1493964&pageno=1
http://www.gutenberg.org/catalog/world/readfile?fk_files=1493964&pageno=1

Quer. 14.Quer. 14.

All that the witch-finder doth is to fleece the
country of their money, and therefore rides and
goes to townes to have imployment, and
promiseth them faire promises, and it may be
doth nothing for it, and possesseth many men
that they have so many wizzards and so many
witches in their towne, and so hartens them on
to entertaine him.

Ans.Ans.

You doe him a great deale of wrong in every of
these particulars.

Hopkins’ self-defense was an early modern English FAQ.

DIGITAL BEGINNINGS

Question and answer formatting certainly isn’t new, and

stretches back much further than witch-hunt days. But its

most modern, most notorious, most reviled incarnation is

the internet’s frequently asked questions page.

FAQs began showing up on pre-internet mailing lists as a

way for list members to answer and pre-empt newcomers’

repetitive questions:

Kill It With Fire! What To Do With Those Dreaded FAQs

24 ways 2013 edition 85

http://en.wikipedia.org/wiki/FAQ

The presumption was that new users would
download archived past messages through ftp.
In practice, this rarely happened and the users
tended to post questions to the mailing list
instead of searching its archives. Repeating the
“right” answers becomes tedious…

When all the users of a system can hear all the other

users, FAQs make a lot of sense: the conversation needs

to be managed and manageable. FAQs were a stopgap for

the technological limitations of the time.

But the internet moved past mailing lists. Online

information can be stored, searched, filtered, and muted;

we choose and control our conversations. New users no

longer rely on the established community to answer their

questions for them.

And yet, FAQs are still around. They’re a content anti-

pattern, replicated from site to site to solve a problem we

no longer have.

WHAT WE HATE WHEN WE HATE FAQS

As someone who creates and structures online content –

always with the goal of making that content as useful as

possible to people – FAQs drive me absolutely batty.

Almost universally, FAQs represent the opposite of useful.

A brief list of their sins:

86 24 ways 2013 edition

1.
Double trouble

Duplicated content is practically a given with FAQs.

They’re written as though they’ll be accessed in a vacuum

– but search results, navigation patterns, and curiosity

ensure that users will seek answers throughout the site. Is

our goal to split their focus? To make them uncertain of

where to look? To divert them to an isolated microcosm of

the website? Duplicated content means user confusion (to

say nothing of the duplicated workload for maintaining

content).

2.
Leaving the job unfinished

Many FAQs fail before they’re even out of the gate,

presenting a list of questions that’s incomplete (too short

and careless to be helpful) or irrelevant (avoiding users’

real concerns in favor of soundbites). Alternately, if the

right questions are there, the answers may be convoluted,

jargon-heavy, or otherwise difficult to understand.

3.
Long lists of not-my-question

Getting a single answer often means sifting through a

haystack of questions. For each potential question, the

Kill It With Fire! What To Do With Those Dreaded FAQs

24 ways 2013 edition 87

user must read, comprehend, assess, move on, rinse,

repeat. That’s a lot of legwork for little reward – and a lot

of opportunity for mistakes. Users may miss their

question, or they may fail to recognize a differently

worded version of their question, or they may not notice

when their sought-after answer appears somewhere they

didn’t expect.

4.
The ventriloquist act
FAQs shift the point of view. While websites speak on

behalf of the organization (“our products,” “our services,”

“you can call us for assistance,” etc.), FAQs speak as the

user – “I can’t find my password” or “How do I sign up?”

Both voices are written from the first-person perspective,

but speak for different entities, which is disorienting: it

breaks the tone and messaging across the website. It’s

also presumptuous: why do you get to speak for the user?

These all underscore FAQs’ fatal flaw: they are content

without context, delivered without regard for the larger

experience of the website. You can hear the absurdity in

the name itself: if users are asking the same questions so

frequently, then there is an obvious gulf between their

needs and the site content. (And if not, then we have a

labeling problem.)

88 24 ways 2013 edition

Instead of sending users to a jumble of maybe-it’s-here-

maybe-it’s-not questions, the answers to FAQs should be

found naturally throughout a website. They are not

separated, not isolated, not other. They are the content.

To present it otherwise is to create a runaround, and users

know it. Jay Martel’s parody, “F.A.Q.s about

F.A.Q.s” captures the silliness and frustration of such a

system:

Q:Q: Why are you so rude?

A:A: For that answer, you would have to consult
an F.A.Q.s about F.A.Q.s about F.A.Q.s. But
your time might be better served by simply
abandoning your search for a magic answer and
taking responsibility for your own profound
ignorance.

FAQs aren’t magic answers. They don’t resolve a content

dilemma or even help users. Yet they keep cropping up,

defiant, weedy, impossible to eradicate.

WHERE ARE THEY ALL COMING FROM?

Blame it on this: writing is hard. When generating content,

most of us do whatever it takes to get some words on the

screen. And the format of question and answer makes it

easy: a reactionary first stab at content development.

Kill It With Fire! What To Do With Those Dreaded FAQs

24 ways 2013 edition 89

http://www.newyorker.com/online/blogs/shouts/2013/06/faqs-about-faqs.html
http://www.newyorker.com/online/blogs/shouts/2013/06/faqs-about-faqs.html

After all, the point of website content is to answer users’

questions. So this – to give everyone credit – is a really

good move. Content creators who think in terms of

questions and answers are actually thinking of their users,

particularly first-time users, trying to anticipate their

needs and write towards them.

It’s a good start. But it’s scaffolding: writing that helps you

get to the writing you’re supposed to be doing. It supports

you while you write your way to the heart of your content.

And once you get there, you have to look back and take

the scaffolding down.

Leaving content in the Q&A format that helped you

develop it is missing the point. You’re not there to build

scaffolding. You have to see your content in its naked

purpose and determine the best method for

communicating that purpose – and it usually won’t be

what got you there.

The goal (to borrow a lesson from content management

systems) is to separate the content from its presentation,

to let the meaning of the content inform its display.

This is, of course, a nice theory.

90 24 ways 2013 edition

AN OCCASIONALLY NECESSARY EVIL

I have a lot of clients who adore FAQs. They’ve developed

their content over a long period of time. They’ve listened

to the questions their users are asking. And they’ve

answered them all on a page that I simply cannot get them

to part with.

Which means I’ve had to consider that there may be

occasions where an FAQ page is appropriate.

As an example: one of my clients is a financial office in a

large institution. Because this office manages several

third-party systems that serve a range of niche audiences,

they had developed FAQs that addressed hyper-specific

instances of dysfunction within systems for different

users – à la “I’m a financial director and my employee

submitted an expense report in such-and-such system and it

returned such-and-such error. What do I do?”

Yes, this content could be removed from the question

format and rewritten. But I’m not sure it would be an

improvement. It won’t necessarily resolve concerns about

length and searchability, and the different audiences may

complicate the delivery. And since the work of rewriting it

didn’t fit into the client workflow (small team, no writers,

pressed for time), I didn’t recommend the change.

Kill It With Fire! What To Do With Those Dreaded FAQs

24 ways 2013 edition 91

I’ve had to make peace with not being to torch all the

FAQs on the internet. Some content, like troubleshooting

information or complex procedures, may be better in that

format. It may be the smartest way for a particular client

to handle that particular information.

Of course, this has to be determined on a case-by-case

basis, taking into account the amount of content, the

subject matter, the skill levels of the content creators, the

publishing workflow, and the search habits of the users.

If you determine that an FAQ page is the only way to go,

ask yourself:

▪ Is there a better label or more specific term for the

page (support, troubleshooting, product concerns, etc.)?

▪ Is there way to structure the page, categorize the

questions, or otherwise make it easier for users to

navigate quickly to the answer they need?

▪ Is a question and answer format absolutely the best

way to communicate this information?

FORM FOLLOWS FUNCTION

Just as a question and answer format isn’t necessarily

required to deliver the content, neither is it an

inappropriate method in and of itself. Content

professionals have developed a knee-jerk reaction: It’s an

FAQ page! Quick, burn it! Buuuuurn it!

92 24 ways 2013 edition

But there’s no inherent evil in questions and answers.

Framing content in an interrogatory construct is no more

a deal with the devil than subheads and paragraphs, or

narrative arcs, or bullet points.

Yes, FAQs are riddled with communication snafus. They

deserve, more often than not, to be tied to a chair and

thrown into a lake. But that wouldn’t fix our content

problems. FAQs are a shiny and obvious target for our

frustration, but they’re not unique in their flaws. In any

format, in any display, in any kind of page, weak content

can rear its ugly, poorly written head.

It’s not the Q&A that’s to blame, it’s bad content. Content

without context will always fail users. That’s the real

witch in our midst.

Kill It With Fire! What To Do With Those Dreaded FAQs

24 ways 2013 edition 93

ABOUT THE AUTHOR

Lisa Maria Martin is a content strategist, information architect,

and writer in Washington, DC. In her previous lives, she’s been a

copywriter, a designer, a journalist, and a lecturer at several

universities, extolling the virtues of MLA citation and Oxford

commas. When she isn’t making an honest living, her writing

shows up in lit journals like Pleiades, Puerto del Sol, The Indiana

Review, and others. You can read Lisa Maria’s every-blue-moon

blog at thefutureislikepie.com, or follow her on Twitter

@redsesame (but she mostly tweets about doges and Star Trek.

Fair warning).

94 24 ways 2013 edition

http://thefutureislikepie.com/
https://twitter.com/redsesame

Harry Roberts 24ways.org/201309

9. Keeping Parts of Your
Codebase Private on
GitHub

Open source is brilliant, there’s no denying
that, and GitHub has been instrumental in
open source’s recent success. I’m a keen
open-sourcerer myself, and I have a number
of projects on GitHub. However, as great as
sharing code is, we often want to keep some
projects to ourselves. To this end, GitHub
created private repositories which act like
any other Git repository, only, well, private!

A slightly less common issue, and one I’ve come up against

myself, is the desire to only keep certain parts of a

codebase private. A great example would be my site, CSS

Wizardry; I want the code to be open source so that

people can poke through and learn from it, but I want to

Keeping Parts of Your Codebase Private on GitHub

24 ways 2013 edition 95

http://24ways.org/201309
https://github.com
https://github.com/csswizardry/
https://github.com/csswizardry/
http://csswizardry.com/
http://csswizardry.com/

keep any draft blog posts private until they are ready to

go live. Thankfully, there is a very simple solution to this

particular problem: using multiple remotes.

Before we begin, it’s worth noting that you can actually

build a GitHub Pages site from a private repo. You can

keep the entire source private, but still have GitHub build

and display a full Pages/Jekyll site. I do this with

csswizardry.net. This post will deal with the more specific

problem of keeping only certain parts of the codebase

(branches) private, and expose parts of it as either an

open source project, or a built GitHub Pages site.

N.B. This post requires some basic Git knowledge.

ADDING YOUR PUBLIC REMOTE

Let’s assume you’re starting from scratch and you

currently have no repos set up for your project. (If you do

already have your public repo set up, skip to the “Adding

your private remote” section.)

So, we have a clean slate: nothing has been set up yet,

we’re doing all of that now. On GitHub, create two

repositories. For the sake of this article we shall call them

site.com and private.site.com. Make the site.com repo

public, and the private.site.com repo private (you will need

a paid GitHub account).

96 24 ways 2013 edition

http://pages.github.com
http://csswizardry.net

On your machine, create the site.com directory, in which

your project will live. Do your initial work in there, commit

some stuff — whatever you need to do. Now we need to

link this local Git repo on your machine with the public

repo (remote) on GitHub. We should all be used to this:

$ git remote add origin

git@github.com:[user]/site.com.git

Here we are simply telling Git to add a remote called

origin which lives at

git@github.com:[user]/site.com.git. Simple stuff. Now

we need to push our current branch (which will be master,

unless you’ve explicitly changed it) to that remote:

$ git push -u origin master

Here we are telling Git to push our master branch to a

corresponding master branch on the remote called

origin, which we just added. The -u sets upstream

tracking, which basically tells Git to always shuttle code

on this branch between the local master branch and the

master branch on the origin remote. Without upstream

tracking, you would have to tell Git where to push code to

(and pull it from) every time you ran the push or pull

commands. This sets up a permanent bond, if you like.

This is really simple stuff, stuff that you will probably have

done a hundred times before as a Git user. Now to set up

our private remote.

Keeping Parts of Your Codebase Private on GitHub

24 ways 2013 edition 97

ADDING YOUR PRIVATE REMOTE

We’ve set up our public, open source repository on

GitHub, and linked that to the repository on our machine.

All of this code will be publicly viewable on GitHub.com.

(Remember, GitHub is just a host of regular Git

repositories, which also puts a nice GUI around it all.) We

want to add the ability to keep certain parts of the

codebase private. What we do now is add another remote

repository to the same local repository. We have two

repos on GitHub (site.com and private.site.com), but only

one repository (and, therefore, one directory) on our

machine. Two GitHub repos, and one local one.

In your local repo, check out a new branch. For the sake of

this article we shall call the branch dev. This branch might

contain work in progress, or draft blog posts, or anything

you don’t want to be made publicly viewable on

GitHub.com. The contents of this branch will, in a

moment, live in our private repository.

$ git checkout -b dev

We have now made a new branch called dev off the

branch we were on last (master, unless you renamed it).

Now we need to add our private remote (private.site.com)

so that, in a second, we can send this branch to that

remote:

98 24 ways 2013 edition

$ git remote add private

git@github.com:[user]/private.site.com.git

Like before, we are just telling Git to add a new remote to

this repo, only this time we’ve called it private and it lives

at git@github.com:[user]/private.site.com.git. We

now have one local repo on our machine which has two

remote repositories associated with it.

Now we need to tell our dev branch to push to our

private remote:

$ git push -u private dev

Here, as before, we are pushing some code to a repo. We

are saying that we want to push the dev branch to the

private remote, and, once again, we’ve set up upstream

tracking. This means that, by default, the dev branch will

only push and pull to and from the private remote (unless

you ever explicitly state otherwise).

Now you have two branches (master and dev respectively)

that push to two remotes (origin and private

respectively) which are public and private respectively.

Any work we do on the master branch will push and pull to

and from our publicly viewable remote, and any code on

the dev branch will push and pull from our private, hidden

remote.

Keeping Parts of Your Codebase Private on GitHub

24 ways 2013 edition 99

ADDING MORE BRANCHES

So far we’ve only looked at two branches pushing to two

remotes, but this workflow can grow as much or as little

as you’d like. Of course, you’d never do all your work in

only two branches, so you might want to push any number

of them to either your public or private remotes. Let’s

imagine we want to create a branch to try something out

real quickly:

$ git checkout -b test

Now, when we come to push this branch, we can choose

which remote we send it to:

$ git push -u private test

This pushes the new test branch to our private remote

(again, setting the persistent tracking with -u).

You can have as many or as few remotes or branches as

you like.

COMBINING THE TWO

Let’s say you’ve been working on a new feature in private

for a few days, and you’ve kept that on the private

remote. You’ve now finalised the addition and want to

move it into your public repo. This is just a simple merge.

Check out your master branch:

$ git checkout master

100 24 ways 2013 edition

Then merge in the branch that contained the feature:

$ git merge dev

Now master contains the commits that were made on dev

and, once you’ve pushed master to its remote, those

commits will be viewable publicly on GitHub:

$ git push

Note that we can just run $ git push on the master

branch as we’d previously set up our upstream tracking (-

u).

MULTIPLE MACHINES

So far this has covered working on just one machine; we

had two GitHub remotes and one local repository. Let’s

say you’ve got yourself a new Mac (yay!) and you want to

clone an existing project:

$ git clone git@github.com:[user]/site.com.git

This will not clone any information about the remotes you

had set up on the previous machine. Here you have a fresh

clone of the public project and you will need to add the

private remote to it again, as above.

Keeping Parts of Your Codebase Private on GitHub

24 ways 2013 edition 101

DONE!

If you’d like to see me blitz through all that in one go,

check the showterm recording.

The beauty of this is that we can still share our code, but

we don’t have to develop quite so openly all of the time.

Building a framework with a killer new feature? Keep it in

a private branch until it’s ready for merge. Have a blog

post in a Jekyll site that you’re not ready to make live?

Keep it in a private drafts branch. Working on a new

feature for your personal site? Tuck it away until it’s

finished. Need a staging area for a Pages-powered site?

Make a staging remote with its own custom domain.

All this boils down to, really, is the fact that you can bring

multiple remotes together into one local codebase on

your machine. What you do with them is entirely up to

you!

102 24 ways 2013 edition

http://showterm.io/04130676d3401229e7df6
https://help.github.com/articles/setting-up-a-custom-domain-with-pages

ABOUT THE AUTHOR

Harry is a Consultant Front-end Architect, designer, developer,

writer and speaker from the UK—previously a Senior Developer

at BSkyB, he now helps tech teams all over the world in building

better front-ends. He Tweets at @csswizardry.

He specialises in authoring and scaling large front-ends. He

writes on the subjects of maintainability, architecture,

performance, OOCSS and more at csswizardry.com. He is the

lead and sole developer of inuit.css, a powerful, scalable, Sass-

based, BEM, OOCSS framework.

Keeping Parts of Your Codebase Private on GitHub

24 ways 2013 edition 103

http://twitter.com/csswizardry

Laura Kalbag 24ways.org/201310

10. Why Bother with
Accessibility?

Web accessibility (known in other fields as
inclusive design or universal design) is the
degree to which a website is available to as
many people as possible. Accessibility is
most often used to describe how people with
disabilities can access the web.

HOW WE APPROACH ACCESSIBILITY

In the web community, there’s a surprisingly inconsistent

approach to accessibility. There are some who are

endlessly dedicated to accessible web design, and there

are some who believe it so intrinsic to the web that it

shouldn’t be considered a separate topic. Still, of those

who are familiar with accessibility, there’s an

overwhelming number of designers, developers, clients

and bosses who just aren’t that bothered.

104 24 ways 2013 edition

http://24ways.org/201310
http://www.webaxe.org
http://www.webaxe.org
http://veen.com/jeff/archives/000503.html

Over the last few months I’ve spoken to a lot of people

about accessibility, and I’ve heard the same reasons to

ignore it over and over again. Let’s take a look at the most

common excuses.

EXCUSE 1: “PEOPLE WITH DISABILITIES DON’T
REALLY USE THE WEB”

Accessibility will make your site available to more
people — the inclusion case

In the same way that the accessibility of a building isn’t

just about access for wheelchair users, web accessibility

isn’t just about blind users and screen readers. We can

affect positively the lives of many people by making their

access to the web easier.

There are four main types of disability that affect use of

the web:

Visual

Blindness, low vision and colour-blindness

Auditory

Profoundly deaf and hard of hearing

Motor

The inability to use a mouse, slow response time,

limited fine motor control

Why Bother with Accessibility?

24 ways 2013 edition 105

Cognitive

Learning difficulties, distractibility, the inability to

focus on large amounts of information

None of these disabilities are completely black and
white

Examining deafness, it’s clear from the medical scale that

there are many grey areas between full hearing and total

deafness:

▪ mild

▪ moderate

▪ moderately severe

▪ severe

▪ profound

▪ totally deaf

For eyesight, and brain conditions that affect what users

see, there is a huge range of conditions and challenges:

▪ astigmatism

▪ colour blindness

▪ akinetopsia (motion blindness)

▪ scotopic visual sensitivity (visual stress related to light)

▪ visual agnosia (impaired recognition or identification of

objects)

106 24 ways 2013 edition

While we might have medical and government-recognised

definitions that tell us what makes a disability, day-to-day

life is not so straightforward. People experience varying

degrees of different conditions, and often one or more

conditions at a time, creating a false divide when you view

disability in terms of us and them.

Impairments aren’t always permanent

As we age, we’re more likely to experience different levels

of visual, auditory, motor and cognitive impairments. We

might have an accident or illness that affects us

temporarily. We might struggle more earlier or later in the

day. There are so many little physiological factors that

affect the way people interact with the web that we can’t

afford to make any assumptions based on our own limited

experiences.

Impairments might be somewhere between the user and
the website

There are also impairments that aren’t directly related to

the user. Environmental factors have a huge effect on the

way people interact with the web. These could be:

▪ Low bandwidth, or intermittent internet connection

▪ Bright light, rain, or other weather-based conditions

▪ Noisy environments, or a location where the user

doesn’t want to disturb their neighbours with sound

Why Bother with Accessibility?

24 ways 2013 edition 107

https://medium.com/thoughtful-design/a8b9a581eb62
https://medium.com/thoughtful-design/a8b9a581eb62

▪ Browsing with mobile devices, games consoles and

other non-desktop devices

▪ Browsing with legacy browsers or operating systems

Such environmental factors show that it’s not just those

with physical impairments who benefit from more

accessible websites. We started designing responsive

websites so we could be more future-friendly, and with a

shared goal of better optimised experiences, accessibility

should be at the core of responsive web design.

EXCUSE 2: “WE DON’T WANT TO AFFECT THE
EXPERIENCE FOR THE MAJORITY OF OUR
USERS”

Accessibility will improve your site for all your users —
the usability case

On a basic level, the different disability groups, as shown

in the inclusion case, equate to simple usability goals:

▪ Visual – make it easy to read

▪ Auditory – make it easy to hear

▪ Motor – make it easy to interact

▪ Cognitive – make it easy to understand and focus

Taking care to ensure good usability in these areas will

also have an impact on accessibility. Unless your site is

catering specifically to a particular disability, where

108 24 ways 2013 edition

http://futurefriend.ly

extreme optimisation is most beneficial, taking care to

design with accessibility in mind will rarely negatively

affect the experience of your wider audience.

EXCUSE 3: “WE DON’T HAVE THE BUDGET FOR
ACCESSIBILITY”

Accessibility will make you money — the business case

By reducing your audience through ignoring accessibility,

you’re potentially excluding the income from those users.

Designing with accessibility in mind from the beginning of

a project makes it easier to make small inexpensive

optimisations as part of the design and development

process, rather than bolting on costly updates to increase

your potential audience later on.

The following are excerpts from a white paper about

companies that increased the accessibility of their

websites to comply with government regulation.

Improvements in accessibility doubleddoubled Legal
and General’s life insurance sales online.

Why Bother with Accessibility?

24 ways 2013 edition 109

Improvements in accessibility increasedincreased
Tesco’s grocery home delivery sales by £13£13
millionmillion in 2005… To their surprise they found
that many normal visitors preferred the ease of
navigation and improved simplicity of the
[parallel] accessible site and switched to use it.
Tesco have replaced their ‘normal’ site with
their accessible version and expect a further
increase in revenues.

Improvements in accessibility increasedincreased
Virgin.net sales by 68%68%.

Statistics all from WSI white paper: Improve your

website’s usability and accessibility to increase sales

(PDF).

EXCUSE 4: “ACCESSIBLE WEBSITES ARE UGLY”

Accessibility won’t stop your site from being beautiful —
the beauty case

Many people use ugly accessible websites as proof that all

accessible websites are ugly. This just isn’t the case. I’ve

compiled some examples of beautiful and accessible

websites with screenshots of how they look through the

Color Oracle simulator and how they perform when run

through Webaim’s Wave accessibility checker tool.

110 24 ways 2013 edition

http://www.wsi-ic.com/PConnolly/FileContent/improve_website.pdf
http://www.wsi-ic.com/PConnolly/FileContent/improve_website.pdf
http://www.colororacle.org
http://wave.webaim.org

While automated tools are no substitute for real users,

they can help you learn more about good practices, and

give you guidance on where your site needs

improvements to make it more accessible.

AMAZON.CO.UK

It may not be a decorated beauty, but Amazon is often

first in functional design. It’s a huge website with a lot of

interactive content, but it generates just five errors on the

Wave test, and is easy to read under a Color Oracle filter.

10-1. Screenshot of Amazon website

Why Bother with Accessibility?

24 ways 2013 edition 111

10-2. Screenshot of Amazon’s Wave results – five errors

112 24 ways 2013 edition

10-3. Screenshot of Amazon through a Color Oracle filter

24 WAYS

When Tim Van Damme redesigned 24 ways back in 2007,

it was a striking and unusual design that showed what

could be achieved with CSS and some imagination.

