

Credits

24 ways is the advent calendar for web
geeks. For twenty-four days each December
we publish a daily dose of web design and
development goodness to bring you all a
little Christmas cheer.

▪ 24 ways is brought to you by Perch CMS

▪ Produced by Drew McLellan, Brian Suda, Anna

Debenham and Owen Gregory.

▪ Designed by Paul Robert Lloyd.

▪ eBook published by edgeofmyseat.com and produced

by Rachel Andrew.

▪ Possible only with the help and dedication of our

authors.

2 24 ways 2015 edition

http://grabaperch.com/?ref=24w01
http://allinthehead.com/
http://suda.co.uk/
http://maban.co.uk/
http://maban.co.uk/
http://fullcreammilk.co.uk/
http://paulrobertlloyd.com/
http://edgeofmyseat.com
http://rachelandrew.co.uk/
http://24ways.org/authors/
http://24ways.org/authors/

2015

Ports and protocols were the name of the
game, with swathes of the web switching to
HTTPS connections. HTTP2 also started to
gain adoption, and in doing so turned all we
had learned about performance
optimisation on its head. 24 ways saw
increasing exploration of animation on the
web, as well as renewed interest in
accessibility, style guides and progressive
enhancement.

Animating Your Brand ... 5

Being Customer Supportive..25

How to Do a UX Review..37

Get Expressive with Your Typography....................................54

Universal React ..65

Bringing Your Code to the Streets..87

Git Rebasing: An Elfin Workshop Workflow99

Helping VIPs Care About Performance115

2015

24 ways 2015 edition 3

Animation in Responsive Design..122

Putting My Patterns through Their Paces..........................132

Upping Your Web Security Game ..144

Be Fluid with Your Design Skills: Build Your Own Sites 155

Designing with Contrast..162

What I Learned about Product Design This Year173

Grid, Flexbox, Box Alignment: Our New System for

Layout ...182

Beyond the Style Guide ...202

The Accessibility Mindset...216

Cooking Up Effective Technical Writing226

Being Responsive to the Small Things..................................246

Make a Comic...257

What’s Ahead for Your Data in 2016?268

How Tabs Should Work..278

Blow Your Own Trumpet...294

Solve the Hard Problems...301

4 24 ways 2015 edition

Donovan Hutchinson 24ways.org/201501

1. Animating Your Brand

Let’s talk about how we add animation to
our designs, in a way that’s consistent with
other aspects of our brand, such as fonts,
colours, layouts and everything else.

Animating is fun. Adding animation to our designs can

bring them to life and make our designs stand out.

Animations can show how the pieces of our designs fit

together. They provide context and help people use our

products.

All too often animation is something we tack on at the

end. We put a transition on a modal window or sliding

menu and we often don’t think about whether that

animation is consistent with our overall design.

STYLE GUIDES TO THE RESCUE

A style guide is a document that establishes and enforces

style to improve communication. It can cover anything

from typography and writing style to ethics and other,

Animating Your Brand

24 ways 2015 edition 5

http://24ways.org/201501
https://en.wikipedia.org/wiki/Style_guide
https://en.wikipedia.org/wiki/Style_guide

broader goals. It might be a static visual document

showing every kind of UI, like in the Codecademy.com

redesign shown below.

1-1. UI toolkit from “Reimagining Codecademy.com” by
@mslima

It might be a technical reference with code examples.

CodePen’s new design patterns and style guide is a great

example of this, showing all the components used

throughout the website as live code.

6 24 ways 2015 edition

https://medium.com/about-codecademy/reimagining-codecademy-com-1ebd994e2c08#.hzztb5a0y
https://twitter.com/mslima
http://codepen.io/guide

1-2. CodePen’s design patterns and style guide

A style guide gives a wide view of your project, it

maintains consistency when adding new content, and we

can use our style guide to present animations.

LIVING DOCUMENTS

Style guides don’t need to be static. We can use them to

show movement. We can share CSS keyframe animations

or transitions that can then go into production. We can

also explain why animation is there in the first place.