Despite the complexity of the design, it gets an

outstanding zero errors on the Wave test, and is still

readable under a Color Oracle filter.

Why Bother with Accessibility?

24 ways 2013 edition 113

http://www.madebyelephant.com/

10-4. Screenshot of pre-2013 24 ways website design

114 24 ways 2013 edition

10-5. Screenshot of 24 ways Wave results – zero errors

Why Bother with Accessibility?

24 ways 2013 edition 115

10-6. Screenshot of 24ways through a Color Oracle filter

OPERA’S SHINY DEMOS

Demos and prototypes are notorious for ignoring

accessibility, but Opera’s Shiny Demos site shows how

exploring new technologies doesn’t have to exclude

anyone. It only gets one error on the Wave test, and looks

fine under a Color Oracle filter.

116 24 ways 2013 edition

10-7. Screenshot of Opera’s Shiny Demos website

Why Bother with Accessibility?

24 ways 2013 edition 117

10-8. Screenshot of Opera’s Shiny Demos Wave results – 1
error

118 24 ways 2013 edition

10-9. Screenshot of Opera’s Shiny Demos through a Color
Oracle filter

SOUNDCLOUD

When a site is more app-like, relying on more interaction

from the user, accessibility can be more challenging.

However, SoundCloud only gets one error on the Wave

test, and the colour contrast holds up well under a Color

Oracle filter.

Why Bother with Accessibility?

24 ways 2013 edition 119

10-10. Screenshot of SoundCloud website

120 24 ways 2013 edition

10-11. Screenshot of SoundCloud’s Wave results – one error

Why Bother with Accessibility?

24 ways 2013 edition 121

10-12. Screenshot of SoundCloud through a Color Oracle filter

EDUCATION AND BALANCE

As with most web design, doing accessibility well is about

combining your knowledge of accessibility with your

project’s context to create a balance that serves your

users’ needs. Your types of content and interactions will

dictate one set of constraints. Your users’ needs and goals

will dictate another. In broad terms, web design as a

practice is finding the equilibrium between these

constraints.

122 24 ways 2013 edition

And then there’s just caring. The web as a platform is

open, affordable and available to many. Accessibility is our

way to ensure that nobody gets shut out.

ABOUT THE AUTHOR

Laura Kalbag is a designer easily excited by web design and

development. Among her list of ever-changing pet subjects

are responsive web, semantic web, and web fonts, but she’s

really fascinated by anything in the areas of web, mobile and

design.

Laura has been a freelancer for the whole of her professional

life. She revels in working with small and meaningful

clients, creating websites, apps, icons, illustrations and the odd

logo.

Why Bother with Accessibility?

24 ways 2013 edition 123

http://laurakalbag.com/

Chris Coyier 24ways.org/201311

11. Grunt for People Who
Think Things Like Grunt
are Weird and Hard

Front-end developers are often told to do
certain things:

▪ Work in as small chunks of CSS and JavaScript as

makes sense to you, then concatenate them together for

the production website.

▪ Compress your CSS and minify your JavaScript to

make their file sizes as small as possible for your

production website.

▪ Optimize your images to reduce their file size without

affecting quality.

▪ Use Sass for CSS authoring because of all the useful

abstraction it allows.

That’s not a comprehensive list of course, but those are

the kind of things we need to do. You might call them

tasks.

124 24 ways 2013 edition

http://24ways.org/201311

I bet you’ve heard of Grunt. Well, Grunt is a task runner.

Grunt can do all of those things for you. Once you’ve got it

set up, which isn’t particularly difficult, those things can

happen automatically without you having to think about

them again.

But let’s face it: Grunt is one of those fancy newfangled

things that all the cool kids seem to be using but at first

glance feels strange and intimidating. I hear you. This

article is for you.

LET’S NIP SOME MISCONCEPTIONS IN THE BUD
RIGHT AWAY

Perhaps you’ve heard of Grunt, but haven’t done anything

with it. I’m sure that applies to many of you. Maybe one of

the following hang-ups applies to you.

I don’t need the things Grunt does

You probably do, actually. Check out that list up top.

Those things aren’t nice-to-haves. They are pretty vital

parts of website development these days. If you already

do all of them, that’s awesome. Perhaps you use a variety

of different tools to accomplish them. Grunt can help

bring them under one roof, so to speak. If you don’t

already do all of them, you probably should and Grunt can

Grunt for People Who Think Things Like Grunt are Weird and
Hard

24 ways 2013 edition 125

http://gruntjs.com/

help. Then, once you are doing those, you can keep using

Grunt to do more for you, which will basically make you

better at doing your job.

Grunt runs on Node.js — I don’t know Node

You don’t have to know Node. Just like you don’t have to

know Ruby to use Sass. Or PHP to use WordPress. Or

C++ to use Microsoft Word.

I have other ways to do the things Grunt could do for me

Are they all organized in one place, configured to run

automatically when needed, and shared among every

single person working on that project? Unlikely, I’d

venture.

Grunt is a command line tool — I’m just a designer

I’m a designer too. I prefer native apps with graphical

interfaces when I can get them. But I don’t think that’s

going to happen with Grunt1.

The extent to which you need to use the command line is:

1. Navigate to your project’s directory.

2. Type grunt and press Return.

After set-up, that is, which again isn’t particularly difficult.

126 24 ways 2013 edition

OK. LET’S GET GRUNT INSTALLED

Node is indeed a prerequisite for Grunt. If you don’t have

Node installed, don’t worry, it’s very easy. You literally

download an installer and run it. Click the big Install

button on the Node website.

You install Grunt on a per-project basis. Go to your

project’s folder. It needs a file there named package.json at

the root level. You can just create one and put it there.

11-1. package.json at root

The contents of that file should be this:

{

"name": "example-project",

"version": "0.1.0",

"devDependencies": {

Grunt for People Who Think Things Like Grunt are Weird and
Hard

24 ways 2013 edition 127

http://nodejs.org/

"grunt": "~0.4.1"

}

}

Feel free to change the name of the project and the

version, but the devDependencies thing needs to be in

there just like that.

This is how Node does dependencies. Node has a package

manager called NPM (Node packaged modules) for

managing Node dependencies (like a gem for Ruby if

you’re familiar with that). You could even think of it a bit

like a plug-in for WordPress.

Once that package.json file is in place, go to the terminal

and navigate to your folder. Terminal rubes like me do it

like this:

11-2. Terminal rube changing directories

128 24 ways 2013 edition

https://npmjs.org/

Then run the command:

npm install

After you’ve run that command, a new folder called

node_modules will show up in your project.

11-3. Example of node_modules folder

The other files you see there, README.md and LICENSE

are there because I’m going to put this project on GitHub

and that’s just standard fare there.

The last installation step is to install the Grunt CLI

(command line interface). That’s what makes the grunt

command in the terminal work. Without it, typing grunt

will net you a “Command Not Found”-style error. It is a

separate installation for efficiency reasons. Otherwise, if

you had ten projects you’d have ten copies of Grunt CLI.

Grunt for People Who Think Things Like Grunt are Weird and
Hard

24 ways 2013 edition 129

https://github.com/chriscoyier/My-Grunt-Boilerplate

This is a one-liner again. Just run this command in the

terminal:

npm install -g grunt-cli

You should close and reopen the terminal as well. That’s a

generic good practice to make sure things are working

right. Kinda like restarting your computer after you install

a new application was in the olden days.

LET’S MAKE GRUNT CONCATENATE SOME
FILES

Perhaps in our project there are three separate JavaScript

files:

1. jquery.js – The library we are using.

2. carousel.js – A jQuery plug-in we are using.

3. global.js – Our authored JavaScript file where we

configure and call the plug-in.

In production, we would concatenate all those files

together for performance reasons (one request is better

than three). We need to tell Grunt to do this for us.

But wait. Grunt actually doesn’t do anything all by itself.

Remember Grunt is a task runner. The tasks themselves

we will need to add. We actually haven’t set up Grunt to

do anything yet, so let’s do that.

130 24 ways 2013 edition

The official Grunt plug-in for concatenating files is grunt-

contrib-concat. You can read about it on GitHub if you

want, but all you have to do to use it on your project is to

run this command from the terminal (it will henceforth go

without saying that you need to run the given commands

from your project’s root folder):

npm install grunt-contrib-concat --save-dev

A neat thing about doing it this way: your package.json file

will automatically be updated to include this new

dependency. Open it up and check it out. You’ll see a new

line:

"grunt-contrib-concat": "~0.3.0"

Now we’re ready to use it. To use it we need to start

configuring Grunt and telling it what to do.

You tell Grunt what to do via a configuration file named

Gruntfile.js2

Just like our package.json file, our Gruntfile.js has a very

special format that must be just right. I wouldn’t worry

about what every word of this means. Just check out the

format:

module.exports = function(grunt) {

// 1. All configuration goes here

grunt.initConfig({

pkg: grunt.file.readJSON('package.json'),

Grunt for People Who Think Things Like Grunt are Weird and
Hard

24 ways 2013 edition 131

https://github.com/gruntjs/grunt-contrib-concat
https://github.com/gruntjs/grunt-contrib-concat

concat: {

// 2. Configuration for concatinating files

goes here.

}

});

// 3. Where we tell Grunt we plan to use this

plug-in.

grunt.loadNpmTasks('grunt-contrib-concat');

// 4. Where we tell Grunt what to do when we type

"grunt" into the terminal.

grunt.registerTask('default', ['concat']);

};

Now we need to create that configuration. The

documentation can be overwhelming. Let’s focus just on

the very simple usage example.

Remember, we have three JavaScript files we’re trying to

concatenate. We’ll list file paths to them under src in an

array of file paths (as quoted strings) and then we’ll list a

destination file as dest. The destination file doesn’t have

to exist yet. It will be created when this task runs and

squishes all the files together.

Both our jquery.js and carousel.js files are libraries. We

most likely won’t be touching them. So, for organization,

we’ll keep them in a /js/libs/ folder. Our global.js file is

132 24 ways 2013 edition

https://github.com/gruntjs/grunt-contrib-concat#usage-examples

where we write our own code, so that will be right in the

/js/ folder. Now let’s tell Grunt to find all those files and

squish them together into a single file named production.js,

named that way to indicate it is for use on our real live

website.

concat: {

dist: {

src: [

'js/libs/*.js', // All JS in the libs folder

'js/global.js' // This specific file

],

dest: 'js/build/production.js',

}

}

Note: throughout this article there will be little chunks of

configuration code like above. The intention is to focus in

on the important bits, but it can be confusing at first to

see how a particular chunk fits into the larger file. If you

ever get confused and need more context, refer to the

complete file.

With that concat configuration in place, head over to the

terminal, run the command:

grunt

and watch it happen! production.js will be created and will

be a perfect concatenation of our three files. This was a

big aha! moment for me. Feel the power course through

your veins. Let’s do more things!

Grunt for People Who Think Things Like Grunt are Weird and
Hard

24 ways 2013 edition 133

https://github.com/chriscoyier/My-Grunt-Boilerplate/blob/master/Gruntfile.js
https://github.com/chriscoyier/My-Grunt-Boilerplate/blob/master/Gruntfile.js

LET’S MAKE GRUNT MINIFY THAT JAVASCRIPT

We have so much prep work done now, adding new tasks

for Grunt to run is relatively easy. We just need to:

1. Find a Grunt plug-in to do what we want

2. Learn the configuration style of that plug-in

3. Write that configuration to work with our project

The official plug-in for minifying code is grunt-contrib-

uglify. Just like we did last time, we just run an NPM

command to install it:

npm install grunt-contrib-uglify --save-dev

Then we alter our Gruntfile.js to load the plug-in:

grunt.loadNpmTasks('grunt-contrib-uglify');

Then we configure it:

uglify: {

build: {

src: 'js/build/production.js',

dest: 'js/build/production.min.js'

}

}

Let’s update that default task to also run minification:

grunt.registerTask('default', ['concat', 'uglify']);

Super-similar to the concatenation set-up, right?

134 24 ways 2013 edition

https://github.com/gruntjs/grunt-contrib-uglify
https://github.com/gruntjs/grunt-contrib-uglify

Run grunt at the terminal and you’ll get some deliciously

minified JavaScript:

11-4. Minified JavaScript

That production.min.js file is what we would load up for use

in our index.html file.

LET’S MAKE GRUNT OPTIMIZE OUR IMAGES

We’ve got this down pat now. Let’s just go through the

motions. The official image minification plug-in for Grunt

is grunt-contrib-imagemin. Install it:

npm install grunt-contrib-imagemin --save-dev

Register it in the Gruntfile.js:

grunt.loadNpmTasks('grunt-contrib-imagemin');

Grunt for People Who Think Things Like Grunt are Weird and
Hard

24 ways 2013 edition 135

https://github.com/gruntjs/grunt-contrib-imagemin

Configure it:

imagemin: {

dynamic: {

files: [{

expand: true,

cwd: 'images/',

src: ['**/*.{png,jpg,gif}'],

dest: 'images/build/'

}]

}

}

Make sure it runs:

grunt.registerTask('default', ['concat', 'uglify',

'imagemin']);

Run grunt and watch that gorgeous squishification

happen:

11-5. Squished images

136 24 ways 2013 edition

Gotta love performance increases for nearly zero effort.

LET’S GET A LITTLE BIT SMARTER AND
AUTOMATE

What we’ve done so far is awesome and incredibly useful.

But there are a couple of things we can get smarter on and

make things easier on ourselves, as well as Grunt:

1. Run these tasks automatically when they should

2. Run only the tasks needed at the time

For instance:

1. Concatenate and minify JavaScript when JavaScript

changes

2. Optimize images when a new image is added or an

existing one changes

We can do this by watching files. We can tell Grunt to

keep an eye out for changes to specific places and, when

changes happen in those places, run specific tasks.

Watching happens through the official grunt-contrib-

watch plugin.

I’ll let you install it. It is exactly the same process as the

last few plug-ins we installed. We configure it by giving

watch specific files (or folders, or both) to watch. By

watch, I mean monitor for file changes, file deletions or

file additions. Then we tell it what tasks we want to run

when it detects a change.

Grunt for People Who Think Things Like Grunt are Weird and
Hard

24 ways 2013 edition 137

https://github.com/gruntjs/grunt-contrib-watch
https://github.com/gruntjs/grunt-contrib-watch

We want to run our concatenation and minification when

anything in the /js/ folder changes. When it does, we

should run the JavaScript-related tasks. And when things

happen elsewhere, we should not run the JavaScript-

related tasks, because that would be irrelevant. So:

watch: {

scripts: {

files: ['js/*.js'],

tasks: ['concat', 'uglify'],

options: {

spawn: false,

},

}

}

Feels pretty comfortable at this point, hey? The only

weird bit there is the spawn thing. And you know what? I

don’t even really know what that does. From what I

understand from the documentation it is the smart

default. That’s real-world development. Just leave it alone

if it’s working and if it’s not, learn more.

Note: Isn’t it frustrating when something that looks so

easy in a tutorial doesn’t seem to work for you? If you

can’t get Grunt to run after making a change, it’s very

likely to be a syntax error in your Gruntfile.js. That might

look like this in the terminal:

138 24 ways 2013 edition

11-6. Errors running Grunt

Usually Grunt is pretty good about letting you know what

happened, so be sure to read the error message. In this

case, a syntax error in the form of a missing comma foiled

me. Adding the comma allowed it to run.

LET’S MAKE GRUNT DO OUR PREPROCESSING

The last thing on our list from the top of the article is using

Sass — yet another task Grunt is well-suited to run for us.

But wait? Isn’t Sass technically in Ruby? Indeed it is. There

is a version of Sass that will run in Node and thus not add

an additional dependency to our project, but it’s not quite

up-to-snuff with the main Ruby project. So, we’ll use the

official grunt-contrib-sass plug-in which just assumes you

have Sass installed on your machine. If you don’t, follow

the command line instructions.

Grunt for People Who Think Things Like Grunt are Weird and
Hard

24 ways 2013 edition 139

https://github.com/sindresorhus/grunt-sass
https://github.com/gruntjs/grunt-contrib-sass
http://sass-lang.com/install

What’s neat about Sass is that it can do concatenation and

minification all by itself. So for our little project we can

just have it compile our main global.scss file:

sass: {

dist: {

options: {

style: 'compressed'

},

files: {

'css/build/global.css': 'css/global.scss'

}

}

}

We wouldn’t want to manually run this task. We already

have the watch plug-in installed, so let’s use it! Within the

watch configuration, we’ll add another subtask:

css: {

files: ['css/*.scss'],

tasks: ['sass'],

options: {

spawn: false,

}

}

That’ll do it. Now, every time we change any of our Sass

files, the CSS will automaticaly be updated.

Let’s take this one step further (it’s absolutely worth it)

and add LiveReload. With LiveReload, you won’t have to

go back to your browser and refresh the page. Page

140 24 ways 2013 edition

refreshes happen automatically and in the case of CSS,

new styles are injected without a page refresh (handy for

heavily state-based websites).

It’s very easy to set up, since the LiveReload ability is built

into the watch plug-in. We just need to:

1. Install the browser plug-in

2. Add to the top of the watch configuration:
. watch: {

options: {

livereload: true,

},

scripts: {

/* etc */

3. Restart the browser and click the LiveReload icon to

activate it.

4. Update some Sass and watch it change the page

automatically.

Grunt for People Who Think Things Like Grunt are Weird and
Hard

24 ways 2013 edition 141

http://feedback.livereload.com/knowledgebase/articles/86242-how-do-i-install-and-use-the-browser-extensions-

11-7. Live reloading browser

Yum.

Prefer a video?

If you’re the type that likes to learn by watching, I’ve made

a screencast to accompany this article that I’ve published

over on CSS-Tricks: First Moments with Grunt

142 24 ways 2013 edition

http://css-tricks.com/video-screencasts/130-first-moments-grunt/

LEVELING UP

As you might imagine, there is a lot of leveling up you can

do with your build process. It surely could be a full time

job in some organizations.

Some hardcore devops nerds might scoff at the simplistic

setup we have going here. But I’d advise them to slow

their roll. Even what we have done so far is tremendously

valuable. And don’t forget this is all free and open source,

which is amazing.

You might level up by adding more useful tasks:

▪ Running your CSS through Autoprefixer (A+ Would

recommend) instead of a preprocessor add-ons.

▪ Writing and running JavaScript unit tests (example:

Jasmine).

▪ Build your image sprites and SVG icons automatically

(example: Grunticon).

▪ Start a server, so you can link to assets with proper file

paths and use services that require a real URL like TypeKit

and such, as well as remove the need for other tools that

do this, like MAMP.

▪ Check for code problems with HTML-Inspector, CSS

Lint, or JS Hint.

▪ Have new CSS be automatically injected into the

browser when it ever changes.

▪ Help you commit or push to a version control

repository like GitHub.

Grunt for People Who Think Things Like Grunt are Weird and
Hard

24 ways 2013 edition 143

http://www.smashingmagazine.com/2013/06/11/front-end-ops/
http://www.smashingmagazine.com/2013/06/11/front-end-ops/
http://css-tricks.com/autoprefixer/
https://github.com/pivotal/jasmine
https://github.com/filamentgroup/grunticon
http://philipwalton.com/articles/introducing-html-inspector/
http://csslint.net/
http://csslint.net/
http://www.jshint.com/
http://css-tricks.com/cross-browser-css-injection/

▪ Add version numbers to your assets (cache busting).

▪ Help you deploy to a staging or production

environment (example: DPLOY).

You might level up by simply understanding more about

Grunt itself:

▪ Read Grunt Boilerplate by Mark McDonnell.

▪ Read Grunt Tips and Tricks by Nicolas Bevacqua.

▪ Organize your Gruntfile.js by splitting it up into smaller

files.

▪ Check out other people’s and projects’ Gruntfile.js.

▪ Learn more about Grunt by digging into its source and

learning about its API.

LET’S SHARE

I think some group sharing would be a nice way to wrap

this up. If you are installing Grunt for the first time (or

remember doing that), be especially mindful of little

frustrating things you experience(d) but work(ed)

through. Those are the things we should share in the

comments here. That way we have this safe place and

useful resource for working through those confusing

moments without the embarrassment. We’re all in this

thing together!

◆◆◆

144 24 ways 2013 edition

http://leanmeanfightingmachine.github.io/dploy/
http://www.integralist.co.uk/Grunt-Boilerplate.html
http://blog.ponyfoo.com/2013/11/13/grunt-tips-and-tricks
https://github.com/cowboy/wesbos/commit/5a2980a7818957cbaeedcd7552af9ce54e05e3fb
https://github.com/cowboy/wesbos/commit/5a2980a7818957cbaeedcd7552af9ce54e05e3fb
http://gruntjs.com/api/grunt

1 Maybe someday someone will make a beautiful Grunt

app for your operating system of choice. But I’m not sure

that day will come. The configuration of the plug-ins is the

important part of using Grunt. Each plug-in is a bit

different, depending on what it does. That means a

uniquely considered UI for every single plug-in, which is a

long shot.

Perhaps a decent middleground is this Grunt DevTools

Chrome add-on.

2 Gruntfile.js is often referred to as Gruntfile in

documentation and examples. Don’t literally name it

Gruntfile — it won’t work.

Grunt for People Who Think Things Like Grunt are Weird and
Hard

24 ways 2013 edition 145

https://github.com/vladikoff/grunt-devtools

ABOUT THE AUTHOR

Chris Coyier is a web designer and developer living in

Milwaukee. He writes about all thing web at CSS-Tricks, talks

about all things web at conferences around the world and on his

podcast ShopTalk with Dave Rupert, and co-founded the web

coding playground CodePen.

146 24 ways 2013 edition

http://css-tricks.com/
http://shoptalkshow.com/
http://codepen.io/

Jenn Lukas 24ways.org/201312

12. The Responsive Hover
Paradigm

CSS transitions and animations provide web
designers with a whole slew of tools to
spruce up our designs. Move over
ActionScript tweens! The techniques we can
now implement with CSS are reminiscent of
Flash-based adventures from the pages of
web history.

Pairing CSS enhancements with our :hover pseudo-class

allows us to add interesting events to our websites. We

have a ton of power at our fingertips. However, with this

power, we each have to ask ourselves: just because I can

do something, should I?

WHY BOTHER?

We hear a lot of mantras in the web community. Some

proclaim the importance of content; some encourage

methods like mobile first to support content; and others

The Responsive Hover Paradigm

24 ways 2013 edition 147

http://24ways.org/201312

warn of the overhead and speed impact of decorative

flourishes and visual images. I agree, one hundred

percent. At the same time, I believe that content can reign

king and still provide a beautiful design with compelling

interactions and acceptable performance impacts. Maybe,

just maybe, we can even have a little bit of fun when

crafting these systems!

Yes, a site with pure HTML content and no CSS will load

very fast on your mobile phone, but it leaves a lot to be

desired. If you went to your local library and every book

looked the same, how would you know which one to

borrow? Imagine if every book was printed on the same

paper stock with the same cover page in the same type

size set at a legible point value… how would you know if

you were going to purchase a cookbook about wild game

or a young adult story about teens fighting to the death?

For certain audiences, seeing a site with hip, lively hovers

sure beats a stale website concept. I’ve worked on many

higher education sites, and setting the interactive options

is often a very important factor in engaging potential

students, alumni, and donors. The same can go for e-

commerce sites: enticing your audience with surprise and

delight factors can be the difference between a successful

and a lost sale.

148 24 ways 2013 edition

http://www.amazon.com/Dressing-Cooking-Wild-Game-Waterfowl/dp/086573108X/ref%3Dsr_1_1?s=books&ie=UTF8&qid=1386029880&sr=1-1&keywords=wild+game
http://www.amazon.com/Hunger-Games-Book-1/dp/0439023521

Knowing your content and audience can help you decide if

an intriguing experience is appropriate for your site; if it

is, then hover responses can be a real asset.

WHY HOVER?

We have all these capabilities with CSS properties to

create the aforementioned fun interactions, and it would

be quite easy to fall back into some old patterns and

animation abuse. The world of Flash intros and skip links

could be recreated with CSS keyframes. However, I don’t

think any of us want to go the route of forcing users into

unwanted exchanges and road blocking content.

What’s great about utilizing hover to pair with CSS

powered actions is that it’s user initiated. It’s a well-

established expectation that when a user mouses over an

object, something changes. If we can identify that

something as a link, then we will expect something to

change as we move our mouse over it. By waiting to

trigger a CSS-based response until a user chooses to

engage with a target makes for a more polished

experience (as opposed to barraging our screens with

animations all willy-nilly). This makes it the perfect

opportunity to add some unique spunk.

The Responsive Hover Paradigm

24 ways 2013 edition 149

WHAT ABOUT MOBILE, TOUCH, AND
RESPONSIVE?

So, you’re on board with this so far, but what about mobile

and touch devices? Sure, some devices like the Samsung

Galaxy S4 have some hovering capabilities, but certainly

most do not. Beyond mobile devices, we also have to

worry about desktops with touch capabilities. It’s super

difficult to detect if a user is currently using touch or

hover. One option we have is to design strictly for touch

only and send hover enhancements to the graveyard.

However, being that I’m all “fuck yeah hovers!,” I like to

explore all options. So, let’s examine four different types

of hover patterns and see how they can translate to our

touch devices.

1. THE ESSENTIAL TEXT HOVER

Changing text color on hover is something we’ve done for

a while and it has helped aid in identifying links. To

maintain the best accessibility we can achieve, it helps to

have a different visual indicator on the default :link

state, such as an underline. By making sure all text links

have an underline, we won’t have to rely on visual changes

during hover to make sure touch device users know that it

is a link. For hover-enabled devices, we can add a basic

color transition. Doing so creates a nice fade, which makes

the change on hover less jarring. Kinda like smooth jazz.

The code* to achieve this is quite simple:

150 24 ways 2013 edition

http://fuckyeahhovers.tumblr.com/
http://www.google.com/url?q=http%3A%2F%2Fwww.w3.org%2FTR%2F2008%2FNOTE-WCAG20-TECHS-20081211%2FG183&sa=D&sntz=1&usg=AFQjCNFlNJd-aNWNcnXfi3gPKplvDraeBA

a {

color: #6dd4b1;

transition: color 0.25s linear;

}

a:hover, a:focus {

color: #357099;

}

▪ Browser prefixes are omitted

You can see in the final result that, for both touch and

hover, everyone wins:

See the Pen Most Basic Link Transition by Jenn Lukas

(@Jenn) on CodePen

The Responsive Hover Paradigm

24 ways 2013 edition 151

http://codepen.io/Jenn/pen/yBJzl
http://codepen.io/Jenn
http://codepen.io

152 24 ways 2013 edition

2. VISUAL BACKGROUND WIZARDRY AND
ANIMATED HOVERS

We can take this a step further by again making changes

to our aesthetic on hover, but not making any content

changes. Altering image hovers for fun and personality

can separate your site from others; that personality is

important and can enhance our content.

Let’s look at a few sites that do this really well. Scroll

down to the judges section of CSS Off and check out the

illustrations of the judges. On hover, the illustration fades

into a photo of the judge. This provides a realistic

alternative to the drawing. Users without the hover can

click into the detail page, where they can see the full color

picture and learn more about the judges; the information

is still available through a different pathway.

Going back to the higher education field, let’s visit

Delaware Valley College. The school had recently gone

through a rebranding that included loop icons as a symbol

to connect ideas. These icons are brought into the website

on hover of the slideshow arrows (WebKit browsers). The

hover reveals a loop animation, tying in overall themes

and adding some extra pizzazz that makes me think, “This

is a hip place that feels current.” For visitors who can’t

access the hover effect, the default arrow state clearly

represents a clickable link, and there is swipe

functionality on mobile devices to boot.

The Responsive Hover Paradigm

24 ways 2013 edition 153

http://www.unmatchedstyle.com/cssoff/
http://www.delval.edu/

DIY.org’s Frontend Dev page has a bunch of enjoyable

hover actions happening, featuring scaling transforms and

looping animations. Nothing new is revealed on hover, so

touch devices won’t miss anything, but it intrigues the

user who is visiting a site about front-end dev doing cool

front-end things. It backs up its claim of front-end

knowledge by adding this enhancement.

The old Cowork Chicago (now redirecting) had a great

example, captured here:

See: //player.vimeo.com/video/60981511

Coop: Chicago Coworking from Jenn Lukas on Vimeo.

The code for the Join areas is quite simple:

.join-buttons .daily, .join-buttons .monthly {

height: 260px; z-index: 0; margin-top: 30px;

transition: height .2s linear,margin .2s linear;

}

.join-buttons .daily:hover, .join-buttons .monthly:hover

{

height: 280px; margin-top: 20px;

}

li.button:hover {

z-index: 20;

}

154 24 ways 2013 edition

https://diy.org/skills/frontenddev
http://player.vimeo.com/video/60981511
http://vimeo.com/60981511
http://vimeo.com/jennlukas
https://vimeo.com

The slight rotation on the photos, and the change of color

and size of the rate options on hover, add to the fun factor.

The site attempts to advertise the co-working space by

letting bits of their charisma show through with these

transitions. They don’t hit the user over the head with

animations, but provide a nice addition to make sure

visitors know it’s a welcoming place to work. Some text is

added on the hover, but the text isn’t essential to

determine where the link goes.

3. IMAGE BLOCK HOVERS

There have been more designs popping up with large

image blocks acting as extensive hit area links to

subsequent pages. On hover of these links, text is

revealed, letting the user know where the link destination

goes.

See the Pen Transitioning Max Height by Jenn Lukas

(@Jenn) on CodePen

This type of link is tough for users on touch as the image

might not provide enough context to reveal its target. If

you weren’t aware of what my illustrated avatar from

2007 looked like (or even if you did), then how would you

know that this is a link to my Twitter page? Instead, if we

provide enough context — such as the @jennlukas handle

— you could assume the destination. Users who receive

the hover can also see the Twitter bio. It won’t break the

The Responsive Hover Paradigm

24 ways 2013 edition 155

http://codepen.io/Jenn/pen/tElFK
http://codepen.io/Jenn
http://codepen.io

experience for users that can’t hover, but it will provide a

nice interaction and some more information for those

that can.

See the Pen Transitioning Max Height by Jenn Lukas

(@Jenn) on CodePen

The Esquire site follows this same pattern, in which the

title of the story is shown and the subheading is revealed

on hover. Dining at Altitude took the opposite approach,

where all text is shown by default and, on hover, you can

see more of the image that the text sits atop. This is a nice

technique to follow. For touch users, following the link

will allow them to see more of the image detail that was

revealed on hover.

4. DROP-DOWN NAVIGATION MENU HOVERS

Main navigation options that rely on hover have come up

as a problem for touch. One way to address this is to be

sure your top level items are all functional links to

somewhere, and not blank anchors to trigger a submenu

drop-down. This ensures that, even without the hover-

triggered menu, users can still navigate to those top-level

pages. From there, they should be able to access the

tertiary pages shown in the drop-down. Following this

arrangement, drop-down menus act as a quick shortcut

156 24 ways 2013 edition

http://codepen.io/Jenn/pen/zvkLy
http://codepen.io/Jenn
http://codepen.io
http://www.esquire.co.uk/
http://diningataltitude.com/vail-restaurants/

and aren’t necessary to the navigational structure. If the

top navigation items are your most visited pages, this

execution won’t hinder your visitors.

If the information within the menu is vital, such as a lone

account menu, another option is to show drop-down

menus on click instead of hover. This pattern will allow

both mouse and touch users to access the drop-downs.

WHY CAN’T WE JUST DETECT HOVER?

This is a really tricky thing to do. Internet Explorer 10 on

Windows 8 uses the aria-haspopup attribute to simulate

hover on touch devices, but usually our audience

stretches beyond that group. There’s been discussion

around using Modernizr, but false positives have come

with that. A W3C draft for Media Queries Level 4 includes

a hover feature, but it’s not supported yet. Since some

devices can hover and touch, should you rely on hover

effects for those? Arguments have come up that users can

be browsing your site with a mouse and then decide to

switch to touch, or vice versa. That might be a large

concern for you, or it might be an edge case that isn’t vital

to your site’s success.

For one site, I used mousemove and touchstart JavaScript

events in order to detect if a visitor starts to browse the

site with a mouse. The design initiates for touch users,

The Responsive Hover Paradigm

24 ways 2013 edition 157

http://msdn.microsoft.com/en-us/library/ie/jj152135(v=vs.85).aspx
https://github.com/Modernizr/Modernizr/issues/548
http://dev.w3.org/csswg/mediaqueries4/#hover
http://www.quirksmode.org/css/mediaqueries/hover.html

showing all text on load, but as soon as a mouse

movement occurs, the text becomes hidden and is then

revealed on hover.

See the Pen Detect Touch devices with mousemove and

touchstart by Jenn Lukas (@Jenn) on CodePen

One downside to this approach is that the text is viewable

until a mouse enters the document, but if the elements

are further down the page it might not be noticed. A

second downside is if a user on a touch- and hover-

enabled device starts browsing with the mouse and then

switches back to touch, the hover-centric styles will

remain until a new page load. These were acceptable

scenarios in the project I worked on, but might not be for

every project.

CAN WE GIVE OUR VISITORS A CHOICE?

I’ve been thinking about how we can combat the concern

of not knowing if our customers are using touch or a

mouse, not to mention keyboard or Wacom tablets or

Minority Report screens. We can cover keyboards with

our friend :focus, but that still doesn’t solve our other

dilemmas.

Remember when we couldn’t rely on browsers to zoom

text and we had to use those small A, medium A, big A

[AAA] buttons? On selection of one of those options, a

158 24 ways 2013 edition

http://codepen.io/Jenn/pen/ALHEf
http://codepen.io/Jenn/pen/ALHEf
http://codepen.io/Jenn
http://codepen.io
http://www.cinemablography.org/uploads/1/1/7/6/11768862/2494667_orig.jpeg
http://fuckyeahhovers.tumblr.com/post/53291253894/fuck-yeah-keyboard-focus
http://fuckyeahhovers.tumblr.com/post/53291253894/fuck-yeah-keyboard-focus

different style sheet would load with small, medium, or

large text sizes to satisfy our user’s request. We could

even set cookies to remember their font choices. What if

we offered a similar solution, a hover/touch switcher, for

our new predicament?

See the Pen cwuJf by Jenn Lukas (@Jenn) on CodePen

We could add this switcher to our design. Maybe add it to

the header on smaller screens and the footer on larger

screens to play the odds. Then be sure to deliver the

appropriate touch- or hover-optimized adventure for our

guests.

How about adding View options in the areas where we’re

hiding content until hover? Looking at Delta Cycle, there’s

logic in place to switch layouts on some mobile devices.

On desktops we can see the layout shows the product and

price by default, and the name of the item and an Add to

cart button on hover. If you want to keep this hover, but

also worry that touch users can’t access it — or even if you

are concerned that people might want to view it with

more details up front — we could add another view

switcher.

See the Pen List/Grid Views for Hover or Touch by Jenn

Lukas (@Jenn) on CodePen

The Responsive Hover Paradigm

24 ways 2013 edition 159

http://codepen.io/Jenn/pen/cwuJf
http://codepen.io/Jenn
http://codepen.io
http://deltacycle.com/bike-storage
http://codepen.io/Jenn/pen/Jdnko
http://codepen.io/Jenn
http://codepen.io

Similar to the list versus grid view we often see in

operating systems, a choice here could cover all of our

bases.

CONCLUSION

There is no one-size-fits-all solution when it comes to

hover patterns. Design for your content. If you are

providing important information about driving directions

or healthcare, you might want to err on the side of

designing for touch only. If you are behind an educational

site and trying to entice more traffic and sign-ups, or a

more immersive e-commerce site selling pies, then hover

activity can help support your content and engage your

visitors without being a detriment. While content can be

our top priority, let’s not forget that our designs and

interactions, hovers included, can have a great positive

impact on how visitors experience our site. Hover wisely,

friends.

160 24 ways 2013 edition

http://emporiumpies.com/pies

ABOUT THE AUTHOR

Jenn Lukas is a multi-talented front-end consultant and

freelance developer in Philadelphia and is the founder of Ladies

in Tech. She speaks at a variety of conferences, writes for The

Nerdary, and has contributed to The Pastry Box Project.

Jenn’s past experiences range from creating Navy training

simulations to leading the front-end team at Happy Cog as

Interactive Development Director. She was named one of

Mashable’s 15 Developer/Hacker Women to Follow on Twitter,

The Responsive Hover Paradigm

24 ways 2013 edition 161

http://ladiesintech.com/
http://ladiesintech.com/
http://lanyrd.com/profile/jennlukas/
http://www.thenerdary.net/
http://www.thenerdary.net/
http://the-pastry-box-project.net/baker/jenn-lukas/
http://mashable.com/2010/07/28/developer-hacker-women-twitter/

and you can find her on Twitter posting development and cat-

related news. When she’s not crafting sites with the finest of

web standards, Jenn teaches HTML and CSS for GirlDevelopIt.

162 24 ways 2013 edition

https://twitter.com/jennlukas
http://girldevelopit.com/chapters/philadelphia

Aarron Walter 24ways.org/201313

13. Data-driven Design
with an Annual Survey

Too often, we base designs on assumptions
that don’t match customer perspectives.
Why? Because the data we need to make
informed decisions isn’t available.

Imagine starting off the year with a treasure trove of user

data that can be filtered, sliced, and diced to inform new

UI designs, help you discover where users struggle the

most, and expose emerging trends in your customers’

needs that could lead to new features. Why, that would be

useful indeed. And it’s easy to obtain by conducting an

annual survey.

Annual surveys may seem as exciting as receiving socks

and undies for Christmas, but they’re the gift that keeps

on giving all year long (just like fresh socks and undies).

I’m not ashamed to admit it: I love surveys! Each time my

design research team runs a survey, we learn so much

about customer motivations, interests, and behaviors.

Data-driven Design with an Annual Survey

24 ways 2013 edition 163

http://24ways.org/201313

Surveys provide an aggregate snapshot of your users that

can’t easily be obtained by other research methods, and

they can be conducted quickly too. You can build a survey

in a few hours, run a pilot test in a day, and have real

results streaming in the following day. Speed is essential if

design research is going to keep pace with a busy product

release schedule.

Surveys are also an invaluable springboard for customer

interviews, which provide deep perspectives on user

behavior. If you play your cards right as you construct

your survey, you can capture a user ID and an email

address for each respondent, making it easy to get in

touch with customers whose feedback is particularly

intriguing. No more recruiting customers for your

research via Twitter or through a recruiting company

charging a small fortune. You can filter survey responses

and isolate the exact customers to talk with in moments,

not months.

I love this connected process of sending targeted surveys,

filtering the results, and then — with surgical precision —

selecting just the right customers to interview. Not only is

it fast and cheap, but it lets design researchers do

quantitative and qualitative research in a coordinated

way. Aggregate survey responses help you quantify the

perspectives of different user segments, and interviews

help you get into the heads of your customers.

164 24 ways 2013 edition

An annual survey can give your team the data needed to

make more informed designs in the new year. It all starts

with a plan.

PLANNING YOUR SURVEY

Before you start jotting down questions to ask users,

spend some time thinking about the work your team will

be doing in the coming year. Are you planning new mobile

apps or a responsive redesign? Then questions about

devices used and behaviors around mobile devices might

be in order. Rethinking your content strategy? Then you

might want to ask a few questions about how your

customers consume content.

You can’t predict all of the projects you’ll be working on in

the coming year, but tuck a couple of sections in your

survey about the projects you’re certain about. This will

give you the research you need to start new projects with

solid foundational data.

Google Drive is a great place to start collaboratively

building survey questions with colleagues. Questions that

seem crystal clear in your head get challenged, refined, or

even expanded quickly when the entire team can chime in.

As you craft your survey, try to consider how you’ll filter it

once all of the data is compiled. Do you need to see

responses by industry, by age of an account, by devices

used, or by size of company? Adding the right filter

Data-driven Design with an Annual Survey

24 ways 2013 edition 165

questions can help you discover fascinating patterns in

user segments. Filtering on responses to a few questions

can surface insights like: customers in non-profit

companies with more than 100 employees are 17% more

likely to use an Android phone and are most attracted to

features A, D, and F. A designer working on the landing

page for a non-profit would love to have concrete

information like this. Filter questions are key, so consider

them carefully. But don’t go overboard — too many of

them and you’ll start to hurt your survey response rate.

Multiple choice questions are the heart of most surveys

because respondents can complete them quickly, which

increases response rate, and researchers can analyze

them without a lot of manual categorization. Open text

field questions are valuable too, but be careful not to add

too many to your survey. You’ll hate yourself after the

survey’s done and you have to sort through and tag

thousands of open responses so patterns become visible.

Oy vey!

An open-ended question works well towards the end of

the survey. At this point respondents have a lot of topics

swirling around in their head and tend to say weird things

that will pique your interest. This is where you’ll find the

outliers who are using your product. They’ll be fascinating

to interview, and on occasion will help you see your work

in a brand new way.

166 24 ways 2013 edition

Conclude your survey with a question asking permission

to get in touch for a followup interview so you don’t

pester people who want to be left alone.

With your questions nailed down, it’s time to build out

that survey and get it ready for sending!

BUILDING YOUR SURVEY

There are dozens of apps you could use to build your

survey, but SurveyMonkey is the one that I prefer. It lets

you pass in variables for each respondent such as user ID

and email address. Metadata about respondents is

essential if you’re going to do any follow-up interviews

with your customers in the coming year. SurveyMonkey

also makes it easy to set up question logic, showing

questions to customers only if they responded in a certain

way to a prior question. This helps you avoid asking

irrelevant questions to some respondents.

DETERMINING SURVEY RECIPIENTS

Once you’ve chosen a survey tool and entered all of your

questions, you need to gather a list of recipients. Your first

instinct will be to send it to everyone. You might say, “I

need maximum response and metric shit tons of data!”

But this is rarely the best approach — broad distribution

almost always leads to lower response rates, increased

noise, and decreased signal in your data. Are there

Data-driven Design with an Annual Survey

24 ways 2013 edition 167

http://surveymonkey.com
http://help.surveymonkey.com/articles/en_US/kb/What-are-custom-variables-and-how-do-I-use-them
http://help.surveymonkey.com/articles/en_US/kb/How-do-I-create-conditional-skip-logic

subsets of customers you could send to, like only those

who are active, those who are paying, or have been with

you for a certain length of time? Talk to the keepers of

your customer database and see how they can segment it

so you can be certain you’re talking to just the people who

will have the most relevant responses for your needs.

If you want to get super nerdy when finding the right

customer sample to survey, use a [sample size calculator].

Sampling is a deep subject best explored in other articles.

CRAFTING YOUR SURVEY EMAIL

After focusing your energies on writing and building your

survey, the email asking your customers to respond seems

almost trivial, but it will greatly influence your response

rate. Take great care when writing your subject line and

the body of the email. If you can pull it off, A/B testing

subject lines can greatly improve the open rate of your

email and click-through to your survey. My design

research team has seen a ~10% increase in open and click

rates when we A/B tested. We’ve found that personalizing

subject lines and greetings with the recipients name (ie.

“Hey, Aarron. How can we make our app work better for

you?”) gave us the best response rates. Your mileage may

vary.

168 24 ways 2013 edition

http://www.measuringusability.com/topics/Sample%20Size
http://kb.mailchimp.com/article/how-do-i-create-an-a-b-split-campaign/

The tone of your email is important — be friendly, honest,

and to the point. Those that are passionate about your

product will be happy to share their perspective. Writing

a survey email that people will actually respond to ain’t

easy — in fact, they’re almost always annoying. But Ben

Chestnut found a non-annoying way to send a survey

email and improve response rates.

Data-driven Design with an Annual Survey

24 ways 2013 edition 169

http://twitter.com/benchestnut
http://twitter.com/benchestnut
http://blog.mailchimp.com/reducing-irrelevance/
http://blog.mailchimp.com/reducing-irrelevance/

13-1. The email sent for the 2013 MailChimp survey let
customers know what we’d been up to in the previous year, and
invited feedback on what we should work on in the coming year.

The link to your survey should be a clear call to action. A

big button with a label like “Answer a few questions”

generally does the trick. The URL linking to the survey will

170 24 ways 2013 edition

need to include some variables like user ID and email. It

might look something like this if you’re using

SurveyMonkey:

http://surveymonkey.com/s/

somesurveyid/?uid=*|UID|*&email=*|email|*

As each email is sent, the proper data will be populated in

the variables, passing it on to the survey app for inclusion

in each response. This is the magic that will help you

pinpoint customers to interview down the road, so take

special care to test that all is working before sending to all

recipients. How you construct the survey link will vary

depending on what survey tool and email service provider

you use, so don’t take my example as gospel. You’ll need to

read the documentation for your survey and email apps to

set things up properly.

PILOT BEFORE SENDING

By now, you’ve whipped yourself into a fever pitch over

your brilliant survey and the data you hope to collect.

Your finger is on the send button, poised for action, but

there’s one very important thing to do before you send to

the entire list of customers: send a pilot email. How do

you know if your questions are clear, your form logic is

sound, and you’re passing variables from the email to the

survey properly? You won’t, unless you send to a small

segment of your recipients first.

Data-driven Design with an Annual Survey

24 ways 2013 edition 171

The data collected in your pilot will make plain where

your survey needs refinement. This data won’t be used in

your final analysis, as you’re probably going to make a few

changes to your questions.

Send the pilot survey to enough people that you can really

stress test the clarity of the questions and data you’re

gathering, while considering how much data can you

comfortably throw out. If you’re sending your final survey

to a few thousand people, you might find a couple of

hundred recipients for your pilot will give you enough

insight into what to improve while leaving the vast

majority of the recipients for your final survey.

After you’ve sent your pilot, made your survey

adjustments, and ensured the variables are being passed

from your email into the survey app, you’re ready to send

to the remainder of your customers. This is your moment

of glory!

ANALYZING YOUR RESULTS

After a couple of weeks you can probably safely close the

survey so no other responses come in as you transition

from data gathering to data analysis. Any survey app

worth its salt will chart responses to your multiple choice

questions. Reviewing these charts is a great place to start

your analysis. Is there anything particularly interesting

that stands out? Jot down some of your observations. I

172 24 ways 2013 edition

like to print screenshots of the charts for each question,

highlighting areas of interest. These prints become a

particularly handy reference point for the next step in

your analysis.

13-2. Printing results from a survey makes comparing different
customers easy.

Viewing aggregate data about all responses is interesting,

but the deltas between different types of customers are

where the real revelations happen. Remember those filter

questions you added to your survey? They’re the tool

that’ll help you compare customer segments.

Most survey apps will let you filter the data based on

response to a question. If the one you’re using doesn’t,

you can always export your data and create pivot tables in

Data-driven Design with an Annual Survey

24 ways 2013 edition 173

http://help.surveymonkey.com/articles/en_US/kb/How-do-I-create-a-Filter-by-Response
http://help.surveymonkey.com/articles/en_US/kb/How-do-I-create-a-Filter-by-Response
http://www.excel-easy.com/data-analysis/pivot-tables.html

Excel. Try filtering your data based on one of your filter

questions, such as industry, company size, or devices used.

Now compare those printed screenshots of baseline

responses to the filtered data. Chances are you’ll see

some significant differences in how each group responded

to your questions, giving you clues about the variance in

interests and motivations in customer segments and a leg

up as you work on future design projects.

Open-ended responses are equally interesting, but much

more time-consuming to analyze. Yes, you need to read

through thousands of responses, some of which are

constructive and some of which are not. Taking the time

to tag each open response will help you see trends and

filter out the responses that are unhelpful.

Unlike questions with predefined answers, open-ended

responses let users express unique ideas and use cases

you may not be looking for. The tedium of reading

thousands of response is always cut by eureka moments

when users tell you something fascinating that changes

your perspective on your app. These are the folks you

want to pull out for follow-up interviews. Because you’ve

already captured their email addresses when you set up

your survey and your email, getting in touch will be a

piece of cake.