Just as a style guide might explain why we chose a certain

font or layout, we can use style guides to explain the

intent behind animation. This means that if someone else

wants to create a new component, they will know why

animation applies.

Animating Your Brand

24 ways 2015 edition 7

If you haven’t yet set up a style guide, you might want to

take a look at Pattern Lab. It’s a great tool for setting up

your own style guide and includes loads of design patterns

to get started.

There are many style guide articles linked from the

excellent, open sourced, Website Style Guide Resources.

Anna Debenham also has an excellent pocket book on the

subject.

ADDING ANIMATION

Before you begin throwing animation at all the things,

establish the character you want to convey.

1-3. Andrex Puppy (British TV ad from 1994)

8 24 ways 2015 edition

http://patternlab.io/
http://styleguides.io/
http://maban.co.uk/projects/front-end-style-guides/

List some words that describe the character you’re aiming

for. If it was the Andrex brand, they might have gone for:

fun, playful, soft, comforting.

Perhaps you’re aiming for something more serious,

credible and authoritative. Or maybe exciting and intense,

or relaxing and meditative. For each scenario, the

animations that best represent these words will be

different.

In the example below, two animations both take the same

length of time, but use different timing functions. One

eases, and the other bounces around. Either might be

good, depending on your needs.

1-4. Timing functions (CodePen)

Animating Your Brand

24 ways 2015 edition 9

http://codepen.io/donovanh/pen/Zbjbrx

EXAMPLE: KITMAN LABS

Working with Kitman Labs, we spent a little time working

out what words best reflected the brand and came up

with the following:

▪ Scientific

▪ Precise

▪ Fast

▪ Solid

▪ Dependable

▪ Helpful

▪ Consistent

▪ Clear

With such a list of words in hand, we design animation

that fits. We might prefer a tween that moves quickly to

its destination over one that drifts slowly or bounces.

We can use the list when justifying our use of animation,

such as when it helps our customers understand the

context of data on the page. Or we may even choose not

to animate, when that might make the message

inconsistent.

CREATE GUIDELINES

If you already have a style guide, adding animation could

begin with creating an overview section.

10 24 ways 2015 edition

One approach is to create a local website and share it

within your organisation. We recently set up a local site

for this purpose.

1-5. A recent project’s introduction to the topic of animation

This document becomes a reference when adding

animation to components. Include links to related

resources or examples of animation to help demonstrate

the animation style you want.

Animating Your Brand

24 ways 2015 edition 11

PROTOTYPING

You can explain the intent of your animation style guide

with live animations. This doesn’t just mean waving our

hands around. We can show animation through

prototypes.

There are so many prototype tools right now. You could

use Invision, Principle, Floid, or even HTML and CSS as

embedded CodePens.

1-6. A login flow prototype created in Principle

These tools help when trying out ideas and working

through several approaches. Create videos, animated

GIFs or online demos to share with others. Experiment.

Find what works for you and work with whatever lets you

12 24 ways 2015 edition

http://www.invisionapp.com/
http://principleformac.com/
https://floid.io/
http://codepen.io/

get the most ideas out of your head fastest. Iterate and

refine an animation before it gets anywhere near

production.

BUILD UP A COLLECTION

Build up your guide, one animation at a time.

Some people prefer to loosely structure a guide with

places to put things as they are discovered or invented;

others might build it one page at a time – it doesn’t matter.

The main thing is that you collect animations like you

would trading cards. Or Pokemon. Keep them ready to

play and deliver that explosive result.

You could include animated GIFs, or link to videos or even

live webpages as examples of animation. The use of

animation to help user experience is also covered nicely in

Val Head’s UI animation and UX article on A List Apart.

What matters is that you create an organised place for

them to be found. Here are some ideas to get started.

Logos and brandmarks

Many sites include some subtle form of animation in their

logos. This can draw the eye, add some character, or bring

a little liveliness to an otherwise static page. Yahoo and

Animating Your Brand

24 ways 2015 edition 13

http://alistapart.com/article/ui-animation-and-ux-a-not-so-secret-friendship

Google have been experimenting with animation on their

logos. Even a simple bouncing animation, such as the logo

on Hop.ie, can add character.