174 24 ways 2013 edition

http://www.excel-easy.com/data-analysis/pivot-tables.html
http://www.amazon.com/Interviewing-Users-Steve-Portigal/dp/193382011X/aarronwalterc-20/

Filter, compare, interview, and summarize; then share

your findings with your colleagues. Reports are great for

head honchos, but if you want to really inform and inspire,

create a video, a poster series, or even a comic to

communicate what you’ve learned. Want to get really

fancy? Store your survey results in a centrally accessible

location so anyone in your company can research and

discover the insights they need to make more informed

designs.

Good design researchers discover valuable insights. Great

design researchers turn those insights into stories.

CONCLUSION

As we enter the new year, it’s a great time to reflect on the

work we’ve done in the past and how we can do better in

the future. Without a doubt, designers working with a

foundation of insights about customers can make more

effective UIs. But designers aren’t the only ones who

stand to gain from the data collected in an annual

survey—anyone who makes things for or communicates

with customers will find themselves empowered to do

better work when they know more about the people they

serve. The data you collect with your survey is a fantastic

holiday gift to your colleagues, one that they’ll appreciate

throughout the year.

Data-driven Design with an Annual Survey

24 ways 2013 edition 175

http://blog.mailchimp.com/new-mailchimp-user-persona-research/
http://www.amazon.com/See-What-Mean-Kevin-Cheng/dp/1933820276/aarronwalterc-20/
http://alistapart.com/article/connected-ux
http://alistapart.com/article/connected-ux

ABOUT THE AUTHOR

Aarron Walter is the Director of User Experience at MailChimp,

where he strives to make software more human. Aarron is the

author of Designing for Emotion from A Book Apart. Aarron

taught design at colleges in the US and Europe for nearly a

decade, and speaks at conferences around the world. His design

guidance has helped the White House, the US Department of

State, and dozens of startups and venture capitalists. He tweets

about design under the moniker @aarron on Twitter.

176 24 ways 2013 edition

http://aarronwalter.com
http://mailchimp.com
http://www.abookapart.com/products/designing-for-emotion
http://abookapart.com
http://twitter.com/aarron

Meri Williams 24ways.org/201314

14. Home Kanban for
Domestic Bliss

My wife is an architect. I’m a leader of big
technical teams these days, but for many
years after I was a dev I was a project/
program manager. Our friends and family
used to watch Grand Designs and think that
we would make the ideal team — she could
design, I could manage the project of
building or converting whatever dream
home we wanted.

Then we bought a house.

A Victorian terrace in the north-east of England that

needed, well, a fair bit of work. The big decisions were

actually pretty easy: yes, we should knock through a

double doorway from the dining room to the lounge; yes,

we should strip out everything from the utility room and

Home Kanban for Domestic Bliss

24 ways 2013 edition 177

http://24ways.org/201314
http://www.channel4.com/programmes/grand-designs

redo it; yes, we should roll back the hideous carpet in the

bedrooms upstairs and see if we could restore the original

wood flooring.

Those could be managed like a project.

What couldn’t be was all the other stuff. Incremental

improvements are harder to schedule, and in a house

that’s over a hundred years old you never know what

you’re going to find when you clear away some tiles, or

pull up the carpets, or even just spring-clean the kitchen

(“Erm, hon? The paint seems to be coming off. Actually, so

does the plaster…”). A bit like going in to fix bugs in code

or upgrade a machine — sometimes you end up quite far

down the rabbit hole.

And so, as we tried to fit in those improvements in our

evenings and weekends, we found ourselves disagreeing.

Arguing, even. We were both trying to do the right thing

(make the house better) but since we were fitting it in

where we could, we often didn’t get to talk and agree in

detail what was needed (exactly how to make the house

better). And it’s really frustrating when you stay up late

doing something, just to find that your other half didn’t

mean that they meant this instead, and so your effort was

wasted.

178 24 ways 2013 edition

http://xkcd.com/349/
http://xkcd.com/349/

Then I saw this tweet from my friend and colleague Jamie

Arnold, who was using the same kanban board approach

at home as we had instituted at the UK Government

Digital Service to manage our portfolio.

Mrs Arnold embraces Kanban wall at home.
Disagreements about work in progress and
priority significantly reduced.. ;)
pic.twitter.com/407brMCH

— Jamie Arnold (@itsallgonewrong) October 27, 2012

And despite Jamie’s questionable taste in fancy dress

outfits (look closely at that board), he is a proper genius

when it comes to processes and particularly agile ones. So

I followed his example and instituted a home kanban

board.

WHAT IS THIS KANBAN OF WHICH YOU SPEAK?

Kanban boards are an artefact from lean manufacturing —

basically a visualisation of a production process. They are

used to show you where your bottlenecks are, or where

one part of the process is producing components faster

than another part of the process can cope. Identifying the

bottlenecks leads you to set work in progress (WIP) limits,

so that you get an overall more efficient system.

Home Kanban for Domestic Bliss

24 ways 2013 edition 179

https://twitter.com/itsallgonewrong/status/262229010132639745
http://digital.cabinetoffice.gov.uk/
http://digital.cabinetoffice.gov.uk/
http://t.co/407brMCH
https://twitter.com/itsallgonewrong/statuses/262229010132639745

Increasingly kanban is used as an agile software

development approach, too, especially where support

work (like fixing bugs) needs to be balanced with

incremental enhancement (like adding new features).

I’m a big advocate of kanban when you have a system that

needs to be maintained and improved by the same team

at the same time. Rather than the sprint-based approach

of scrum (where the next sprint’s stories or features to be

delivered are agreed up front), kanban lets individuals

deal with incidents or problems that need investigation

and bug fixing when urgent and important. Then, when

someone has capacity, they can just go to the board and

pull down the next feature to develop or test.

SO, HOW DID WE USE IT?

One of the key tenets of kanban is that you visualise your

workflow, so we put together a whiteboard with columns:

Icebox; To Do Next; In Process; Done; and also a section

called Blocked. Then, for each thing that needed to

happen in the house, we put it on a Post-it note and

initially chucked them all in the Icebox — a collection with

no priority assigned yet.

Each week we looked at the Icebox and pulled out a set of

things that we felt should be done next. This was pulled

into the To Do Next column, and then each time either of

us had some time, we could just pull a new thing over into

180 24 ways 2013 edition

the In Process column. We agreed to review at the end of

each week and move things to Done together, and to talk

about whether this kanban approach was working for us

or not.

We quickly learned for ourselves why kanban has WIP

limits as a key tenet — it’s tempting to pull everything into

the To Do Next column, but that’s unrealistic. And trying

to do more than one or two things each at a given time

isn’t terribly productive owing to the cost of task

switching. So we tend to limit our To Do Next to about

seven items, and our In Process to about four (a max of

two each, basically).

We use the Blocked column when something can’t be

completed — perhaps we can’t fix something because we

discovered we don’t have the required tools or supplies,

or if we’re waiting for a call back from a plumber. But it’s

nice to put it to one side, knowing that it won’t be

forgotten.

WHAT HELPED THE MOST?

It wasn’t so much the visualisation that helped us to see

what we needed to do, but the conversation that

happened when we were agreeing priorities, moving them

to In Process and then on to Done made the biggest

Home Kanban for Domestic Bliss

24 ways 2013 edition 181

difference. Getting clear on the order of importance really

is invaluable — as is getting clear on what Done really

means!

The Blocked column is also great, as it helps us keep track

of things we need to do outside the house to make sure

we can make progress. We also found it really helpful to

examine the process itself and figure out whether it was

working for us. For instance, one thing we realised is it’s

worth tracking some regular tasks that need time

invested in them (like taking recycling that isn’t picked up

to the recycling centre) and these used to cycle around

and around. So they were moved to Done as part of our

weekly review, but then immediately put back in the

Icebox to float back to the top again at a relevant time.

But the best thing of all? That moment where we get to

mark something as done! It’s immensely satisfying to

review at the end of the week and have a physical marker

of the progress you’ve made.

All in all, a home kanban board turned out to be a very

effective way to pull tasks through stages rather than

always trying to plan them out in advance, and definitely

made collaboration on our home tasks significantly

smoother. Give it a try!

182 24 ways 2013 edition

ABOUT THE AUTHOR

Meri Williams is a geek, a manager and a manager of geeks.

She’s led teams ranging in size from 30 to 300, mostly with folks

spread across the world. After starting her career as a

developer, she moved on to project and then product

management before moving into engineering and operations

management.

Home Kanban for Domestic Bliss

24 ways 2013 edition 183

A published author and speaker, she sponsors scholarships to

encourage more young women into STEM careers in her

hometown of Stellenbosch, South Africa. You can follow her on

Twitter at @Geek_Manager or read her blog at

blog.geekmanager.co.uk

184 24 ways 2013 edition

http://twitter.com/Geek_Manager
http://blog.geekmanager.co.uk

Owen Gregory 24ways.org/201315

15. In Their Own Write:
Web Books and their
Authors

The currency of written communication —
words on the page, words on the screen —
comprises many denominations. To further
our ends in web design and development, we
freely spend and receive several: tweets
aphoristic and trenchant, banal and
perfunctory; blog posts and articles that call
us to action or reflection; anecdotes, asides,
comments, essays, guides, how-tos,
manuals, musings, notes, opinions, stories,
thoughts, tips pro and not-so-pro. So many,
many words.

In Their Own Write: Web Books and their Authors

24 ways 2013 edition 185

http://24ways.org/201315

Our industry (so much more than this, but what on earth

are we, collectively?), our community thrives on writing

and sharing knowledge and experience. 24 ways is a case

in point. Everyone can learn and contribute through

reading and writing — it’s what we’ve always done.

To web authors and readers seeking greater returns,

though, broader culture has vouchsafed an enduring and

singular artefact: the book.

Last month I asked a small sample of web book authors if

they would be prepared to answer a few questions; most

of them kindly agreed. In spirit, the survey was informal: I

had neither hypothesis nor unground axe. I work closely

with writers — and yes, I’ve edited or copy-edited books

by several of the authors I surveyed — and wanted to

share their thoughts about what it was like to write a

book (“…it was challenging to find a coherent narrative”),

why they did it (“Who wouldn’t want to?”) and what they

learned from the experience (“That I could!”).

REASONS FOR WRITING A BOOK

In web development the connection between authors and

readers is unusually close and immediate. Working in our

medium precipitates a unity that’s rare elsewhere. Yet

writing and publishing a book, even during the current

books revolution, is something only a few of us attempt

186 24 ways 2013 edition

and it remains daunting and a little remote. What spurs an

author to try it? For some, it’s a deeply held resistance to

prevailing trends:

I felt that designers and developers needed to
be shaken out of what seemed to me had been
years of stagnation.

—Andrew Clarke

Or even a desire to protect us from ourselves:

I felt that without a book that clearly defined
progressive enhancement in a very
approachable and succinct fashion, the web
was at risk. I was seeing Tim Berners-Lee’s
vision of universal availability slip away…

—Aaron Gustafson

Sometimes, there’s a knowledge gap to be filled by an

author with the requisite excitement and need to

communicate. Jon Hicks took his “pet subject” and was

“enthused enough to want to spend all that time writing”,

particularly because:

…there was a gap in the market for it. No one
had done it before, and it’s still on its own out
there, with no competition. It felt like I was
able to contribute something.

Cennydd Bowles felt a professional itch at a particular

point in his career, understanding that

In Their Own Write: Web Books and their Authors

24 ways 2013 edition 187

[a]s a designer becomes more senior, they start
looking for ways to scale the effects of their
work. For some, that leads into management.
For others, into writing.

Often, though, it’s also simply a personal challenge and

ambition to explore a subject at length and create

something substantial. Anna Debenham describes a

motivation shared by several authors:

To be able to point to something more tangible
than an article and be able to say “I did that.”

That sense of a book’s significance, its heft and gravity

even, stems partly from the cultural esteem which

honours books and their authors. Books have a long

history as sources of wisdom, truth and power. Even with

more books being published each year than ever before,

writing one is still commonly considered a laudable

achievement, including in our field.

CHALLENGES OF WRITING A BOOK

Received wisdom has it that writing online should be brief

and chunky and approachable: get to the point; divide it

all up; subheadings and lists are our friends; write like

you’re talking; no one has time to read. Much of such

advice is true. Followed well, it lends our writing punch

and pith, vigour and vim. The web is nimble, the web keeps

up, and it suits what we write about developing for it. It’s

188 24 ways 2013 edition

perfect for delivering our observations, queries and

investigations into all the various aspects of the work,

professional and personal.

Yet even for digital natives like web authors, books

printed and electronic retain an attractive glister.

Ideas can be developed more fully, their consequences

explored to greater depth and extended with more varied

examples, and the whole conveyed with more eloquence,

more style. Why shouldn’t authors delay their conclusions

if the intervening text is apposite, rich with value and

helps to flesh out the skeleton of an argument?

Conclusions might or might not be reached, of course, but

a writer is at greater liberty in a book to digress in

tangential and interesting ways.

Writing a book involves committing time, energy, thought

and money. As Brian Suda found, it can be tough “getting

the ideas out of my head into a cohesive blob of text.”

Some authors end up talking to themselves…

It helps me to keep a real person in mind,
someone who I’m talking to as I write.
Sometimes I have the same conversations over
and over in my head.

—Andrew Clarke

…while others are thinking ahead, concerned with how

their book will be received:

In Their Own Write: Web Books and their Authors

24 ways 2013 edition 189

Would anyone want to read it? Would they
care? Would it be respected by my peers?

—Joe Leech

Challenges that arose time and again included “starting”

and “getting words on the page” as well as “knowing when

to stop” or “letting go”. Personal organization problems

and those caused by publishers were also widely

mentioned. Time loomed large. Making time, finding time.

Giving up “sleep and some sanity” and realizing “it will

take you far, far, far longer than you naively assumed”.

Importantly, writing time is time away from gainful

employment: Aaron Gustafson found the hardest thing

about writing a book to be “the loss of income while I was

writing.”

PERILS AND PLEASURES OF EDITING

Editing, be it structural, technical or copy editing, is

founded on reciprocity. Without openness and a shared

belief that the book is worthwhile, work can founder in

acrimony and mistrust. Editors are a book’s first and most

critical (in every sense) readers. Effective and perceptive

editing makes a book as good as it can be, finding the book

within the draft like sculpture reveals the statue in the

stone.

190 24 ways 2013 edition

A good editor calls you out on poor
assumptions and challenges you to really
clarify your thinking. Whilst it can be difficult
during the process to have your thinking
challenged, it’s always been worth it — for me
personally — in the long run. A good editor
also reins you in when you’ve perhaps
wandered off track or taken a little too long to
make a point.

—Christopher Murphy

Andy Croll found editing “all positive” and Aaron

Gustafson loves “working with a strong editor […] I want

someone to tell it to me straight.” But it can be a

rollercoaster, “both terrifying and the real moment of

elation”. Mixed emotions during the editing process are

common:

It was very uncomfortable! I knew it was
making the work stronger, but it was awkward
having my inconsistencies and waffle picked
apart.

—Jon Hicks

It can be distressing to have written work looked over by a

professional, particularly for first-time book authors

whose expertise lies elsewhere:

In Their Own Write: Web Books and their Authors

24 ways 2013 edition 191

I was a little nervous because I don’t consider
myself a skilled writer — I never dreamed of
becoming an author. I’m a designer, after all.

—Geri Coady

Communication is key, particularly when it comes to

checking or changing the author’s words.

I like a good banter between me and the tech
editor — if we can have a proper argument in
Word comments, that’s great.

—Rachel Andrew

But if handled poorly, small battles can break out. Rachel

Andrew again:

However, having had plenty of times where the
technical editor has done nothing more than
give a cursory glance, I started to leave little
issues in for them to spot. If they picked them
up I knew they were actually testing the code
and I could be sure the work was being properly
tech edited. If they didn’t spot them, I’d find
someone myself to read through and check it!

A major concern for writers is that their voices will be

altered, filtered, mangled or otherwise obscured by the

editing process. Good copy editing must remain

unnoticed while enhancing the author’s voice in print.

Donna Spencer appreciated the way her editor “tidied up

192 24 ways 2013 edition

my work and made it a million times better, but left it

sounding exactly like me.” Similarly, Andrew Travers “was

incredibly impressed at how well my editor tightened up

my own writing without it feeling like another’s voice” and

Val Head sums up the consensus that:

the editor was able to help me express what I
was trying to say in a better way […] I want to
have editors for everything now.

At the keyboard, keep your friends close, but your editors

closer.

PUBLISHING AND PUBLISHERS

Conditions ought to militate against the allure of writing a

book about web design and development. More books are

published each year than ever before, so readerships

elude new authors and readers can struggle to find

authors to trust in their fields of interest. New spaces for

more expansive online writing about working on and with

the web are opening up (sites like Contents Magazine and

STET), and seminal online web development texts are

emerging. Publishing online is simple, far-reaching and

immediate.

Much more so than articles and blog posts, books take

time to research, write and read; add the complexity of

commissioning, editing, designing, proofreading, printing,

marketing and distribution processes, and it can take

In Their Own Write: Web Books and their Authors

24 ways 2013 edition 193

http://contentsmagazine.com/
http://stet.editorially.com/

many months, even years to publish. The ceaseless

headlong momentum of the web can leave articles more

than a few weeks old whimpering in its wake, but

updating them at least is straightforward; printed books

about web development can depreciate as rapidly as the

technology and techniques they describe, while retaining

the “terrifying permanence that print bestows: your

opinions will follow you forever”.

So much moves on, and becomes out of date.
Companies featured get bought by larger
companies and die, techniques improve and
solutions featured become terribly out of date.
Unlike a website, which could be updated
continuously, a book represents the thinking
‘at that time’.

—Jon Hicks

Publishers work hard to mitigate these issues, promoting

new books and new authors, bringing authors and readers

together under a trusted banner. When a publisher

packages up and releases a writer’s words, it confers a

seal of approval and “badge of quality”, very important to

new authors.

Publishers have other benefits to offer, from expert

knowledge:

194 24 ways 2013 edition

My publisher was extraordinarily supportive
(and patient). Her expertise in my chosen
subject was both a pressure (I didn’t want to let
her down) and a reassurance (if she liked it, I
knew it was going to be fine).

—Andrew Travers

…to systems and support mechanisms set up specifically

to encourage writers and publish books:

Working as a team means you’re bringing in
everyone’s expertise.

—Chui Chui Tan

As a writer, the best part about writing for a
publisher was the writing infrastructure
offered.

—Christopher Murphy

There can be drawbacks, however, and the occasional

horror story:

We were just one small package on a huge
conveyor belt. The publisher’s process ruled
all.

—Cennydd Bowles

In Their Own Write: Web Books and their Authors

24 ways 2013 edition 195

It’s only looking back I realise how poorly some
publishers treat writers — especially when the
work is so poorly remunerated.

My worst experience was when a publisher
decided, after I had completed the book, that
they wanted to push a different take on the
subject than the brief I had been given. Instead
of talking to me, they rewrote chunks of my
words, turning my advice into something that I
would never have encouraged. Ultimately, I
refused to let the book go out under my name
alone, and I also didn’t really promote the book
as I would have had to point out the things I did
not agree with that had been inserted!

—Rachel Andrew

Self-publishing is now a realistic option for web authors,

and can offers “complete control over the end product” as

well as the possibility of earning more than a “pathetic

author revenue percentage”. There can be substantial

barriers, of course, as self-publishing authors must face

for themselves the risks and challenges conventional

publishers usually bear. Ideally, creating a book is a

collaboration between author and publisher. Geri Coady

found that “working with my publisher felt more like

working with a partner or co-worker, rather than working

for a boss.”

196 24 ways 2013 edition

WISE WORDS

So, after meeting the personal costs of writing and

publishing a web book — fear, uncertainty, doubt, typing

(so much typing) — and then smelling the roses of success,

what’s left for an author to say? Some words, perhaps, to

people thinking of writing a book.

Donna Spencer identifies a stumbling block common to

many writers with an insight into the writing process:

Having talked to a lot of potential authors, I
think most have the problem that they haven’t
actually figured out the ‘answer’ to their
premise yet. They feel like they are stuck in the
writing, but they are actually stuck in the
thinking.

For some no-nonsense, straightforward advice to cut

through any anxiety or inadequacy, Rachel Andrew

encourages authors to “treat it like any other work. There

is no mystery to writing, you just have to write. Schedule

the time, sit down, write words.” Tim Brown notes the

importance of the editing process to refine a book and

help authors reach their readers:

Hire good editors. Editors are amazing thinkers
who can vastly improve the quality and clarity
of a piece of writing.

In Their Own Write: Web Books and their Authors

24 ways 2013 edition 197

http://www.youtube.com/watch?v=GND10sWq0n0

We are too much beholden to the practical demands and

challenges of technology, so Aaron Gustafson suggests a

writer should “favor philosophies over techniques and

your book will have a longer shelf life.”

Most intimations of renown and recognition are nipped in

the bud by Joe Leech’s warning: “Don’t expect fame and

fortune.” Although Cennydd Bowles’ bitter experience can

be discouraging:

The sacrifices required are immense. You
probably won’t make it.

…he would do things differently for a future book:

I would approach the book with […] far more
concern about conveying the damn joyjoy of what
I do for a living.

The pleasure of writing, not just having written is

captured by James Chudley when he recalls:

How much I enjoy writing and also how much I
enjoy the discipline or having a side project like
this. It’s a really good supplement to working
life.

And Jon Hicks has words that any author will find

comforting:

It will be fine. Everything will be fine. Just get
on with it!

198 24 ways 2013 edition

◆◆◆

As the web expands effortlessly and ceaselessly to make

room for all our words, yet it can also discourage the

accumulation of any particular theme in one space,

dividing rich seams and scattering knowledge across the

web’s surface and into its deepest reaches. How many

words become weightless and insubstantial, signals lost in

the constant white noise of indistinguishable voices,

unloved, unlinked? The web forgets constantly, despite

the (somewhat empty) promise of digital preservation:

articles and data are sacrificed to expediency, profit and

apathy; online attention, acknowledgement and interest

wax and wane in days, hours even.

Books can encourage deeper engagement in readers, and

foster faith in an author, particularly if released under the

imprint of a recognized publisher within the field. And

books are changing. Although still not widely adopted,

EPUB3 is the new standard in ebooks, bringing with it

new possibilities for interaction and connection: readers

with the text; readers with readers; and readers with

authors. EPUB3 is built on HTML, CSS and JavaScript —

sound familiar? In the past, we took what we could from

the printed page to make the web; now books are rubbing

up against what we’ve made.

So: a book.

In Their Own Write: Web Books and their Authors

24 ways 2013 edition 199

Ever thought you could write one? Should write one?

Would?

◆◆◆

I’d like to thank all the authors who wrote their books and

answered my questions.

▪ Rachel Andrew · CSS3 Layout Modules, The CSS3

Anthology and more

▪ Cennydd Bowles · Undercover User Experience Design,

with James Box

▪ Tim Brown · Combining Typefaces

▪ James Chudley · Usability of Web Photos

▪ Andrew Clarke · Hardboiled Web Design

▪ Geri Coady · Colour Accessibility

▪ Andy Croll · HTML Email

▪ Anna Debenham · Front-end Style Guides

▪ Aaron Gustafson · Adaptive Web Design

▪ Val Head · CSS Animations

▪ Jon Hicks · The Icon Handbook

▪ Joe Leech · Psychology for Designers

▪ Christopher Murphy · The Craft of Words, with Niklas

Persson

▪ Donna Spencer · Information Architecture, Card Sorting

and How to Write Great Copy for the Web

▪ Brian Suda · Designing with Data

▪ Chui Chui Tan · International User Research

200 24 ways 2013 edition

http://rachelandrew.co.uk/books/css3-layout-modules
http://rachelandrew.co.uk/books/the-css-anthology
http://rachelandrew.co.uk/books/the-css-anthology
http://rachelandrew.co.uk/books/
http://undercoverux.com/
http://www.fivesimplesteps.com/products/combining-typefaces
http://www.photoux.co.uk/
http://www.fivesimplesteps.com/products/hardboiled-web-design
http://www.fivesimplesteps.com/products/colour-accessibility
http://www.fivesimplesteps.com/products/html-email
http://www.fivesimplesteps.com/products/front-end-style-guides
http://easy-readers.net/books/adaptive-web-design/
http://www.fivesimplesteps.com/products/css-animations
http://iconhandbook.co.uk/
http://psychologyfordesigners.com/
http://www.fivesimplesteps.com/products/the-craft-of-words
http://practical-ia.com/
http://rosenfeldmedia.com/books/card-sorting/
http://rockablepress.com/books/how-to-write-great-copy-for-the-web
http://optional.is/
http://internationaluserresearch.com/

▪ Andrew Travers · Interviewing for Research

ABOUT THE AUTHOR

Owen Gregory is an editor, website designer and musician

living in Birmingham, UK. He started designing for the web in

1998 and established his small business Full Cream Milk in

2006. Prior to that, Owen studied English and writing to

master’s level, and he now brings these two interests together

for your friendly neighbourhood web book publishers, like Five

Simple Steps. He tweets as @FullCreamMilk because

FullCreamMilkMan is too long for Twitter.

In Their Own Write: Web Books and their Authors

24 ways 2013 edition 201

http://www.fivesimplesteps.com/products/interviewing-for-research
http://www.fullcreammilk.co.uk/
http://twitter.com/#!/fullcreammilk

Owen is what is sometimes called a classically trained musician,

and he plays oboe and cor anglais (neither English nor a horn) in

a number of non-professional orchestras.

Oh, and Andy Clarke once thanked Owen for “being Lewis to my

Morse”. Which is better than being Robin to his Batman.

202 24 ways 2013 edition

Geri Coady 24ways.org/201316

16. Credits and
Recognition

A few weeks ago, I saw a friendly little tweet
from a business congratulating a web agency
on being nominated for an award. The
business was quite happy for them and
proud to boot — they commented on how
the same agency designed their website,
too.

What seemed like a nice little shout-out actually made me

feel a little disappointed. Why? In reality, I knew that the

web agency didn’t actually design the site — I did, when I

worked at a different agency responsible for the overall

branding and identity.

I certainly wasn’t disappointed at the business — after all,

saying that someone designed your site when they were

responsible for development is an easy mistake to make.

Credits and Recognition

24 ways 2013 edition 203

http://24ways.org/201316

Chances are, the person behind the tweets and status

updates might not even know the difference between

words like design and development.

What really disappointed me was the reminder of how

many web workers out there never explain their roles in a

project when displaying work in a portfolio. If you’re

strictly a developer and market yourself as such, there

might be less room for confusion, but things can feel a

little deceptive if you offer a wide range of services yet

never credit the other players when collaboration is part

of the game. Unfortunately, this was the case in this

situation. Whatever happened to credit where credit’s

due?

ADVERTISING ATTRIBUTION

Have you ever thumbed through an advertising annual or

browsed through the winners of an advertising awards

website, like the campaign below from Kopenhagen

Chocolate on Advertising Age? If so, it’s likely that you’ve

noticed some big differences in how the work is credited.

204 24 ways 2013 edition

http://adage.com/

16-1. Everyone involved in a creative advertising project is
mentioned.

Art directors, writers, creative directors, photographers,

illustrators and, of course, the agency all get a fair shot at

fifteen minutes of fame. Why can’t we take this same idea

and introduce it to our own showcases?

CREDITING ON CLIENT SITES

Ah, the good old days of web rings, guestbooks, and under

construction GIFs, when slipping in a cheeky “designed

by” link in the footer of your masterpiece was just another

common practice. These days most clients, especially

larger companies and corporations, aren’t willing to have

any names on their site except their own.

Credits and Recognition

24 ways 2013 edition 205

If you’d still like to leave a little proof of authorship on a

website, consider adding a humans.txt file to the root of

the site and, if possible, add an author tag in the <head> of

the site:

<link type="text/plain" rel="author" href="http://domain/

humans.txt">

It’s a great way to add more detailed information than just

a meta name without being intrusive. The example on the

humanstxt.org website serves to act as a guideline, but

how much detail you add is completely up to you and your

team.

206 24 ways 2013 edition

http://humanstxt.org/
http://humanstxt.org/

16-2. Part of the humans.txt file on humanstxt.org

Alternatively, you can use the HTML5 rel="author"

attribute to link to information about the author of the

page in the form of a mailto: address, a link to a contact

form, or a separate authors page.

Credits and Recognition

24 ways 2013 edition 207

http://diveintohtml5.info/semantics.html#new-relations
http://diveintohtml5.info/semantics.html#new-relations

CREDITING IN PORTFOLIOS

While humans.txt is a great approach when you’re

authoring a site, it’s even more important to clearly define

your role in your own portfolio.

While I believe it’s proper etiquette to include the names

of folks you collaborated with, sometimes it might not be

necessary (or even possible) to list every single person,

especially if you’ve worked with a large agency.

“Fake it till you make it” is not a term that should apply to

your portfolio. Clearly stating your own responsibilities

means that nobody else browsing your work samples will

assume that you did more than your actual share, and

being ambiguous about your role isn’t fair to yourself, or

others.

Before adding any work to your portfolio, ensure that you

have permission from your client. Even if you included a

clause in your contract about being allowed to post your

work online, it’s always best to double-check. Sometimes

you might not know if your work has been officially

launched, and leaking something before it’s ready is

bound to make a client frown.

208 24 ways 2013 edition

Examples

There are plenty of portfolios out there that we can use

for inspiration. Here are some examples that I like from

other folks in the web industry:

ANNA DEBENHAM

16-3. In her portfolio, Anna outlines her responsibilities and
those of others.

In the description, Anna clearly explains her duties of

doing the HTML and CSS, along with performing research

and testing the prototype in schools. She also credits

Laura Kalbag for the design work.

NAOMI ATKINSON DESIGN

The work portfolio of Naomi Atkinson Design is short and

to the point — they were responsible for the iPhone app

design and IA for Artspotter.

Credits and Recognition

24 ways 2013 edition 209

http://maban.co.uk/portfolio

16-4. The portfolio of Naomi Atkinson Design states clearly
what they did.

AMBER WEINBERG

Amber Weinberg is strictly a developer, but a potential

client could see her portfolio and assume she might be a

designer as well. To avoid any misunderstandings, she

states her roles up front in a section called “What I Did,”

supported by examples of her code.

210 24 ways 2013 edition

http://naomiatkinsondesign.com/

16-5. Amber Weinberg sets out all her roles in each of her
portfolio’s case studies.

WHAT IF SOMEONE DOESN’T WANT TO BE
CREDITED?

Let’s face it — we’ve all been there. A project, for

whatever reason, turns out to be an absolute disaster and

we don’t feel like it’s an accurate representation of the

quality of our work.

If you’re crediting someone else but suspect they might

rather pretend it never happened, be sure to drop them a

line and ask if they’d like to be included. And, if someone

contacts you and asks to remove their name, don’t feel

offended — just politely remove it.

Credits and Recognition

24 ways 2013 edition 211

http://www.amberweinberg.com/work/web-development/
http://www.amberweinberg.com/work/web-development/

GET UPDATING!

Now that the holiday season is almost here, many of you

might be planning to set aside some time for personal

projects. Grab yourself a gingerbread latte and get those

portfolios up to date. Remember, It doesn’t have to be

long-winded, just honest. Happy holidays!

ABOUT THE AUTHOR

212 24 ways 2013 edition

Geri Coady is a colour-obsessed illustrator and designer from

Newfoundland, Canada. She is a former Art Director at a

Canadian advertising agency and is now pursuing her own

clients through her website at hellogeri.com. Geri loves chatting

about nerdy things on Twitter and has shared her thoughts in

publications such as net magazine, The Pastry Box Project, and

Digital Arts. She’s the author of the Pocket Guide to Colour

Accessibility from Five Simple Steps, a sometimes-illustrator for

A List Apart, and was voted Net Magazine’s Designer of the

Year in 2014.

Credits and Recognition

24 ways 2013 edition 213

http://hellogeri.com
http://twitter.com/hellogeri
http://www.fivesimplesteps.com/products/colour-accessibility
http://www.fivesimplesteps.com/products/colour-accessibility

Brad Frost 24ways.org/201317

17. Project Hubs: A Home
Base for Design Projects

SCENE: A design review meeting. Laptop
screens. Coffee cups.

Project manager: Hey, did you get my email with the

assets we’ll be discussing?

Client: I got an email from you, but it looks like there’s no

attachment.

PM: Whoops! OK. I’m resending the files with the

attachments. Check again?

Client: OK, I see them. It’s homepage_v3_brian-

edits_FINAL_for-review.pdf, right?

PM: Yeah, that’s the one.

Client: OK, hang on, Bill’s going to print them out.

(3-minute pause. Small talk ensues.)

Client: Alright, Bill’s back. We’re good to start.

214 24 ways 2013 edition

http://24ways.org/201317

Brian: Oh, actually those homepage edits we talked about

last time are in the homepage_v4_brian_FINAL_v2.pdf

document that I posted to Basecamp earlier today.

Client: Oh, OK. What message thread was that in?

Brian: Uh, I’m pretty sure it’s in “Homepage Edits and

Holiday Schedule.”

Client: Alright, I see them. Bill’s going back to the printer.

Hang on a sec…

◆◆◆

This is only a slightly exaggerated version of my

experience in design review meetings.

The design project dance is a sloppy one. It involves a slew

of email attachments, PDFs, PSDs, revisions, GitHub

repos, staging environments, and more. And while tools

like Basecamp can help manage all these moving parts, it

can still be incredibly challenging to extract only the

important bits, juggle deliverables, and see how your

project is progressing.

Enter project hubs.

Project Hubs: A Home Base for Design Projects

24 ways 2013 edition 215

https://basecamp.com/

PROJECT HUBS

A project hub consolidates all the key design and

development materials onto a single webpage presented

in reverse chronological order. The timeline lives online

(either publicly available or password protected), so that

everyone involved in the team has easy access to it.

216 24 ways 2013 edition

http://bradfrostweb.com/blog/post/designing-in-the-open/

Project Hubs: A Home Base for Design Projects

24 ways 2013 edition 217

17-1. A project hub.

I was introduced to project hubs after seeing Dan Mall’s

open redesign of Reading Is Fundamental. Thankfully, I

had a chance to work with Dan on two projects where I

got to see firsthand how beneficial a project hub can be.

Here’s what makes a project hub great:

▪ Serves as a centralized home base for the project

▪ Trains clients and teams to decide in the browser

▪ Easily and visually view project’s progress

▪ Provides an archive for project artifacts

A HOME BASE

Your clients and colleagues can expect to get the latest

and greatest updates to your project when visiting the

project hub, the same way you’d expect to get the latest

information on a requested topic when you visit a

Wikipedia page. That’s the beauty of URIs that don’t

change.

Creating a project hub reduces a ton of email volley

nonsense, and eliminates the need to produce files and

directories with staggeringly ridiculous names like design/

12.13.13/team/brian/for_review/_FINAL/

styletile_121313_brian-edits-final_v2_FINAL.pdf. The team

can simply visit the project hub’s URL and click the link to

218 24 ways 2013 edition

http://rif.superfriend.ly/
http://bradfrostweb.com/blog/post/entertainment-weekly/
http://bradfrostweb.com/blog/post/techcrunch/
http://www.w3.org/Provider/Style/URI.html
http://www.w3.org/Provider/Style/URI.html

whatever artifact they need. Need to make an update?

Simply update the link on the project hub. No more email

tango and silly file names.

DECIDING IN THE BROWSER

Let’s change the phrase “designing in the
browser” to “deciding in the browser.”
Dan Mall

We make websites, but all too often we find ourselves

looking at web design artifacts in abstractions. We email

PDFs to each other, glance at mockup JPGs on our

desktops, and of course kill trees in order to print out

designs so that we can scribble in the margins. All of these

practices subtly take everyone further and further away

from the design’s eventual final resting place: the browser.

Because a project hub is just a simple webpage, reviewing

designs is as easy as clicking some links, which keep your

clients and teams in the browser.

You can keep people in the browser with yet another

clever trick from the wily Dan Mall: instead of sending

clients PDFs or JPGs, he created a simple webpage and

tossed his static visuals into the template (you can view an

example here). This forces clients to review web design

work in the browser rather than launching a PDF viewer

or Preview.

Project Hubs: A Home Base for Design Projects

24 ways 2013 edition 219

http://the-pastry-box-project.net/dan-mall/2012-september-12/
http://rif.superfriend.ly/designs/lit-facts/v3/
http://rif.superfriend.ly/designs/lit-facts/v3/

Now this all might sound trivial to you (“Of course my

client knows that we’re designing a website!”), but

keeping the design artifacts in the browser

subconsciously helps remind everyone of the medium for

which you’re designing, which helps everyone focus on

the right aspects of the design and have the right

conversations.

PROGRESS OVER TIME

When you’re in the trenches, it’s often hard to visualize

how a project is progressing. Tools like Basecamp include

discussions, files, to-dos, and more, which are all great

tools but also make things a bit noisy. Project hubs

provide you and your clients a quick and easy way to see

at a glance how things are coming along. Teams can rest

assured they’re viewing the most current versions of

designs, and managers can share progress with

stakeholders simply by providing a link to the project hub.

Over time, a project hub becomes an easily accessible

archive of all the design decisions, which makes it easy to

compare and contrast different versions of designs and

prototypes.

220 24 ways 2013 edition

SETTING UP A PROJECT HUB

Setting up your own project hub is pretty simple. Simply

create a webpage with some basic styles and branding.

I’ve created a project hub template that’s available on

GitHub if you want a jump-start.

Publish the webpage to a URL somewhere that makes

sense (we’ve found that a subdomain of your site works

quite well) and share it with everyone involved in the

project. Bookmark it. Let everyone know that this is

where design updates will be shared, and that they can

always come back to the project hub to track the project’s

progress.

When it comes time to share new updates, simply add a

new node to the timeline and republish the webpage.

Simple FTPing works just fine, but it might make sense to

keep track of changes using version control. Our project

hub for our open redesign of the Pittsburgh Food Bank is

managed on GitHub, which means that I can make edits to

the hub right from GitHub. Thanks to the magical

wizardry of webhooks, I can automatically deploy the

project hub so that everything stays in sync. That’s the

fancy-pants way to do it, and is certainly not a

requirement. As long as you’re able to easily make edits

and keep your project hub up to date, you’re good to go.

Project Hubs: A Home Base for Design Projects

24 ways 2013 edition 221

https://github.com/bradfrost/project-timeline
https://github.com/bradfrost/project-timeline
http://foodbank.bradfrostweb.com/timeline/
http://foodbank.bradfrostweb.com/timeline/
http://bradfrostweb.com/blog/post/greater-pittsburgh-community-food-bank-open-redesign/
https://github.com/bradfrost/pittsburgh-food-bank-timeline
https://help.github.com/articles/post-receive-hooks
http://jonathanstark.com/blog/deploying-code-automatically-with-github-webhooks
http://jonathanstark.com/blog/deploying-private-repos-automatically-with-github

SO THAT’S THE HUBBUB

Project hubs can help tame the chaos of the design

process by providing a home base for all key design and

development materials. Keep the design artifacts in the

browser and give clients and colleagues quick insight into

your project’s progress.

Happy hubbing!

ABOUT THE AUTHOR

222 24 ways 2013 edition

Brad Frost is a web designer, speaker, writer, and consultant

located in beautiful Pittsburgh, PA. He’s passionate about

creating Web experiences that look and function beautifully on

the never-ending stream of connected devices, and is

constantly tweeting, writing and speaking about it. He’s also

created some tools and resources for web designers, including

This Is Responsive, Pattern Lab, Mobile Web Best Practices, and

WTF Mobile Web.

Project Hubs: A Home Base for Design Projects

24 ways 2013 edition 223

http://bradfrostweb.com/
https://twitter.com/brad_frost
http://bradfrostweb.com/blog/
http://bradfrostweb.com/speaking/
http://bradfrost.github.com/this-is-responsive/
http://pattern-lab.info/
http://mobilewebbestpractices.com/
http://wtfmobileweb.com/

Anna Debenham 24ways.org/201318

18. Get Started With
GitHub Pages (Plus Bonus
Jekyll)

After several failed attempts at getting set
up with GitHub Pages, I vowed that if I ever
figured out how to do it, I’d write it up.
Fortunately, I did eventually figure it out, so
here is my write-up.

WHY I THINK GITHUB PAGES IS COOL

Normally when you host stuff on GitHub, you’re just

storing your files there. If you push site files, what you’re

storing is the code, and when you view a file, you’re

viewing the code rather than the output. What GitHub

Pages lets you do is store those files, and if they’re HTML

files, you can view them like any other website, so there’s

no need to host them separately yourself.

224 24 ways 2013 edition

http://24ways.org/201318
http://pages.github.com/

GitHub Pages accepts static HTML but can’t execute

languages like PHP, or use a database in the way you’re

probably used to, so you’ll need to output static HTML

files. This is where templating tools such as Jekyll come in,

which I’ll talk about later.

The main benefit of GitHub Pages is ease of collaboration.

Changes you make in the repository are automatically

synced, so if your site’s hosted on GitHub, it’s as up-to-

date as your GitHub repository. This really appeals to me

because when I just want to quickly get something set up,

I don’t want to mess around with hosting; and when

people submit a pull request, I want that change to be

visible as soon as I merge it without having to set up web

hooks.

BEFORE YOU GET STARTED

If you’ve used GitHub before, already have an account

and know the basics like how to set up a repository and

clone it to your computer, you’re good to go. If not, I

recommend getting familiar with that first. The GitHub

site has extensive documentation on getting started, and

if you’re not a fan of using the command line, the official

GitHub apps for Mac and Windows are great.

I also found this tutorial about GitHub Pages by Thinkful

really useful, and it contains details on how to turn an

existing repository into a GitHub Pages site.

Get Started With GitHub Pages (Plus Bonus Jekyll)

24 ways 2013 edition 225

http://jekyllrb.com/
https://help.github.com/articles/set-up-git
http://mac.github.com/
http://windows.github.com/
http://www.thinkful.com/learn/a-guide-to-using-github-pages/

Although this involves a bit of using the command line, it’s

minimal, and I’ll guide you through the basics.

SETTING UP GITHUB PAGES

For this demo we’re going to build a Christmas recipe site

— nothing complex, just a place to store recipes so we can

share them with people, and they can fork or suggest

changes to ones they like. My GitHub username is maban,

and the project I’ve set up is called christmas-recipes, so

once I’ve set up GitHub Pages, the site can be found here:

http://maban.github.io/christmas-recipes/

You can set up a custom domain, but by default, the URL

for your GitHub Pages site is your-username.github.io/your-

project-name.

Set up the repository

The first thing we’re going to do is create a new GitHub

repository, in exactly the same way as normal, and clone it

to the computer. Let’s give it the name christmas-recipes.

There’s nothing in it at the moment, but that’s OK.

226 24 ways 2013 edition

https://github.com/maban
https://github.com/maban/christmas-recipes
http://maban.github.io/christmas-recipes/
http://github.com/new
http://github.com/new

After setting up the repository on the GitHub website, I

cloned it to my computer in my Sites folder using the

GitHub app (you can clone it somewhere else, if you

want), and now I have a local repository synced with the

remote one on GitHub.

Navigate to the repository

Now let’s open up the command line and navigate to the

local repository. The easiest way to do this in Terminal is

by typing cd and dragging and dropping the folder into

the terminal window and pressing Return. You can refer

to Chris Coyier’s GIF illustrating this very same thing,

from last week’s 24 ways article “Grunt for People Who

Think Things Like Grunt are Weird and Hard” (which is

excellent).

So, for me, that’s…

cd /Users/Anna/Sites/christmas-recipes

Get Started With GitHub Pages (Plus Bonus Jekyll)

24 ways 2013 edition 227

http://media.24ways.org/2013/coyier/drag-folder.gif
http://24ways.org/2013/grunt-is-not-weird-and-hard/
http://24ways.org/2013/grunt-is-not-weird-and-hard/

Create a special GitHub Pages branch

So far we haven’t done anything different from setting up

a regular repository, but here’s where things change.

Now we’re in the right place, let’s create a gh-pages

branch. This tells GitHub that this is a special branch, and

to treat the contents of it differently.

Make sure you’re still in the christmas-recipes directory,

and type this command to create the gh-pages branch:

git checkout --orphan gh-pages

That --orphan option might be new to you. An orphaned

branch is an empty branch that’s disconnected from the

branch it was created off, and it starts with no commits,

making it a special standalone branch. checkout switches

us from the branch we were on to that branch.

If all’s gone well, we’ll get a message saying Switched to a

new branch ‘gh-pages’.

You may get an error message saying you don’t have

admin privileges, in which case you’ll need to type sudo at

the start of that command.

228 24 ways 2013 edition

Make gh-pages your default branch (optional)

The gh-pages branch is separate to the master branch, but

by default, the master branch is what will show up if we go

to our repository’s URL on GitHub. To change this, go to

the repository settings and select gh-pages as the default

branch.

If, like me, you only want the one branch, you can delete

the master branch by following Oli Studholme’s tutorial.

It’s actually really easy to do, and means you only have to

worry about keeping one branch up to date.

If you prefer to work from master but push updates to the

gh-pages branch, Lea Verou has written up a quick tutorial

on how to do this, and it basically involves working from

the master branch, and using git rebase to bring one

branch up to date with another.

Get Started With GitHub Pages (Plus Bonus Jekyll)

24 ways 2013 edition 229

http://oli.jp/2011/github-pages-workflow/#deleting-master
http://oli.jp/2011/github-pages-workflow/#deleting-master
http://lea.verou.me/2011/10/easily-keep-gh-pages-in-sync-with-master/
http://lea.verou.me/2011/10/easily-keep-gh-pages-in-sync-with-master/

At the moment, we’ve only got that branch on the local

machine, and it’s empty, so to be able to see something at

our special GitHub Pages URL, we’ll need to create a page

and push it to the remote repository.

Make a page

Open up your favourite text editor, create a file called

index.html in your christmas-recipes folder, and put some

exciting text in it. Don’t worry about the markup: all we

need is text because right now we’re just checking it

works.

Now, let’s commit and push our changes. You can do that

in the command line if you’re comfortable with that, or

you can do it via the GitHub app. Don’t forget to add a

useful commit message.

230 24 ways 2013 edition

Now we’re ready to see our gorgeous new site! Go to

your-username.github.io/your-project-name and, hopefully,

you’ll see your first GitHub Pages site. If not, don’t panic, it

can take up to ten minutes to publish, so you could make a

quick cake in a cup while you wait.

After a short wait, our page should be live! Hopefully that

wasn’t too traumatic. Now we know it works, we can add

some proper markup and CSS and even some more pages.

If you’re feeling brave, how about we take it to the next

level…

SETTING UP JEKYLL

Since GitHub Pages can’t execute languages like PHP, we

need to give it static HTML files. This is fine if there are

only a few pages, but soon we’ll start to miss things like

PHP includes for content that’s the same on every page,

like headers and footers.

Get Started With GitHub Pages (Plus Bonus Jekyll)

24 ways 2013 edition 231

http://www.bbcgoodfood.com/recipes/8047/molten-mug-chocolate-cake
http://www.bbcgoodfood.com/recipes/8047/molten-mug-chocolate-cake

Jekyll helps set up templates and turn them into static

HTML. It separates markup from content, and makes it a

lot easier for people to edit pages collaboratively. With

our recipe site, we want to make it really easy for people

to fix typos or add notes, without having to understand

PHP. Also, there’s the added benefit that static HTML

pages load really fast.

Jekyll isn’t officially supported on Windows, but it is still

possible to run it if you’re prepared to get your hands

dirty.

Install Jekyll

Back in Terminal, we’re going to install Jekyll…

gem install jekyll

…and wait for the script to run. This might take a few

moments. It might take so long that you get worried its

broken, but resist the urge to start mashing your

keyboard like I did.

Get Jekyll to run on the repository

Fingers crossed nothing has gone wrong so far. If

something did go wrong, don’t give up! Check this helpful

post by Andy Taylor – you probably just need to install

something else first.