1-7. The CSS-animated bouncer from Hop.ie

Content transitions

Adding content, removing content, showing and hiding

messages are all opportunities to use animation. Careful

and deliberate use of animation helps convey what’s

changing on screen.

14 24 ways 2015 edition

http://hop.ie/

1-8. Animating list items with CSS (CSSAnimation.rocks)

For more detail on this, I also recommend “Transitional

Interfaces” by Pasquale D’Silva.

Page transitions

On a larger scale than the changes to content, full-page

transitions can smooth the flow between sections of a

site. Medium’s article transitions are a good example of

this.

Animating Your Brand

24 ways 2015 edition 15

https://cssanimation.rocks/list-items/
https://medium.com/@pasql/transitional-interfaces-926eb80d64e3#.u2almyf4f
https://medium.com/@pasql/transitional-interfaces-926eb80d64e3#.u2almyf4f
https://medium.com/@pasql

1-9. Medium-style page transition (Tympanus.net)

Preparing a layout before the content arrives

We can use animation to draw a page before the content

is ready, such as when a page calls a server for data before

showing it.

16 24 ways 2015 edition

http://tympanus.net/Tutorials/MediumStylePageTransition/#1

1-10. Optimistic loading grid (CodePen)

Sometimes it’s good to show something to let the user

know that everything’s going well. A short animation

could cover just enough time to load the initial content

and make the loading transition feel seamless.

Interactions

Hover effects, dropdown menus, slide-in menus and

active states on buttons and forms are all opportunities.

Look for ways you can remove the sudden changes and

help make the experience of using your UI feel smoother.

Animating Your Brand

24 ways 2015 edition 17

http://codepen.io/donovanh/full/wKmaGM/

1-11. Form placeholder animation (Studio MDS)

KEEP ANIMATION VISIBLE

It takes continuous effort to maintain a style guide and

keep it up to date, but it’s worth it. Make it easy to include

animation and related design decisions in your

documentation and you’ll be more likely to do so. If you

can make it fun, and be proud of the result, better still.

When updating your style guide, be sure to show the

animations at the same time. This might mean animated

GIFs, videos or live embedded examples of your

components.

18 24 ways 2015 edition

http://mds.is/float-label-pattern/

By doing this you can make animation integral to your

design process and make sure it stays relevant.

INSPIRATION AND RESOURCES

There are loads of great resources online to help you get

started. One of my favourites is IBM’s design language

site.

1-12. IBM’s design language: animation design guidelines

IBM describes how animation principles apply to its UI

work and components. They break down the animations

into five categories of animations and explain how they

apply to each example.

Animating Your Brand

24 ways 2015 edition 19

https://www.ibm.com/design/language/framework/animation/introduction
https://www.ibm.com/design/language/framework/animation/introduction

The site also includes an animation library with example

videos of animations and links to source code.

1-13. Example component from IBM’s component library

The way IBM sets out its aims and methods is helpful not

only for their existing designers and developers, but also

helps new hires. Furthermore, it’s a good way to show the

world that IBM cares about these details.

Another popular animation resource is Google’s material

design.

20 24 ways 2015 edition

https://www.ibm.com/design/language/resources/animation-library
https://www.ibm.com/design/language/resources/animation-library/ios-drop-down
https://www.google.com/design/spec/animation/authentic-motion.html#authentic-motion-mass-weight
https://www.google.com/design/spec/animation/authentic-motion.html#authentic-motion-mass-weight

1-14. Google’s material design documentation

Google’s guidelines cover everything from understanding

easing through to creating engaging and useful mobile UI.

This approach is visible across many of Google’s apps and

software, and has influenced design across much of the

web. The site is helpful both for learning about animation

and as an showcase of how to illustrate examples.

Frameworks

If you don’t want to create everything from scratch, there

are resources you can use to start using animation in your

UI. One such resource is Salesforce’s Lightning design

system.

Animating Your Brand

24 ways 2015 edition 21

https://www.lightningdesignsystem.com/design/motion/
https://www.lightningdesignsystem.com/design/motion/

The system goes further than most guides. It includes a

downloadable framework for adding animation to your

projects. It has some interesting concepts, such as

elevation settings to handle positioning on the z-axis.