232 24 ways 2013 edition

http://jekyllrb.com/docs/windows/#installation
http://jekyllrb.com/docs/windows/#installation
http://andytaylor.me/2012/11/03/installing-ruby-and-jekyll/
http://andytaylor.me/2012/11/03/installing-ruby-and-jekyll/

Now we’re going to tell Jekyll to set up a new project in

the repository, which is in my Sites folder (yours may be in

a different place). Remember, we can drag the directory

into the terminal window after the command.

jekyll new /Users/Anna/Sites/christmas-recipes

If everything went as expected, we should get this error

message: Conflict: /Users/Anna/Sites/christmas-

recipes exists and is not empty.

But that’s OK. It’s just upset because we’ve got that

index.html file and possibly also a README.md in there

that we made earlier. So move those onto your desktop

for the moment and run the command again.

jekyll new /Users/Anna/Sites/christmas-recipes

It should say that the site has installed.

Check you’re in the repository, and if you’re not, navigate

to it by typing cd , drag the christmas-recipes directory

into terminal…

jekyll cd /Users/Anna/Sites/christmas-recipes

…and type this command to tell Jekyll to run:

jekyll serve --watch

By adding --watch at the end, we’re forcing Jekyll to

rebuild the site every time we hit Save, so we don’t have

to keep telling it to update every time we want to view the

Get Started With GitHub Pages (Plus Bonus Jekyll)

24 ways 2013 edition 233

changes. We’ll need to run this every time we start work

on the project, otherwise changes won’t be applied. For

now, wait while it does its thing.

Update the config file

When it’s finished, we’ll see the text press ctrl-c to

stop. Don’t do that, though. Instead, open up the

directory. You’ll notice some new files and folders in there.

There’s one called _site, and that’s where all the site files

are saved when they’re turned into static HTML. Don’t

touch the files in here — they’re the generated files and

will get overwritten every time we make changes to pages

and layouts.

There’s a file in our directory called _config.yml. This has

some settings we can change, one of them being what our

base URL is. GitHub Pages will assume the base URL is

above the project repository, so changing the settings

here will help further down the line when setting up

navigation links.

Replace the contents of the _config.yml file with this:

name: Christmas Recipes

markdown: redcarpet

pygments: true

baseurl: /christmas-recipes

234 24 ways 2013 edition

Set up your files

Overwrite the index.html file in the root with the one we

made earlier (you might want to pop the README.md back

in there, too).

Delete the files in the css folder — we’ll add our own later.

View the Jekyll site

Open up your favourite browser and type

http://localhost:4000/christmas-recipes in the address bar.

Check it out, that’s your site! But it could do with a bit

more love.

Set up the _includes files

It’s always useful to be able to pull in snippets of content

onto pages, such as the header and footer, so they only

need to be updated in one place. That’s what an _includes

folder is for in Jekyll. Create a folder in the root called

_includes, and within it add two files: head.html and

foot.html.

Get Started With GitHub Pages (Plus Bonus Jekyll)

24 ways 2013 edition 235

In head.html, paste the following:

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8">

<title>{{ page.title }}</title>

<link rel="stylesheet" href="{{ site.baseurl

}}/css/main.css" >

</head>

<body>

and in foot.html:

</body>

</html>

Whenever we want to pull in something from the _includes

folder, we can use {% include filename.html %} in the

layout file — I’ll show you how to set that up in next step.

Making layouts

In our directory, there’s a folder called _layouts and this

lets us create a reusable template for pages. Inside that is

a default.html file.

Delete everything in default.html and paste in this instead:

{% include head.html %}

<h1>{{ page.title }}</h1>

236 24 ways 2013 edition

{{ content }}

{% include foot.html %}

That’s a very basic page with a header, footer, page title

and some content. To apply this template to a page, go

back into the index.html page and add this snippet to the

very top of the file:

layout: default

title: Home

Now save the index.html file and hit Refresh in the

browser. We should see a heading where {{ page.title

}} was in the layout, which matches what comes after

title: on the page itself (in this case, Home). So, if we

wanted a subheading to appear on every page, we could

add {{ page.subheading }} to where we want it to

appear in our layout file, and a line that says subheading:

This is a subheading in between the dashes at the top

of the page itself.

Using Markdown for templates

Anything on a page that sits under the closing dashes is

output where {{ content }} appears in the template file.

At the moment, this is being output as HTML, but we can

use Markdown instead, and Jekyll will convert that into

Get Started With GitHub Pages (Plus Bonus Jekyll)

24 ways 2013 edition 237

HTML. For this recipe site, we want to make it as easy as

possible for people to be able to collaborate, and also

have the markup separate from the content, so let’s use

Markdown instead of HTML for the recipes.

Telling a page to use Markdown instead of HTML is

incredibly simple. All we need to do is change the filename

from .html to .md, so let’s rename the index.html to

index.md. Now we can use Markdown, and Jekyll will

output that as HTML.

Create a new layout

We’re going to create a new layout called recipe which is

going to be the template for any recipe page we create.

Let’s keep it super simple.

In the _layouts folder, create a file called recipe.html and

paste in this:

{% include head.html %}

<main>

<h1>{{ page.title }}</h1>

{{ content }}

<p>Recipe by <a href="{{

page.recipe-attribution-link }}">{{

page.recipe-attribution }}.</p>

238 24 ways 2013 edition

</main>

{% include nav.html %}

{% include foot.html %}

That’s our template. The content that goes on the recipe

layout includes a page title, the recipe content, a recipe

attribution and a recipe attribution link.

Adding some recipe pages

Create a new file in the root of the christmas-recipes folder

and call it gingerbread.md. Paste the following into it:

layout: recipe

title: Gingerbread

recipe-attribution: HungryJenny

recipe-attribution-link: http://www.opensourcefood.com/

people/HungryJenny/recipes/

soft-christmas-gingerbread-cookies

Makes about 15 small cookies.

Ingredients

* 175g plain flour

* 90g brown sugar

* 50g unsalted butter, diced, at room temperature

* 2 tbsp golden syrup

* 1 egg, beaten

* 1 tsp ground ginger

Get Started With GitHub Pages (Plus Bonus Jekyll)

24 ways 2013 edition 239

* 1 tsp cinnamon

* 1 tsp bicarbonate of soda

* Icing sugar to dust

Method

1. Sift the flour, ginger, cinnamon and bicarbonate of

soda into a large mixing bowl.

2. Use your fingers to rub in the diced butter. Mix in

the sugar.

3. Mix the egg with the syrup then pour into the flour

mixture. Fold in well to form a dough.

4. Tip some flour onto the work surface and knead the

dough until smooth.

5. Preheat the oven to 180°C.

6. Roll the dough out flat and use a shaped cutter to

make as many cookies as you like.

7. Transfer the cookies to a tray and bake in the oven

for 15 minutes. Lightly dust the cookies with icing

sugar.

The content is in Markdown, and when we hit Save, it’ll be

converted into HTML in the _site folder. Save the file, and

go to http://localhost:4000/christmas-recipes/

gingerbread.html in your favourite browser.

240 24 ways 2013 edition

18-1. As you can see, the Markdown content has been
converted into HTML, and the attribution text and link has been
inserted in the right place.

Add some navigation

In your _includes folder, create a new file called nav.html.

Here is some code that will generate your navigation:

<nav class="nav-primary" role="navigation" >

{% for p in site.pages %}

<a {% if p.url == page.url %}class="active"{%

endif %} href="{{ site.baseurl }}{{ p.url }}">{{ p.title

}}

{% endfor %}

</nav>

Get Started With GitHub Pages (Plus Bonus Jekyll)

24 ways 2013 edition 241

This is going to look for all pages and generate a list of

them, and give the navigation item that is currently active

a class of active so we can style it differently.

Now we need to include that navigation snippet in our

layout. Paste {% include nav.html %} in default.html file,

under {{ content }}.

Push the changes to GitHub Pages

Now we’ve got a couple of pages, it’s time to push our

changes to GitHub. We can do this in exactly the same

way as before. Check your special GitHub URL (your-

username.github.io/your-project-name) and you should see

your site up and running.

If you quit Terminal, don’t forget to run jekyll serve --jekyll serve --

watchwatch from within the directory the next time you want

to work on the files.

Next steps

Now we know the basics of creating Jekyll templates and

publishing them as GitHub Pages, we can have some fun

adding more pages and styling them up.

242 24 ways 2013 edition

18-2. Here’s one I made earlier

I’ve only been using Jekyll for a matter of weeks, mainly

for prototyping. It’s really good as a content management

system for blogs, and a lot of people host their Jekyll blogs

on GitHub, such as Harry Roberts

By hosting the code so openly it will make me
take more pride in it and allow me to work on it
much more easily; no excuses now!

Get Started With GitHub Pages (Plus Bonus Jekyll)

24 ways 2013 edition 243

http://csswizardry.com/2012/12/a-new-css-wizardry/

Overall, the documentation for Jekyll feels a little sparse

and geared more towards blogs than other sites, but as

more people discover the benefits of it, I’m sure this will

improve over time.

If you’re interested in poking about with some code, all

the files from this tutorial are available on GitHub.

ABOUT THE AUTHOR

Anna Debenham is a freelance front-end developer living in

Brighton in the UK.

She’s the author of Front-end Style Guides, and when she’s not

playing on them, she’s testing as many game console browsers

as she can get her hands on.

244 24 ways 2013 edition

https://github.com/maban/christmas-recipes
https://github.com/maban/christmas-recipes
http://www.fivesimplesteps.com/products/front-end-style-guides
http://console.maban.co.uk/

Jonathan Snook 24ways.org/201319

19. How to Write a Book

Were you recently inspired to write a book
after reading Owen Gregory’s compendium
of author insights? Maybe so inspired to
strike out on your own and self-publish?

Based on personal experience, writing a book is hard. It

requires a great deal of research, experience, and

patience. To be able to consolidate your thoughts and

what you’ve learned into a sensible and readable tome is

an admirable feat. To decide to self-publish and take on

yourself all of the design, printing, distribution, and so

much more is tantamount to insanity. Again, based on

personal experience.

So, why might you want to self-publish?

If you’ve spent many a late night doing cross-browser

testing just to know that your site works flawlessly in

twenty-four different browsers — including Mosaic, of

course — then maybe you’ll understand the fun that

comes from doing it all.

How to Write a Book

24 ways 2013 edition 245

http://24ways.org/201319
http://24ways.org/2013/web-books/
http://24ways.org/2013/web-books/

Working with a publisher, you’re left to focus on one core

thing: writing. That’s a good thing. A good publisher has

the right resources to help you get your idea polished and

the distribution network to get your book on store

shelves around the world. It’s a very proud moment to be

able to walk into a book store and see your book sitting

there on the shelf.

Self-publishing can also be a wonderful process as you get

to own it from beginning to end. Every decision is yours

and if you’re a control freak like me, this can be a very

rewarding experience.

While there are many aspects to self-publishing, I’m going

to speak to just one of them: creating an ebook.

FORMATS

In creating an ebook, you first need to decide what

formats you wish to support. There are three main

formats, each with their own pros and cons:

1. PDF

2. EPUB

3. MOBI

PDFs are supported on almost every device (Windows,

Mac, Kindle, iPad, Android, etc.) and can even be a

stepping stone to creating a print version of your book.

PDFs allow for full typographic and design control, but at

246 24 ways 2013 edition

the cost of needing to fit things into a predefined page

layout. Is it US Letter or A4? Or is it a format that isn’t

easily printed by readers on their home printers?

EPUB is a more fluid format that is supported by the

Apple iPad, iPhone, and now on the desktop with OS X

Mavericks. It’s also supported by Google Play for Android

devices. While EPUB is supported on other devices,

you’re likely to choose EPUB because you’re targeting

your book at the Apple audience. The EPUB format is

HTML-based with support for some CSS and even video

and interactive elements. You can create very rich and

exciting experiences using the EPUB format that just

aren’t possible with PDF or MOBI. However, if you decide

to support multiple file formats, you’ll likely find — as I did

— that a consistent experience between all formats is

easier to build and maintain, and therefore the extra

benefits of interactivity go out the window.

MOBI is a format originally developed for the Mobipocket

Reader but more popularly supported by the Amazon

Kindle. If you’re looking to attract the Kindle audience or

publish to Amazon via the Kindle Direct Publishing

platform then the HTML-based MOBI format is the

format you’ll want to go with.

Distribution will probably factor in heavily with what

format you decide to go with. Many people I know who

self-publish go with PDF only due to its ubiquity.

How to Write a Book

24 ways 2013 edition 247

If you want to garner a wider audience by distributing via

Amazon or the iBookstore then you’ll need to think about

supporting all three formats (as I did).

WHAT TOOLS SHOULD I USE?

I spent a lot of time figuring out the right toolset and

finally got something that suits me just right.

In the past, when working with a publisher, I was given a

Microsoft Word template that was passed back and forth

between myself, the editor, and tech reviewer. This

template has been the bane of any book writer that I’ve

spoken to. Not every publisher is like that, though. Some

publishers, like O’Reilly, use DocBook, an XML-based

format that can be converted into PDF, EPUB, and MOBI.

Publishers already have a style guide and whether it’s

DocBook or a Word template, they have the tools already

in place to easily convert your work into multiple formats.

Self-publishing means that you’ll likely have to do a lot of

tweaking to get things looking and working the way you

want them to. I tried DocBook and the open source export

tools didn’t create HTML to my liking. Fixing even the

most mundane things required fiddling with XSL

transformations for hours on end. Not the way I like to

spend my time. I can only imagine the hoops I would’ve

had to go through to get a PDF to look half-decent.

248 24 ways 2013 edition

http://docbook.sourceforge.net

Tools like Pages or Scrivener offer up the ability to publish

to multiple formats, too, but none offered me the control

over the output that I truly desired. Have a mentioned

that I’m a control freak?

I ended up writing my book using a technology that I

already knew quite well: HTML. By writing in HTML, I

already had something that I could post on my website,

use for the EPUB and use for the MOBI format. All

without having to change a thing. (That’s right: the same

HTML that is used on SMACSS.com is used in the EPUB

and is used in the MOBI.)

What about PDF? I could open up the HTML in a web

browser, choose Save as PDF and be done with it but let’s

face it: the filename and date attached to every single

page doesn’t exactly scream professional. Web browsers

actually do a surprisingly poor job with supporting the

CSS paged media spec.

I had resorted to copying and pasting the content into

Pages and saving as PDF from there. It wasn’t elegant but

it worked. However, any changes to my HTML source

required redoing those changes in Pages, as well.

Then I met my Prince Charming: Prince XML. It’s pricey

but it works incredibly well. It takes HTML and CSS (that

very format I’ve been using for all of my other file formats)

How to Write a Book

24 ways 2013 edition 249

http://www.literatureandlatte.com/scrivener.php
http://smacss.com
http://www.w3.org/TR/css3-page/
http://www.princexml.com

and will generate a PDF via a command line interface.

Prince supports CSS paged media including headers,

footers, page counts, and alternating page styles.

From one format, HTML, I can now easily publish to PDF,

MOBI, and EPUB, and even my website. I use the PDF

version to send to the printer along with cover art to be

bound and ready to ship around the world. It’s amazing

how versatile HTML (and CSS) is.

To learn more about writing books with HTML and CSS, I

recommend reading Building Books with CSS3 over at A

List Apart.

CREATING AN EPUB

Let’s take a step back. Prince gets us from HTML to PDF

but how do we make an EPUB out of the HTML?

An EPUB file is essentially a ZIP file with a renamed

extension. There are some core files that you need to start

with:

Root

META-INF

container.xml

mimetype

content.opf

toc.ncx

250 24 ways 2013 edition

http://alistapart.com/article/building-books-with-css3

After that, you can start adding your content to the

project. Be sure to update the toc.ncx (Table of Contents)

and content.opf (the ebook manifest) with any changes you

make to your project.

You can learn more about the file formats with the EPUB

Format Construction Guide.

Once all your files are in place, you’ll need to create the

EPUB file by running two commands (on OS X, at least):

zip -X0 your-ebook.epub mimetype

zip -Xur9D your-ebook.epub *

The mimetype needs to be the first file inside the ZIP file

and therefore gets added first. Then, the rest of the files

are added.

I’ve added a function to my .bash_profile to make this even

easier:

function epub()

{

zip -q0X $@ mimetype; zip -qXr9D $@ *

}

Then, within the folder from which I want to create an

ebook, I just run epub your-ebook.epub from the Terminal

command line and the EPUB file should be ready to go.

How to Write a Book

24 ways 2013 edition 251

http://www.hxa.name/articles/content/epub-guide_hxa7241_2007.html
http://www.hxa.name/articles/content/epub-guide_hxa7241_2007.html

CREATING THE MOBI

We have our EPUB and we have our PDF. The last step is

the MOBI file. For this, I call upon Calibre. Calibre can be

used as a reader and as a library but I use it exclusively to

export my EPUB files to MOBI.

Calibre includes a command line utility to convert from

EPUB to MOBI. (To install the command line tools, go to

Preferences > Advanced > Miscellaneous and click Install

Command Line Tools.)

ebook-convert your-ebook.epub your-ebook.mobi

SPREAD THE JOY

Now that you have all of your different file formats, you

need to get them into the hands of people who want to

(ho-ho-hopefully) buy your book!

There are a number of marketplaces such as Amazon’s

Kindle Direct Publishing, iBookstore, Google Play, and

NOOK Press.

Some publishers, like PragProg and O’Reilly will also add

self-published books to their roster if they feel it’s a good

fit for their audience.

With any distribution, you’ll have to give up a percentage

of your sales—from 30% to 70% of each sale, so consider

your options wisely.

252 24 ways 2013 edition

http://calibre-ebook.com
https://kdp.amazon.com/kdp/self-publishing/signin
http://www.apple.com/itunes/working-itunes/sell-content/books/book-faq.html
https://play.google.com/books/publish/
https://www.nookpress.com/
http://pragprog.com/
http://oreilly.com

Of course, you can always open your own online store and

reap as much of the revenue as possible, assuming you can

get the traffic to your site. Handling your own distribution

allows you to create a deeper one-on-one connection

with your customers, something that is impossible with

other distribution channels since you don’t get customer

information through other services—even though you are

giving them a huge chunk of your sales!

GO FORTH AND PROSPER

There’s a lot of thought and time that goes into writing a

book and just as much thought and time can go into

creating, publishing, and marketing your book once you’re

done.

In the end, self-publishing can be a very rewarding

process and well worth the time that goes into it.

How to Write a Book

24 ways 2013 edition 253

http://www.shopify.com/?ref=24ways

ABOUT THE AUTHOR

Jonathan Snook writes about tips, tricks, and bookmarks on his

blog at Snook.ca. He has also written for A List Apart and .net

magazine, and has co-authored two books, The Art and Science

of CSS and Accelerated DOM Scripting. He has also authored

and received world-wide acclaim for the self-published book,

Scalable and Modular Architecture for CSS sharing his

experience and best practices on CSS architecture.

Photo: Patrick H. Lauke

254 24 ways 2013 edition

http://snook.ca/
http://snook.ca/archives/writing/art_science_of_css
http://snook.ca/archives/writing/art_science_of_css
http://snook.ca/archives/javascript/accelerated_dom_scripting/
http://smacss.com
http://splintered.co.uk

Nicole Sullivan 24ways.org/201320

20. Untangling Web
Typography

When I was a carpenter, I noticed how
homeowners often had this deer-in-the-
headlights look when the contractor I
worked for would ask them to make tons of
decisions, seemingly all at once.

Square or subway tile? Glass or ceramic? Traditional or

modern trim details? Flat face or picture frame cabinets?

Real wood or laminate flooring? Every day the decisions

piled up and were usually made in the context of that

room, or that part of that room. Rarely did the

homeowner have the benefit of taking that particular

decision in full view of the larger context of the project.

And architectural plans? Sure, they lay out the broad

strokes, but there is still so much to decide.

Typography is similar. Designers try to make sites that are

easy to use and understand visually. They labour over the

details of line height, font size, line length, and font

Untangling Web Typography

24 ways 2013 edition 255

http://24ways.org/201320

weights. They consider the relative merits of different

typographical scales for applications versus content-

driven sites. Frequently, designers consider all of this in

the context of one page, feature, or view of an application.

They are asked to make a million tiny decisions.

Sometimes designers just bump up the font size until it

looks right.

I don’t see anything wrong with that. Instincts are

important. Designing in context is easier. It’s OK to leave

the big picture until later. Design a bunch of things, and

then look for the patterns. You can’t always know

everything up front. How does the current feature relate

to all the other features on the site? For a large site, just

like for a substantial remodel, the number of decisions

you would need to internalize to make that knowable

would be prohibitively large.

WHEN TYPOGRAPHY GOES AWRY

I should be honest. I know very little about typography. I

struggle to understand vertical rhythm and the math in

Tim Ahrens’s talks about the interaction between type

design and rendering technology kind of melted my brain.

I have an unusual perspective because I’m not the one

making the design decisions, but I am the one

implementing them and often cleaning up when a project

goes off the rails.

256 24 ways 2013 edition

I’ve seen projects with thousands of font-size declarations

and headings. One project even had over ten thousand

margin declarations. So while I appreciate creative

exploration, I’m also eager to establish patterns in

typography and make sure we aren’t choosing not to

choose. Or, choosing all the things.

ANALYZING A SITE’S TYPOGRAPHY

Most of my projects start out with an evaluation of the

client’s existing CSS. I look for duplication in the CSS by

using Grep, though functionality is landing soon in CSS

Lint to do the same thing automatically. The goal is to find

the underlying missing abstractions that, once in place,

would allow developers to create new functionality

without needing to write additional CSS. In addition to

that, my team and I would comb through each site

(generally, around ten pages is enough to get the big

picture), and take screenshots of each of the components

we found.

In this way, we could look for subtle visual differences

that were unlikely to add value to the user. By correcting

these differences, we could help make the design more

consistent, and at the same time the code leaner and

more performant. Typography is much like a homeowner

who chooses to incorporate too many disparate design

elements, pairing a mid-century modern sofa with

flowered country cottage curtains. Often the typography

Untangling Web Typography

24 ways 2013 edition 257

http://csslint.net/
http://csslint.net/

of a site ends up collecting an endless array of new

typefaces as the site’s overall styles evolve. Designers

come and go on a project, and eventually no one can

remember how the 16px Verdana got into the codebase.

AUTOMATION

We used to do this work by hand. It was incredibly

tedious. We’d go through the site, taking screenshots and

meticulously documenting the style information we

found. We didn’t have to do that many times before it

became incredibly clear that the task needed to be

automated. So we built a little tool called the Type-o-

matic that could do it for us.

To try it on your site:

1. Download and install the Firebug extension to Firefox

2. Download and install the Type-o-matic extension to

Firebug (I know, I fully intend to port it to Chrome)

3. Now, visit the site you’d like to test

4. Right click and choose Inspect element with Firebug

5. Now click on the Typography tab

6. Click Persist

7. Click Generate Report

8. Choose which pages to analyze (we’ve found that ten

is a good number to get the big picture, but you can

analyze as many as you’d like — it will even work on just

one page!)

258 24 ways 2013 edition

http://type-o-matic.net/
http://type-o-matic.net/
http://getfirebug.com/
http://type-o-matic.net/

9. Now navigate to other pages, and on each subsequent

page, click Generate Report

10. The table of results can be a bit difficult to interact

with, so you can always click Copy to clipboard, and copy

the results (JSON).

20-1. A screenshot of Type-o-matic in action

WHAT DOES THIS DATA MEAN?

When you’ve analyzed as many pages or different views

as you’d like, you’ll start to see some interesting patterns

emerge in the data. In the right-hand column, you’ll see

examples of how each kind of typography we found has

been used in a real context on your site. It is organized by

color and then by size so you can easily see how you are

using typography.

Untangling Web Typography

24 ways 2013 edition 259

The next thing you’ll want to take a look at is in the first

column, called “Count”. We’ve counted how many times

you’ve used each combination of typographical styles.

This can be incredibly helpful when deciding which styles

were intentional, versus one-off color pick errors or

experiments that never got removed from the code base.

If you’ve used one color blue 1,400 times, and another just

23, it’s pretty obvious which is more in line with broader

site-wide styles.