1-15. Example of elevation from Salesforce’s Lightning design
system

You should also check out Animate.css.

22 24 ways 2015 edition

https://daneden.github.io/animate.css/

1-16. “Just add water” — Animate.css

Animate.css gives you a set of predesigned animations

you can apply to page elements using classes. If you use

JavaScript to add or remove classes, you can then trigger

complex animations. It also plays well with scroll-

triggering, and tools such as WOW.js.

LEARN, EVOLVE AND MAKE IT YOUR OWN

There’s a wealth online of information and guides we can

use to better understand animation. They can inspire and

kick-start our own visual and animation styles. So let’s

Animating Your Brand

24 ways 2015 edition 23

http://mynameismatthieu.com/WOW/

think of the design of animations just as we do fonts,

colours and layouts. Let’s choose animation deliberately,

making it part of our style guides.

Many thanks to Val Head for taking the time to proofread and

offer great suggestions for this article.

ABOUT THE AUTHOR

Donovan Hutchinson is a front-end designer who loves making

fun stuff for the web. He also writes tutorials on

CSSAnimation.rocks. Find him on Twitter at @donovanh.

24 24 ways 2015 edition

http://valhead.com
http://cssanimation.rocks/
https://twitter.com/donovanh

Elizabeth Galle 24ways.org/201502

2. Being Customer
Supportive

Every day in customer support is an inbox, a
Twitter feed, or a software forum full of new
questions. Each is brimming with your
customers looking for advice, reassurance,
or fixes for their software problems. Each
one is an opportunity to take a break from
wrestling with your own troublesome tasks
and assist someone else in solving theirs.

Sometimes the questions are straightforward and can be

answered in a few minutes with a short greeting, a link to

a help page, or a prewritten bit of text you use regularly:

how to print a receipt, reset a password, or even, sadly,

close your account.

More often, a support email requires you to spend some

time unpacking the question, asking for more information,

and writing a detailed personal response, tailored to help

that particular user on this particular day.

Being Customer Supportive

24 ways 2015 edition 25

http://24ways.org/201502

Here I offer a few of my own guidelines on how to make

today’s email the best support experience for both me and

my customer. And even if you don’t consider what you do

to be customer support, you might still find the

suggestions useful for the next time you need to

communicate with a client, to solve a software problem

with teammates, or even reach out and ask for help

yourself.

(All the examples appearing in this article are fictional. Any

resemblance to quotes from real, software-using persons is

entirely coincidental. Except for the bit about Star Wars. That

happened.)

WHO’S TAHT GIRL

I’ll be honest: I briefly tried making these

recommendations into a clever mnemonic like FAST

(facial drooping, arm weakness, speech difficulties, time)

or PAD (pressure, antiseptic, dressing). But instead, you

get TAHT: tone, ask, help, thank. Ah, well.

As I work through each message in my support queue, I

▪ listen to the tone of the email

▪ ask clarifying questions

▪ bring in extra help as needed

▪ and thank the customer when the problem is solved.

Let’s open an email and get started!

26 24 ways 2015 edition

https://en.wikipedia.org/wiki/FAST_%28stroke%29

LEAVE YOUR MESSAGE AT THE SOUND OF THE
TONE

With our enthusiasm for emoji, it can be very hard to infer

someone’s tone from plain text. How much time have you

spent pondering why your friend responded with

“Thanks.” instead of “Thanks!”? I mean, why didn’t she

:grin: or :wink: too?

Our support customers, however, are often direct about

how they’re feeling:

I’m working against a deadline. Need this fixed
ASAP!!!!

This hasn’t worked in a week and I am getting
really frustrated.

I’ve done this ten times before and it’s always
worked. I must be missing something simple.

They want us to understand the urgency of this from their

point of view, just as much as we want to help them in a

timely manner. How this information is conveyed gives us

an instant sense of whether they are frustrated, angry, or

confused—and, just as importantly, how frustrated-angry-

confused they are.

Listen to this tone before you start writing your reply.

Here are two ways I might open an email:

1. “I’m sorry that you ran into trouble with this.”

Being Customer Supportive

24 ways 2015 edition 27

2. “Sorry you ran into trouble with this!”

The content is largely the same, but the tone is markedly

different. The first version is a serious, staid reaction to

the problem the customer is having; the second version is

more relaxed, but no less sincere.

Matching the tone to the sender’s is an important first

step. Overusing exclamation points or dropping in too-

casual language may further upset someone who is

already having a crummy time with your product. But to a

cheerful user, a formal reply or an impersonal form

response can be off-putting, and damage a good

relationship.

When in doubt, I err on the side of being too formal,

rather than sending a reply that may be read as flip or

insincere. But whichever you choose, matching your

correspondent’s tone will make for a more comfortable

conversation.

CATCH THE BALL AND THROW IT BACK

Once you’ve got that tone on lock, it’s time to tackle the

question at hand. Let’s see what our customer needs help

with today:

I tried everything in the troubleshooting page
but I can’t get it to work again. I am on a Mac.
Please help.

28 24 ways 2015 edition

Hmm, not much information here. Now, if I got this short

email after helping five other people with the same

problem on Mac OS X, I would be sorely tempted to send

this customer that common solution in my first reply. I’ve

found it’s important to resist the urge to assume this sixth

person needs the same answer as the other five, though:

there isn’t enough to connect this email to the ones that

came before hers.

Instead, ask a few questions to start. Invest some time to

see if there are other symptoms in common, like so:

I’m sorry that you ran into trouble with this!
I’ll need a little more information to see what’s
happening here.

[questions]

Thank you for your help.

Those questions are customized for the customer’s issue

as much as possible, and can be fairly wide-ranging. They

may include asking for log files, getting some screenshots,

or simply checking the browser and operating system

version she’s using. I’ll ask anything that might make a

connection to the previous cases I’ve answered—or, just

as importantly, confirm that there isn’t a connection.

What’s more, a few well-placed questions may save us

both from pursuing the wrong path and building

additional frustration.

Being Customer Supportive

24 ways 2015 edition 29

(A note on that closing: “Thank you for your help”–I often

end an email this way when I’ve asked for a significant

amount of follow up information. After all, I’m imposing

on my customer’s time to run any number of tests. It’s a

necessary step, but I feel that thanking them is a nice

acknowledgment we’re in this together.)

Having said that, though, let’s bring tone back into the

mix:

I tried everything in the troubleshooting but I
can’t get it to work again. I am on a Mac. I’m
working against a deadline. Need this fixed
ASAP!!!!

This customer wants answers now. I’ll still ask for more

details, but would consider including the solution to the

previous problem in my initial reply as well. (But only if

doing so can’t make the situation worse!)

30 24 ways 2015 edition

I’m sorry that you ran into trouble with this!
I’ll need a little more information to see what’s
happening here.

[questions]

If you’d like to try something in the meantime,
delete the file named xyz.txt. (If this isn’t the
cause of the problem, deleting the file won’t
hurt anything.) Here’s how to find that file on
your computer: [steps]

Let me know how it goes!

In the best case, the suggestion works and the customer is

on her way. If it doesn’t solve the problem, you will get

more information in answer to your questions and can

explore other options. And you’ve given the customer an

opportunity to be involved in fixing the issue, and some

new tools which might come in handy again in the future.

BRING IN HELP

The support software I use counts how many emails the

customer and I have exchanged, and reports it in a

summary line in my inbox. It’s an easy, passive reminder of

how long the customer and I have been working together

on a problem, especially first thing in the morning when

I’m reacquainting myself with my open support cases.

Being Customer Supportive

24 ways 2015 edition 31

Three is the smallest number I’ll see there: the customer

sends the initial question (1 email); I reply with an answer

(2 emails); the customer confirms the problem is solved (3

emails). But the most complicated, stickiest tickets climb

into double-digit replies, and anything that stretches

beyond a dozen is worthy of a cheer in Slack when we

finally get to the root of the problem and get it fixed.