CONSISTENCY BEFORE PERFECTION

It can be really tempting to try to make everything

perfect — to try to make every decision final. When you

use the data you can collect from this tool, I’d recommend

trying to get to consistent before you try to make things

perfect. Stop using fifteen different shades of blue type

first, and then if you want to change to a new blue, go for

it! You’ll be able to make design changes much more easily

once you’ve reduced the total number of typographical

styles you rely on.

Lower the importance of the decisions you are making.

Our sites, like ourselves, are always a work in progress.

Or, as a carpenter I used to work with said, “You’re not

building a fucking piano.” We’re not building houses. We

can choose one typeface today and a different one

tomorrow. It is OK to experiment. Be brave.

260 24 ways 2013 edition

ABOUT THE AUTHOR

Nicole is a UI performance nerd living and working in San

Francisco. She helps companies make their CSS smaller and

their UI more manageable. She is also an author, most recently

contributing to the Web Performance Daybook Volume 2.

Untangling Web Typography

24 ways 2013 edition 261

http://www.amazon.com/Web-Performance-Daybook-Volume-2/dp/1449332919

Christopher Murphy 24ways.org/201321

21. Managing a Mind

On 21 May 2013, I woke in a hospital bed
feeling exhausted, disorientated and
ashamed. The day before, I had tried to kill
myself.

It’s very hard to write about this and share it. It feels like

I’m opening up the deepest recesses of my soul and laying

everything bare, but I think it’s important we share this as

a community. Since starting tentatively to write about my

experience, I’ve had many conversations about this:

sharing with others; others sharing with me. I’ve been

surprised to discover how many people are suffering

similarly, thinking that they’re alone. They’re not.

Due to an insane schedule of teaching, writing, speaking,

designing and just generally trying to keep up, I reached a

point where my buffers completely overflowed. I was

working so hard on so many things that I was struggling to

maintain control. I was living life on fast-forward and my

grasp on everything was slowly slipping.

262 24 ways 2013 edition

http://24ways.org/201321
http://fsck.monographic.org/a-non-graceful-shutdown.php
http://fsck.monographic.org/a-non-graceful-shutdown.php

On that day, I reached a low point – the lowest point of my

life – and in that moment I could see only one way out. I

surrendered. I can’t really describe that moment. I’m still

grappling with it. All I know is that I couldn’t take it any

more and I gave up.

I very nearly died.

I’m very fortunate to have survived. I was admitted to

hospital, taken there unconscious in an ambulance. On

waking, I felt overwhelmed with shame and overcome

with remorse, but I was resolved to grasp the situation

and address it. The experience has forced me to confront

a great deal of issues in my life; it has also encouraged me

to seek a deeper understanding of my situation and, in

particular, the mechanics of the mind.

THE RELENTLESS PACE OF CHANGE

We work in a fast-paced industry: few others, if any,

confront the daily challenges we face. The landscape we

work within is characterised by constant flux. It’s

changing and evolving at a rate we have never

experienced before. Few industries reinvent themselves

yearly, monthly, weekly… Ours is one of these industries.

Technology accelerates at an alarming rate and keeping

abreast of this change is challenging, to say the least.

Managing a Mind

24 ways 2013 edition 263

As designers it can be difficult to maintain a knowledge

bank that is relevant and fit for purpose. We’re on a

constant rollercoaster of endless learning, trying to

maintain the pace as, daily, new ideas and innovations

emerge — in some cases fundamentally changing our

medium.

Under the pressure of client work or product design and

development, it can be difficult to find the time to focus on

learning the new skills we need to remain relevant and

functionally competent. The result, all too often, is that

the edges of our days have eroded. We no longer work

nine to five; instead we work eight to six, and after the

working day is over we regroup to spend our evenings

learning. It’s an unsustainable situation.

FROM THE WORKSHOP TO THE WEB

Added to this pressure to keep up, our work is now

undertaken under a global gaze, conducted under an ever-

present spotlight. Tools like Dribbble, Twitter and others,

while incredibly powerful, have an unfortunate side

effect, that of unfolding your ideas in public. This shift,

from workshop to web, brings with it additional pressure.

In the past, the early stages of creativity took place within

the relative safety of the workshop, an environment

where one could take risks and gather feedback from a

trusted few. We had space to make and space to break.

264 24 ways 2013 edition

No more. Our industry’s focus (and society’s focus) on

sharing, leads us now to play out our decisions in public.

This shift has changed us culturally, slowly but surely

easing every aspect of our process – and lives – from

private to public. This is at once liberating and

debilitating.

If you’re not careful, an addiction to followers, likes,

retweets, page views and other forms of measurement

can overwhelm you. When you release your work into the

wild and all it’s greeted with is silence, it can cripple you.

Reflecting on this, in an insightful article titled Derailed,

Rogie King asks, “Can social popularity take us off the

course of growth and where we were intended to go?” He

makes a powerful point, that perhaps we might focus on

what really matters, setting aside statistics. He concludes

that to grow as practitioners we might be best served by

seeking out critique through other avenues, away from

the social spotlight.

ON STATUS ANXIETY AND IMPOSTOR
SYNDROME

Following my experience I embarked on a period of self-

reflection. I wanted to discover what had driven me to

take the course of action I had. I wanted to ensure it never

happened again. I wanted to understand how the mind

works and, in so doing, learn a little more about myself.

Managing a Mind

24 ways 2013 edition 265

http://rog.ie/blog/derailed

I’ve only begun this journey, but two things I discovered

resonated with me: the twin pressures of status anxiety

and impostor syndrome.

In his excellent book Status Anxiety, the philosopher Alain

de Botton explores a growing concern with status anxiety,

a worry about how others perceive us and how this

shapes our relationship with the world. He states:

We all worry about what others think of us. We
all long to succeed and fear failure. We all
suffer – to a greater or lesser degree, usually
privately and with embarrassment – from
status anxiety. […] This is an almost universal
anxiety that rarely gets mentioned directly: an
anxiety about what others think of us; about
whether we’re judged a success or a failure, a
winner or a loser.

We see these pressures played out and amplified in the

social sphere we all inhabit. We are social animals and we

cannot help but react to the landscape we live and work

within. Even if your work receives the public praise you so

secretly desire, you find yourself questioning this praise.

A psychological phenomenon in which sufferers are

unable to internalise their accomplishments, impostor

syndrome is far more widespread than you’d imagine. The

author Leigh Buchanan describes it as “A fear that one is

not as smart or capable as others think.” As she puts it,

266 24 ways 2013 edition

http://alaindebotton.com/status/

“People who feel like frauds chalk up their

accomplishments to external factors such as luck and

timing, or worry they are coasting on charm and

personality rather than on talent.”

At the bottom, this was all I could see. I felt overwhelmed

by others’ perception of me. Was I a success or a failure?

Would I be discovered as the fraud I’d convinced myself

that I was? These twin pressures – that I was unconscious

of at the time – had lead me to a place of crippling self-

doubt, questioning my very existence.

The act of discovery, of investigating how the mind

functions, led me to a deeper understanding of myself.

Developing an awareness of psychology and learning

about conditions like status anxiety and impostor

syndrome helped me to understand and recognise how

my mind worked, enabling me to manage it more

effectively.

◆◆◆

MAKE IT COUNT

Reflecting upon my experience, I began to regroup, to

focus on what really mattered. I’d taken on too much — as

I believe many of us do. I was guilty of wanting to do all

the things. I started to introduce pauses. Before blindly

saying yes to everything, I forced myself to pause and ask:

“Is this important?”

Managing a Mind

24 ways 2013 edition 267

http://hyperboleandahalf.blogspot.co.uk/2010/06/this-is-why-ill-never-be-adult.html
http://hyperboleandahalf.blogspot.co.uk/2010/06/this-is-why-ill-never-be-adult.html

Our community offers us huge benefits, but an always-on

culture in which we’re bombarded daily by opportunity

places temptation in our paths. It’s easy to get sucked in to

a vortex of wanting to be a part of everything. It’s

important, however, to focus. As Simon Collison puts it:

I cull and surrender topics. Then I focus on my
strengths, mastering my core skills.

We only have so much time and we can only do so much.

It’s impossible, indeed futile, to try to do everything.

Sometimes we need to step back a little and just enjoy life,

enjoy others’ achievements, without feeling the need to

be actively involved ourselves.

As Mahatma Ghandi put it:

A ‘no’ uttered from deepest conviction is better
and greater than a ‘yes’ merely uttered to
please, or what is worse, to avoid trouble.

Young India, volume 9, 1927

We need to learn to say no a little more often. We need to

focus on the work that matters. This, coupled with an

understanding of the mind and how it works, can help us

achieve a happier balance between work and life.

Don’t waste your time. You only have one life. Make it

count.

268 24 ways 2013 edition

http://blog.creativemornings.com/post/44296354124/i-cull-and-surrender-topics-then-i-focus-on-my

ABOUT THE AUTHOR

Christopher Murphy is a writer, designer and educator based in

Belfast. Creative Review described him as, “a William Morris for

the digital age,” an epithet he aspires to fulfil, daily. The author

of numerous books, collectively covering a multidisciplinary

approach towards design, he has written for: Five Simple Steps,

8 Faces and The Manual; in addition to publishing the world’s

most compact typography journal, Glyph.

Managing a Mind

24 ways 2013 edition 269

http://www.fivesimplesteps.com
http://8faces.com/
http://alwaysreadthemanual.com/
http://getglyph.org

An internationally respected speaker, he has spoken at

conferences worldwide, including: Build, Industry and, most

recently, on the topic of mental health in the technology sector,

at Brooklyn Beta.

You can follow Christopher’s journey via Twitter.

270 24 ways 2013 edition

http://buildconf.com
http://industryconf.com
https://brooklynbeta.org
https://twitter.com/fehler

Emma Boulton 24ways.org/201322

22. Bringing Design and
Research Closer Together

The ‘should designers be able to code’
debate has raged for some time, but I’m
interested in another debate: should
designers be able to research?

Are you a designer who can do research? Good research

and the insights you uncover inspire fresh ways of

thinking and get your creative juices flowing. Good

research brings clarity to a woolly brief. Audience insight

helps sharpen your focus on what’s really important.

Experimentation through research and design brings a

sense of playfulness and curiosity to your work. Good

research helps you do good design.

Being a web designer today is pretty tough, particularly if

you’re a freelancer and work on your own. There are so

many new ideas, approaches to workflow and trends and

tools to keep up with. How do you decide which things to

do and which to ignore? A modern web designer needs to

Bringing Design and Research Closer Together

24 ways 2013 edition 271

http://24ways.org/201322

be able to consider the needs of the audience, design

appropriate IAs and layouts, choose colour palettes, pick

appropriate typefaces and type layouts, wrangle with

content, style, code, dabble in SEO, and the list goes on

and on. Not only that, but today’s web designer also has to

keep up with the latest talking points in the industry:

responsive design, Agile, accessibility, Sass, Git, lean UX,

content first, mobile first, blah blah blah. Any good web

designer doesn’t need to be persuaded about the merits

of including research in their toolkit, but do you really

have time to include research too?

WHO IS RESPONSIBLE FOR RESEARCH?

Generally, research in the web industry forms part of

other disciplines and isn’t so much a discipline in its own

right. It’s very often thought of as part of UX, or activities

that make up a process such as IA or content strategy.

Research is often undertaken by UX designers,

information architects or content strategists and isn’t

something designers or developers get that involved in.

Some people lump all of these activities together and

label it design research and have design researchers to

do it. Some companies, such as the one I run with my

husband Mark, are lucky enough to have someone with

specialist research knowledge (yup, that would be me

272 24 ways 2013 edition

folks) who can lead all or most of the research work

undertaken by the company. See also Mule Design,

GOV.UK, the BBC, Mailchimp, Facebook and Twitter.

What if you’re not lucky enough to have your own

researcher or team of researchers? Often research is the

kind of thing that’s nice to have, or it can be cut from

scope when doing the budget dance with a client. It often

forms part of the discovery phase of a project and

sometimes just becomes a tick-box exercise. But research

isn’t just user testing and it shouldn’t just live in a report

on Basecamp that no one reads. I would argue that

research and experimentation is a way of working or an

approach to how you design. Research can be used during

the whole design process and must be a vital part of a

designer’s workflow on every project. Even if you work in

a small studio, you can still create a culture of audience

insight. Even if you work on your own, you can still absorb

yourself in as much audience data as you can throughout

the project life cycle. Here’s how.

RESEARCH IS EVERYONE’S JOB

There is a subtle difference between writing a research

report and delivering it to a client, and them actually using

it and applying the insights to their thought process. In my

experience of working in the audiences team at the BBC,

Bringing Design and Research Closer Together

24 ways 2013 edition 273

research was most effective when the role was embedded

in the production team and insights were used as part of

the editorial process.

In this section I’ll talk through some common problems

you might encounter in a typical project life cycle and

show you ways you can use research to help you. For the

sake of this article, let’s imagine that we’re talking about a

particular project here and not ongoing product

development. The same principles can of course be

applied then, but even if you work in-house rather than on

the agency side, you’re probably used to working on

distinct projects or phases of work.

1. Problem: I want to come up with a new product idea.

Solution: Inspiration through insights.

Before you begin a new project, a good way of quickly

absorbing all the existing knowledge that there maybe

about a theme, product type or website is to literally

surround yourself with it. This is especially relevant for

new ideas or product development. Create an incident

room if you can: fill the walls of your meeting room, the

walls near your desk, or even just use a pinboard or online

pinboard if space is tight or you’re working with a

dispersed team. The same process can be used

throughout a project’s or product life cycle — read about

how MailChimp has applied this idea.

274 24 ways 2013 edition

http://alistapart.com/article/connected-ux
http://alistapart.com/article/connected-ux

Let’s take a new product idea as an example. Say you

wanted to develop a responsive tool for web designers

but you weren’t sure what aspect of responsive design to

focus on. First of all, you should pose a hypothesis or

problem statement to gather ideas around. For example:

“How to speed up a designer’s responsive workflow.” You

would then need to gather insights around this topic. You

could run some interviews with freelance designers about

how they work responsively. You could shadow a

development team for the day to understand their

processes. You could observe conversations on Twitter or

IRC or wherever your target audience interact to see

what people talk about. You could search out industry

data and articles currently available.

The next stage is to comb through this data and extract

insights from it. You can use good old Post-it notes and a

sharpie: capture one insight or thought per Post-it. If one

insight leads into another, use two Post-its. The objective

is volume. Try to ensure clarity in each Post-it so you don’t

have to go back and reference material again (maybe you

could use a key if you think it’ll get confusing).

Bringing Design and Research Closer Together

24 ways 2013 edition 275

After this, stick them all up and synthesise the same way

you would for any kind of cluster or affinity sort. Organise

into broad themes. These themes then become

springboards for further exploration and idea generation.

You might see a gap or opportunity in one particular area,

both from a workflow perspective but also from a

business perspective. Bingo. Your insights then become

the fuel for ideas generation.

This method doesn’t just have to be used for new

products — it works particularly well in a discovery phase

for new projects or for new features in an existing

product. We’re doing something similar for our own

responsive tool, Gridset at the moment.

Resources:

276 24 ways 2013 edition

https://gridsetapp.com/

▪ Sticky Wisdom by Dave Allan, Matt Kingdon, Kris

Murrin, Daz Rudkin

▪ The Science of Serendipity by Matt Kingdon

▪ The Art of Innovation by Tom Kelley

2. Problem: You’re starting a new project and need to
know the basics before you get headlong into designing
or building.

Solution: Quantitative survey.

Common questions might be:

▪ Who are the users?

▪ How many are there?

▪ What are they like?

▪ Why do they use the site?

▪ What do they need from the site?

▪ What are their goals?

Print out and stick up what you already know and have in

your project space or ‘incident room’: any reports you

have found or been given, analytics graphs, personas, pen

portraits, as well as screengrabs of the current website,

product or branding. Spend time looking through it all and

identify the gaps.

If you have very little existing audience data, a quick and

easy way to get some baseline information is to run a

quick user survey on a current website. You can establish

Bringing Design and Research Closer Together

24 ways 2013 edition 277

http://www.amazon.co.uk/Sticky-Wisdom-Dave-Allan/dp/1841120219/ref%3Dpd_sim_b_1
http://www.amazon.co.uk/The-Science-Serendipity-Promise-Innovation/dp/111847810X/ref%3Dpd_rhf_se_s_cp_1_5WH1?ie=UTF8&refRID=155R9QS5S1Q1XYH80K1V
http://www.amazon.co.uk/Art-Innovation-Success-Through-IDEO/dp/186197583X/ref%3Dsr_1_1?s=books&ie=UTF8&qid=1387277753&sr=1-1&keywords=IDEO

basic demographic information, appreciation and views of

the website as it stands, as well as delve a little deeper

into needs and wants. This is also vital if you want some

kind of trackable measures to go back to once you have

designed and built your shiny new website for your client

— read more in my article for 24 ways last year.)

We use surveys a lot at Mark Boulton Design for our

client work. Here’s a screen grab of one we ran in March

on http://info.cern.ch before we redesigned the site and

did the work on the First Website Project. We repeated

the survey after the new website went live and were able

278 24 ways 2013 edition

http://24ways.org/2012/using-questionnaires-for-design-research/
http://info.cern.ch
http://first-website.web.cern.ch

to compare the results. Both surveys were a great source

of insight to the project team as well as for the project

stakeholders who needed to pitch the idea of the hack

days and fundraise for them.

Once you’ve run your survey, you should always write up

a short summary for yourself and your client to refer to. If

you’re not a trained researcher, you should try to read up

on analysis techniques or data visualisation. It can be easy

to misinterpret data and make it bend to the story you are

trying to tell. You should be looking for the story in the

data and present it without bias.

If you’re using the ‘incident room’ method I mentioned

earlier on, you can also extract the insights onto post it

notes and add them to your growing body of knowledge.

Resources:

Bringing Design and Research Closer Together

24 ways 2013 edition 279

▪ Using Questionnaires for Design Research by Emma

Boulton

▪ Data-driven Design with an Annual Survey by Aarron

Walter

▪ Research Methods for Product Design by Alex Milton and

Paul Rodgers

▪ A Practical Guide to Designing with Data by Brian Suda

3. Problem: You have a prototype of a new design and
you need some feedback from real users.

Solution: User interviews and task based testing.

Interviewing is a staple research method that every

designer should master as it can be used throughout a

project life cycle. Erika Hall recently wrote a great article

on the basics for A List Apart. From stakeholder

interviews in a discovery phase, to initial user research,

right through to task based testing and iteration,

interviews can be enormously helpful. They are very time-

consuming, however, and although speaking to someone

is better than speaking to no one, it’s always better to plan

to do a few interviews at once, rather than one or two. I

generally find that patterns only start to emerge after I’ve

spoken to 4 or 5 people. Interviews are another thing we

do a lot of at Mark Boulton Design. Most of the interviews

we do are remote due to the location of our clients and

their users.

280 24 ways 2013 edition

http://24ways.org/2012/using-questionnaires-for-design-research/
http://24ways.org/2013/data-driven-design-with-an-annual-survey/
http://www.amazon.co.uk/Research-Methods-Product-Design-Portfolio/dp/1780673027/ref%3Dsr_1_14?s=books&ie=UTF8&qid=1387277625&sr=1-14&keywords=IDEO
http://www.fivesimplesteps.com/products/a-practical-guide-to-designing-with-data
http://alistapart.com/article/interviewing-humans
http://alistapart.com/article/interviewing-humans

Rigour is an important consideration in all research

activities and especially if you’re a non-researcher.

Interviews particularly can be easily skewed by an

inexperienced facilitator, which is why pairing can be a

good approach. Building rapport, questioning, time

keeping, note taking and thinking on your feet can be

difficult to do all at once, so having a colleague take notes

while you concentrate on leading the conversation can

work really well. It’s important for the note taker to sit in

on more than one interview so that they get a more

rounded view of the feedback. The same person should

also be involved in the analysis of the data.

Bringing Design and Research Closer Together

24 ways 2013 edition 281

Interviews can be analysed and written up in a report or

summary as with other types of research. I often use the

same kind of collaborative process detailed earlier for

deciding on themes, particularly if multiple members of

the team have been involved in interviewing.

Interviews are particularly useful for our incident room

and can provide much colour and insight to an exploratory

process. I often find verbatim quotes to be the most

insightful type of data. You might find that an

inexperienced researcher (or designer who is used to

solving problems) will jump to interpretation too soon and

forget to just listen to what the interviewee is saying.

Capturing the exact form of words a person uses can help

get away from this.

Resources:

282 24 ways 2013 edition

▪ Interviewing Humans by Erika Hall

▪ A Pocket Guide to Interviewing for Research by Andrew

Travers

▪ Interviewing Users by Steve Portigal

4. Problem: How successful have I been with this new
design?

Solution: Key performance indicators

Once your new design has been realised, it’s important to

evaluate it. What works, what doesn’t work so well? As

well as a straightforward design crit, don’t forget to

introduce audience insights into a review meeting or

project wash up.

Bringing Design and Research Closer Together

24 ways 2013 edition 283

http://alistapart.com/article/interviewing-humans
http://www.fivesimplesteps.com/products/interviewing-for-research
http://rosenfeldmedia.com/books/interviewing-users/

Work out what your KPIs — your key performance

indicators — will be beforehand and then you can start to

track them over time. For example, number of visits,

appreciation of the site, willingness to recommend the

site to a friend, number of sales, and number of

conversions are all sensible measures to track. Interviews

can again be helpful but cold, hard numbers are often

better here. Read Corey Vilhauer’s take on this on A List

Apart.

Consistency is key here. If you have looked at your

analytics and done a survey beforehand, you will have a

baseline to start from. Don’t keep changing your

measures and questions, or your data will not be

comparable. Pick a few key questions or a set of

measures, create a survey and then run it once a month,

once a quarter, every six months or annually. You’ll start

to see changes over time as the design beds in. You may

see seasonal trends and spot patterns in the data related

to other activities like marketing, promotion and so on.

Keeping a record of all of this will increase your

understanding of your audience. We’ve created a

satisfaction survey for Gridset with a number of measures

that we track on an ongoing basis. MailChimp has also

created an annual survey with the aim of tracking their

audience measures over time

Resources:

284 24 ways 2013 edition

http://alistapart.com/article/audiences-outcomes-and-determining-user-needs
http://24ways.org/2013/data-driven-design-with-an-annual-survey/
http://24ways.org/2013/data-driven-design-with-an-annual-survey/

▪ Search Analytics by Louis Rosenfeld

▪ A Primer on A/B Testing by Lara Swanson

▪ Lean UX by Jeff Gothelf

ANYONE CAN DO RESEARCH

Research can be brought into the project life cycle at any

stage. And of course, anyone can do research — you don’t

need to be a researcher. Some of the main skills most

designers possess are also key research skills: inquisitive

nature, problem solving, playfulness, empathy, and so on.

We have a small team at Mark Boulton Design. Most of

the team are designers and the rest of us focus on

supporting the team and clients both in terms of billable

work (research, content strategy, project management) as

well as the non-billable things like finance and studio

management.

Despite my best intentions, in the past I’ve undertaken

research for clients in isolation — first being briefed by

the design lead, carrying out the research and then

delivering the findings back, trusting the design team to

take the findings on board. This was often due to time and

availability of resources.

We’ve been trying hard to join up our processes and

collaborate even more across the team. Undertaking

heuristic or design reviews collaboratively; taking part in

frequent critiques of our work and the work of others

Bringing Design and Research Closer Together

24 ways 2013 edition 285

http://rosenfeldmedia.com/books/search-analytics/
http://alistapart.com/article/a-primer-on-a-b-testing
http://www.amazon.co.uk/Lean-UX-Applying-Principles-Experience/dp/1449311652/ref%3Dsr_1_1?s=books&ie=UTF8&qid=1387278032&sr=1-1&keywords=Lean+UX

together; pairing a researcher and a designer to run

interviews; workshopping results from interviews to

come up with recommendations; working closely

together on questionnaire design; shadowing each other

on tasks that don’t fall within our core skills. A little thing

like moving our desks around has also helped us have

more conversations that we can all be a part of.

I’ve come to the conclusion that my role as the research

director at Mark Boulton Design is actually a facilitator of

research. As well as carrying out research, I am

responsible for ensuring that research happens

consistently across the team. I am responsible for

empowering and training our designers so they feel

confident in carrying out their own user, audience or

design research for clients. So they know what to look for,

when to listen, when to probe and when to take note of

286 24 ways 2013 edition

something. So they know how to look for themes, how to

synthesise insights from research and how to apply them

to their work.

BETTER RESEARCH LEADS TO BETTER DESIGN

So, are you a designer who can do research? Are you a

researcher who can design? The best designers are a

lucky combination of researcher and designer. If you’re

not one of those, look at ways of enhancing the skills you

lack. Because there’s no doubt in my mind, that becoming

a better researcher will make you a better designer.

General resources:

▪ Seeing the Elephant by Louis Rosenfeld

▪ Connected UX by Aarron Walter

▪ Beyond Usability Testing by Devan Goldstein

▪ Just Enough Research by Erika Hall

▪ The User Experience Team of One by Leah Buley

▪ Undercover User Experience Design by Cennydd Bowles

and James Box

▪ A Pocket Guide to Psychology for Designers by Joe Leech

▪ A Pocket Guide to International User Research by Chui

Chui Tan

▪ Remote Research by Nate Bolt and Tony Tulathimutte

▪ A Pocket Guide to Experiments for Designers by Colin

McFarland

Bringing Design and Research Closer Together

24 ways 2013 edition 287

http://alistapart.com/article/seeing-the-elephant-defragmenting-user-research
http://alistapart.com/article/connected-ux
http://alistapart.com/article/beyond-usability-testing
http://www.abookapart.com/products/just-enough-research
http://rosenfeldmedia.com/books/ux-team-of-one/
http://www.amazon.co.uk/Undercover-Experience-Design-Voices-Matter/dp/0321719905/ref%3Dsr_1_1?s=books&ie=UTF8&qid=1387278006&sr=1-1&keywords=Undercover+UX
http://www.fivesimplesteps.com/products/psychology-for-designers
http://www.fivesimplesteps.com/products/international-user-research
http://rosenfeldmedia.com/books/remote-research/
http://www.fivesimplesteps.com/products/experiments-for-designers

ABOUT THE AUTHOR

Emma has been helping clients understand their audiences for

the better part of the last 14 years. She cut her research teeth

in the brave new world of online advertising, before moving to

the Audiences team at the BBC. She’s now the Research

Director at Mark Boulton Design and works as part of a small

but exceptional team creating great web experiences for clients

such as CERN, Al Jazeera and Global Witness. Emma is also the

Editor in Chief of indie publisher, Five Simple Steps.

288 24 ways 2013 edition

http://markboultondesign.com/
http://www.fivesimplesteps.com/

Andrew Clarke 24ways.org/201323

23. The Command
Position Principle

Living where I do, in a small village in rural
North Wales, getting anywhere means
driving along narrow country roads. Most of
these are just about passable when two cars
meet.

If you’re driving too close to the centre of the road, when

two drivers meet you stop, glare at each other and no one

goes anywhere. Drive too close to your nearside and in

summer you’ll probably scratch your paintwork on the

hedgerows, or in winter you’ll sink your wheels into mud.

Driving these lanes requires a balance between caring for

your own vehicle and consideration for someone else’s,

but all too often, I’ve seen drivers pushed towards the

hedgerows and mud when someone who’s inconsiderate

drives too wide because they don’t want to risk scratching

their own paintwork or getting their wheels dirty.

The Command Position Principle

24 ways 2013 edition 289

http://24ways.org/201323

If you learn to ride a motorcycle, you’ll be taught about

the command position:

Approximate central position, or any position
from which the rider can exert control over
invitation space either side.

The command position helps motorcyclists stay safe,

because when they ride in the centre of their lane it

prevents other people, usually car drivers, from driving

alongside, either forcing them into the curb or potentially

dangerously close to oncoming traffic.

Taking the command position isn’t about motorcyclists

being aggressive, it’s about them being confident. It’s

them knowing their rightful place on the road and

communicating that through how they ride.

I’ve recently been trying to take that command position

when driving my car on our lanes. When I see someone

coming in the opposite direction, instead of instinctively

moving closer to my nearside — and in so doing

subconsciously invite them into my space on the road — I

hold both my nerve and a central position in my lane.

Since I done this I’ve noticed that other drivers more

often than not stay in their lane or pull closer to their

nearside so we occupy equal space on the road. Although

we both still need to watch our wing mirrors, neither of us

gets our paint scratched or our wheels muddy.

290 24 ways 2013 edition

We can apply this principle to business too, in particular

to negotiations and the way we sell. Here’s how we might

do that.

COMMANDING NEGOTIATIONS

When a customer’s been sold to well — more on that in

just a moment — and they’ve made the decision to buy,

the thing that usually stands in the way of us doing

business is a negotiation over price. Some people treat

negotiations as the equivalent of driving wide. They act

offensively, because their aim is to force the other person

into getting less, usually in return for giving more.

In encounters like this, it’s easy for us to act defensively.

We might lack confidence in the price we ask for, or the

value of the product or service we offer. We might

compromise too early because of that. When that

happens, there’s a pretty good chance that we’ll drive

away with less than we deserve unless we use the

command position principle to help us.

Before we start any negotiation it’s important to know

that both sides ultimately want to reach an agreement.

This isn’t always obvious. If one side isn’t already

committed, at least in principle, then it’s not a negotiation

at that point, it’s something else.

The Command Position Principle

24 ways 2013 edition 291

For example, a prospective customer may be looking to

learn our lowest price so that they can compare it to our

competitors. When that’s the case, we’ve probably failed

to qualify that prospect properly as, after all, who wants

to be chosen simply because they’re the cheapest? In this

situation, negotiating is a waste of time since we don’t yet

know that it will result in us making a deal. We should

enter into a negotiation only when we know where we

stand. So ask confidently: “Are you looking to [make a

decision]?”

When that’s been confirmed, it’s down to everyone to

compromise until a deal’s been reached. That’s because

good negotiations aren’t about one side beating the other,

they’re about achieving a good deal for both. Using the

command position principle helps us to maintain control

over our negotiating space and affords us the opportunity

to give ground only if we need to and only when we’re

ready. It can also ensure that the person we’re negotiating

with gives up some of their space.

COMMANDING SALES

It’s not always necessary to negotiate when we’re doing a

business deal, but we should always be prepared to sell.

One of the most important parts of our sales process

should be controlling when and how we tell someone our

price.

292 24 ways 2013 edition

Unless it’s impossible to avoid, don’t work out a price for

someone on the spot. When we do that we lose control

over the time and place for presenting our price alongside

the value factors that will contribute to the prospective

customer accepting that price. For the same reason, never

give a ballpark or, worse, a guesstimate figure. If the

question of price comes up before we’re fully prepared,

we should say politely that we need more time to work

out a meaningful cost.

When we are ready, we shouldn’t email a price for our

prospective customer to read unaccompanied. Instead,

create an opportunity to talk a prospect through our

figures, demonstrate how we arrived at them and, most

importantly, explain the value of what we’re selling to

their business. Agree a time and place to do this and, if

possible, do it all face-to-face.

We shouldn’t hesitate when we give someone a price.

When we sound even the slightest bit unsure or

apologetic, we give the impression that we’ll be flexible in

our position before negotiations have even begun.

Think about the command position principle, know the

price and present it confidently. That way we send a clear

signal that we know our business and how we deal with

people. The command position principle isn’t about being

cocky, it’s about showing other people respect, asking for

it in return and showing it to ourselves.

The Command Position Principle

24 ways 2013 edition 293

◆◆◆

Earlier, I mentioned selling well, because we sometimes

hear people say that they dislike being sold to. In my

experience, it’s not that people dislike the sales process,

it’s that we dislike it done badly.

Taking part in a good sales process, either by selling or

being sold to, can be a pleasurable experience. Try to be

confident — after all, we understand how our skills will

benefit a customer better than anyone else. Our

confidence will inspire confidence in others.

Self-confidence isn’t the same as arrogance, just as the

command position isn’t the same as riding without

consideration for others. The command position principle

preserves others’ space as well as our own. By the same

token, we should be considerate of others’ time and not

waste it and our own by attempting to force them into

buying something that’s inappropriate.

To prevent this from happening, evaluate them well to

ensure that they’re the right customer for us. If they’re

not, let them go on their way. They’ll thank us for it and

may well become customers the next time we meet.

The business of closing a deal can be made an enjoyable

experience for everyone if we take control by guiding

someone through the sales process by asking the right

294 24 ways 2013 edition

questions to uncover their concerns, then allaying them

by being knowledgeable and confident. This is riding in

the command position.

Just like demonstrating we know our rightful position on

the road, knowing our rightful place in a business

relationship and communicating that through how we

deal with people will help everyone achieve an equitable

balance. When that happens in business, as well as on the

road, no one gets their paintwork scratched or their

wheels muddy.

The Command Position Principle

24 ways 2013 edition 295

ABOUT THE AUTHOR

Andrew Clarke runs Stuff and Nonsense, a tiny web design

company where they make fashionably flexible websites.

Andrew’s the author of Transcending CSS and Hardboiled Web

Design and hosts the popular weekly podcast Unfinished

Business where he discusses the business side of web, design

and creative industries with his guests. He tweets as

@malarkey.

296 24 ways 2013 edition

http://stuffandnonsense.co.uk/
http://unfinished.bz/
http://unfinished.bz/
http://twitter.com/malarkey

Mark Boulton 24ways.org/201324

24. Run Ragged

You care about typography, right? Do you
care about words and how they look, read,
and are understood? If you pick up a book or
magazine, you notice the moment
something is out of place: an orphan, rivers
within paragraphs of justified prose, or caps
masquerading as small caps. So why, I ask
you, is your stance any different on the web?

We’re told time and time again that as a person who

makes websites we have to get comfortable with our lack

of control. On the web, this is a feature, not a bug. But that

doesn’t mean we have to lower our standards, or not

strive for the same amount of typographic craft of our

print-based cousins. We shouldn’t leave good typesetting

at the door because we can’t control the line length.

When I typeset books, I’d spend hours manipulating the

text to create a pleasurable flow from line to line. A key

aspect of this is manicuring the right rag — the vertical

line of words on ranged-left text. Maximising the space

Run Ragged

24 ways 2013 edition 297

http://24ways.org/201324

available, but ensuring there are no line breaks or

orphaned words that disrupt the flow of reading. Setting a

right rag relies on a bunch of guidelines — or as I was first

taught to call them, violations!

VIOLATION 1. NEVER BREAK A LINE
IMMEDIATELY FOLLOWING A PREPOSITION

Prepositions are important, frequently used words in

English. They link nouns, pronouns and other words

together in a sentence. And links should not be broken if

you can help it. Ending a line on a preposition breaks the

join from one word to another and forces the reader to

work harder joining two words over two lines.

For example:

The container is for the butter

The preposition here is for and shows the relationship

between the butter and the container. If this were typeset

on a line and the line break was after the word for, then

the reader would have to carry that through to the next

line. The sentence would not flow.

There are lots of prepositions in English – about 150 – but

only 70 or so in use.

298 24 ways 2013 edition

VIOLATION 2. NEVER BREAK A LINE
IMMEDIATELY FOLLOWING A DASH

A dash — either an em-dash or en-dash — can be used as a

pause in the reading, or as used here, a point at which you

introduce something that is not within the flow of the

sentence. Like an aside. Ending with a pause on the end of

the line would have the same effect as ending on a

preposition. It disrupts the flow of reading.

VIOLATION 3. NO SMALL WORDS AT THE END
OF A LINE

Don’t end a line with small words. Most of these will

actually be covered by violation №1. But there will be

exceptions. My general rule of thumb here is not to leave

words of two or three letters at the end of a line.

VIOLATION 4. HYPHENATION

In print, hyphens are used at the end of lines to join words

broken over a line break. Mostly, this is used in justified

body text, and no doubt you will be used to seeing it in

newspapers or novels. A good rule of thumb is to not

allow more than two consecutive lines to end with a

hyphen.

Run Ragged

24 ways 2013 edition 299

On the web, of course, we can use the CSS hyphens

property. It’s reasonably supported with the exception of

Chrome. Of course, it works best when combined with

justified text to retain the neat right margin.

VIOLATION 5. DON’T BREAK EMPHASISED
PHRASES OF THREE OR FEWER WORDS

If you have a few words emphasised, for example:

He calls this problem definition escalation

…then try not to break the line among them. It’s important

the reader reads through all the words as a group.

HOW DO WE DO ALL OF THAT ON THE WEB?

All of those guidelines are relatively easy to implement in

print. But what about the web? Where content is poured

into a template from a CMS? Well, there are things we can

do. Meet your new friend, the non-breaking space, or as

you may know them: .

The guidelines above are all based on one decision for the

typesetter: when should the line break?

We can simply run through a body of text and add the

based on these sets of questions:

1. Are there any prepositions in the text? If so, add a

after them.

300 24 ways 2013 edition

2. Are there any dashes? If so, add a after them.

3. Are there any words of fewer than three characters

that you haven’t already added spaces to? If so, add a

after them.

4. Are there any emphasised groups of words either two

or three words long? If so, add a in between them.

For a short piece of text, this isn’t a big problem. But for

longer bodies of text, this is a bit arduous. Also, as I said,

lots of websites use a CMS and just dump the text into a

template. What then? We can’t expect our content

creators to manually manicure a right rag based on these

guidelines. In this instance, we really need things to be

automatic.

There isn’t any reason why we can’t just pass the question

of when to break the line straight to the browser by way

of a script which compares the text against a set of rules.

In plain English, this script could be to scan the text for:

1. Prepositions. If found, add after them.

2. Dashes. If found, add after them.

3. Words fewer than three characters long that aren’t

prepositions. If found, add after them.

4. Emphasised phrases of up to three words in length. If

found, add between all of the words.

And there we have it.

Run Ragged

24 ways 2013 edition 301

A note on fluidity

An important consideration of this script is that it doesn’t

scan the text to see what is at the end of a line. It just

looks for prepositions, dashes, words fewer than three

characters long, and emphasised words within paragraphs

and applies the accordingly regardless of where the

thing lives. This is because in a fluid layout a word might

appear in the beginning, middle or the end of a line

depending on the width of the browser. And we want it to

behave in the right way when it does find itself at the end.

SEE IT IN ACTION!

My friend and colleague, Nathan Ford, has written a small

JavaScript called Ragadjust that does all of this

automatically. The script loops through a webpage,

compares the text against the conditions, and then inserts

in the places that violate the conditions above.

You can get the script from GitHub and see it in action on

my own website.

SOME CAVEATS

As my friend Jon Tan says, “There are no rules in

typography, just good or bad decisions”, and typesetting

the right rag is no different.

302 24 ways 2013 edition

http://www.twitter.com/nathan_ford
https://github.com/nathanford/ragadjust
http://markboulton.co.uk/journal/design-abstraction-escalation
http://markboulton.co.uk/journal/design-abstraction-escalation
http://www.twitter.com/jontangerine

▪ The guidelines for the violations above are useful for

justified text, too. But we need to be careful here. Too

stringent adherence to these violations could lead to ugly

gaps in our words — called rivers — as the browser forces

justification.

▪ The violation regarding short words at the end of

sentences is useful for longer line lengths, or measures, of

text. When the measure gets shorter, maybe five or six

words, then we need to be more forgiving as to what

wraps to the next line and what doesn’t. In fact, you can

see this happening on my site where I’ve not included a

check on the size of the browser window (purposefully,

for this demo, of course. Ahem).

▪ This article is about applying these guidelines to

English. Some of them will, no doubt, cross over to other

languages quite well. But for those languages, like

German for instance, where longer words tend to be in

more frequent use, then some of the rules may result in a

poor right rag.

MARGINAL GAINS

In 2007, I spoke with Richard Rutter at SXSW on web

typography. In that talk, Richard and I made a point that

good typographic design — on the web, in print;

anywhere, in fact — relies on small, measurable

improvements across an entire body of work. From

heading hierarchy to your grid system, every little bit

Run Ragged

24 ways 2013 edition 303

http://markboulton.co.uk/journal/design-abstraction-escalation
http://markboulton.co.uk/journal/design-abstraction-escalation

helps. In and of themselves, these little things don’t really

mean that much. You may well have read this article,

shrugged your shoulders and thought, “Huh. So what?”

But these little things, when added up, make a difference.

A difference between good typographic design and great

typographic design.

◆◆◆

APPENDIX

Preposition whitelist

aboard

about

above

across

after

against

along

amid

among

anti

around

as

at

before

behind

below

304 24 ways 2013 edition

beneath

beside

besides

between

beyond

but

by

concerning

considering

despite

down

during

except

excepting

excluding

following

for

from

in

inside

into

like

minus

near

of

off

on

onto

Run Ragged

24 ways 2013 edition 305

opposite

outside

over

past

per

plus

regarding

round

save

since

than

through

to

toward

towards

under

underneath

unlike

until

up

upon

versus

via

with

within

without

306 24 ways 2013 edition

ABOUT THE AUTHOR

Mark Boulton is a graphic designer from near Cardiff in the UK.

He used to work as a Senior Designer for the BBC, before he

took leave of his senses and formed his own design consultancy,

Mark Boulton Design. He studied typography, enjoys watching

a good boxing match, and is partial to a really good cuppa.

Run Ragged

24 ways 2013 edition 307

http://www.markboulton.co.uk/

	Credits
	2013
	URL Rewriting for the Fearful
	The basics
	Redirects
	Rewriting

	Matching patterns
	Putting it into practice
	Capturing groups, and replacements

	Options
	Common pitfalls
	Useful snippets
	Excluding a directory
	Adding or removing www from the domain
	Removing file extensions

	Logging for when it all goes wrong
	The white screen of death

	In conclusion
	Further reading

	About the author

	Make Your Browser Dance
	Let’s take to the dance floor
	Start the music
	Learning the steps
	Don’t forget to count!
	Putting it all together
	Let’s dance!
	And relax :)
	About the author

	Coding Towards Accessibility
	Dreary, flat experiences
	Synecdoche
	The mouse trap
	Don’t just :hover
	JavaScript can play, too
	Coding for accessibility promotes good habits

	Manipulating the tab order
	A farewell ARIA
	Conclusion
	About the author

	Git for Grown-ups
	Centralized workflow
	Branching workflow
	Forking workflow
	Gitflow workflow
	About the author

	JavaScript: Taking Off the Training Wheels
	Why learn JavaScript?
	Confidence with jQuery
	Solving problems no one else has!
	Node.js
	Grunt and other website tools

	Ways to improve your skills
	Rebuild a jQuery app
	Find a mentor
	Go to a workshop
	Set yourself challenges

	Where to start?
	Beginner
	Getting in-depth

	And finally…
	About the author

	Levelling Up
	The long learning-to-code slog
	If I can do it, so can you
	There’s no magic formula
	Break it down
	Have a tangible product to build
	Team up

	Your homework for the holiday
	About the author

	Animating Vectors with SVG
	SVG in HTML
	So it can be used in HTML. Why?
	Libraries to get you started
	About the author

	Kill It With Fire! What To Do With Those Dreaded FAQs
	Digital beginnings
	What we hate when we hate FAQs
	Double trouble
	Leaving the job unfinished
	Long lists of not-my-question
	The ventriloquist act

	Where are they all coming from?
	An occasionally necessary evil
	Form follows function
	About the author

	Keeping Parts of Your Codebase Private on GitHub
	Adding your public remote
	Adding your private remote
	Adding more branches
	Combining the two
	Multiple machines
	Done!
	About the author

	Why Bother with Accessibility?
	How we approach accessibility
	Excuse 1: “People with disabilities don’t really use the web”
	Accessibility will make your site available to more people — the inclusion case
	None of these disabilities are completely black and white
	Impairments aren’t always permanent
	Impairments might be somewhere between the user and the website

	Excuse 2: “We don’t want to affect the experience for the majority of our users”
	Accessibility will improve your site for all your users — the usability case

	Excuse 3: “We don’t have the budget for accessibility”
	Accessibility will make you money — the business case

	Excuse 4: “Accessible websites are ugly”
	Accessibility won’t stop your site from being beautiful — the beauty case
	Amazon.co.uk
	24 ways
	Opera’s Shiny Demos
	SoundCloud

	Education and balance
	About the author

	Grunt for People Who Think Things Like Grunt are Weird and Hard
	Let’s nip some misconceptions in the bud right away
	I don’t need the things Grunt does
	Grunt runs on Node.js — I don’t know Node
	I have other ways to do the things Grunt could do for me
	Grunt is a command line tool — I’m just a designer

	OK. Let’s get Grunt installed
	Let’s make Grunt concatenate some files
	Let’s make Grunt minify that JavaScript
	Let’s make Grunt optimize our images
	Let’s get a little bit smarter and automate
	Let’s make Grunt do our preprocessing
	Prefer a video?

	Leveling up
	Let’s share
	About the author

	The Responsive Hover Paradigm
	Why bother?
	Why hover?
	What about mobile, touch, and responsive?
	1. The essential text hover
	2. Visual background wizardry and animated hovers
	3. Image block hovers
	4. Drop-down navigation menu hovers
	Why can’t we just detect hover?
	Can we give our visitors a choice?
	Conclusion
	About the author

	Data-driven Design with an Annual Survey
	Planning your survey
	Building your survey
	Determining survey recipients
	Crafting your survey email
	Pilot before sending
	Analyzing your results
	Conclusion
	About the author

	Home Kanban for Domestic Bliss
	What is this kanban of which you speak?
	So, how did we use it?
	What helped the most?
	About the author

	In Their Own Write: Web Books and their Authors
	Reasons for writing a book
	Challenges of writing a book
	Perils and pleasures of editing
	Publishing and publishers
	Wise words
	About the author

	Credits and Recognition
	Advertising attribution
	Crediting on client sites
	Crediting in portfolios
	Examples
	Anna Debenham
	Naomi Atkinson Design
	Amber Weinberg

	What if someone doesn’t want to be credited?
	Get updating!
	About the author

	Project Hubs: A Home Base for Design Projects
	Project hubs
	A home base
	Deciding in the browser
	Progress over time
	Setting up a project hub
	So that’s the hubbub
	About the author

	Get Started With GitHub Pages (Plus Bonus Jekyll)
	Why I think GitHub Pages is cool
	Before you get started
	Setting up GitHub Pages
	Set up the repository
	Navigate to the repository
	Create a special GitHub Pages branch
	Make gh-pages your default branch (optional)
	Make a page

	Setting up Jekyll
	Install Jekyll
	Get Jekyll to run on the repository
	Update the config file
	Set up your files
	View the Jekyll site
	Set up the _includes files
	Making layouts
	Using Markdown for templates
	Create a new layout
	Adding some recipe pages
	Add some navigation
	Push the changes to GitHub Pages
	Next steps

	About the author

	How to Write a Book
	Formats
	What tools should I use?
	Creating an EPUB
	Creating the MOBI
	Spread the joy
	Go forth and prosper
	About the author

	Untangling Web Typography
	When typography goes awry
	Analyzing a site’s typography
	Automation
	What does this data mean?
	Consistency before perfection
	About the author

	Managing a Mind
	The relentless pace of change
	From the workshop to the web
	On status anxiety and impostor syndrome
	Make it count
	About the author

	Bringing Design and Research Closer Together
	Who is responsible for research?
	Research is everyone’s job
	1. Problem: I want to come up with a new product idea.
	2. Problem: You’re starting a new project and need to know the basics before you get headlong into designing or building.
	3. Problem: You have a prototype of a new design and you need some feedback from real users.
	4. Problem: How successful have I been with this new design?

	Anyone can do research
	Better research leads to better design
	General resources:

	About the author

	The Command Position Principle
	Commanding negotiations
	Commanding sales
	About the author

	Run Ragged
	Violation 1. Never break a line immediately following a preposition
	Violation 2. Never break a line immediately following a dash
	Violation 3. No small words at the end of a line
	Violation 4. Hyphenation
	Violation 5. Don’t break emphasised phrases of three or fewer words
	How do we do all of that on the web?
	A note on fluidity

	See it in action!
	Some caveats
	Marginal gains
	Appendix
	Preposition whitelist

	About the author