While an extra round of questions and answers will nudge

that number higher, it gives me the chance to feel out the

technical comfort level of the person I’m helping. If I ask

the customer to send some screenshots or log files and he

isn’t sure how to do that, I will use that information to

adjust my instructions on next steps. I may still ask him to

try running a traceroute on his computer, but I’ll break

down the steps into a concise, numbered list, and attach

screenshots of each step to illustrate it.

If the issue at hand is getting complicated, take note if the

customer starts to feel out of their depth

technically—either because they tell you so directly or

because you sense a shift in tone. If that happens, propose

bringing some outside help into the conversation:

32 24 ways 2015 edition

https://slack.com/
https://en.wikipedia.org/wiki/Traceroute

Do you have a network firewall or do you use
any antivirus software? One of those might be
blocking a connection that the software needs
to work properly; here’s a list of the required
connections [link]. If you have an IT
department in-house, they should be able to
help confirm that none of those are being
blocked.

or:

This error message means you don’t have
permission to install the software on your own
computer. Is there a systems administrator in
the office that may be able to help with this?

For email-based support cases, I’ll even offer to add

someone from their IT department to the thread, so we

can discuss the problem together rather than have the

customer relay questions and answers back and forth.

Similarly, there are occasionally times when my way of

describing things doesn’t fit how the customer

understands them. Rather than bang our heads against

our keyboards, I will ask one of my support colleagues to

join the conversation from our side, and see if he can

explain things more clearly than I’ve been able to do.

Being Customer Supportive

24 ways 2015 edition 33

WE APPRECIATE YOUR BUSINESS. PLEASE CALL
AGAIN

And then, o frabjous day, you get your reward: the reply

which says the problem has been solved.

That worked!! Thank you so much for saving
my day!

I wish I could send you some cookies!

If you were here, I would give you my tickets to
Star Wars.

[Reply is an animated gif.]

Sometimes the reply is a bit more understated:

That fixed it. Thanks.

Whether the customer is elated, satisfied, or frankly

happy to be done with emailing support, I like to close

longer email threads or short, complicated issues with a

final thanks and reminder that we’re here to help:

Thank you for the update; I’m glad to hear that
solved the problem for you! I hope everything
goes smoothly for you now, but feel free to
email us again if you run into any other
questions or problems. Best,

34 24 ways 2015 edition

Then mark that support case closed, and move on to the

next question. Because even with the most thoughtfully

designed software product, there will always be

customers with questions for your capable support team

to answer.

TONE, ASK, HELP, THANK

So there you have it: TAHT. Pay attention to tone; ask

questions; bring in help; thank your customer.

(Lack of) catchy mnemonics aside, good customer support

is about listening, paying attention, and taking care in

your replies. I think it can be summed up beautifully by

this quote from Pamela Marie (as tweeted by Chris

Coyier):

Golden rule asking a question: imagine trying
to answer it

Golden rule in answering: imagine getting your
answer

You and your teammates are applying a variation of this

golden rule in every email you write. You’re the software

ambassadors to your customers and clients. You get the

brunt of the problems and complaints, but you also get to

help fix them. You write the apologies, but you also have

the chance to make each person’s experience with your

company or product a little bit better for next time.

Being Customer Supportive

24 ways 2015 edition 35

https://twitter.com/chriscoyier/status/634812065568423936
https://en.wikipedia.org/wiki/Golden_Rule

I hope that your holidays are merry and bright, and may all

your support inboxes be light.

ABOUT THE AUTHOR

Elizabeth Galle got her start in customer support behind the

counter of her grandfather’s delicatessen. She’s since moved

from sandwiches to software, but the principles are about the

same. Liz talks about her cat & quotes West Wing episodes as

@drinkerthinker, and supports Adobe Typekit with the team at

@typekit.

36 24 ways 2015 edition

https://twitter.com/drinkerthinker
src/html/typekit.com
https://twitter.com/typekit

Joe Leech 24ways.org/201503

3. How to Do a UX
Review

A UX review is where an expert goes through
a website looking for usability and
experience problems and makes
recommendations on how to fix them.

I’ve completed a number of UX reviews over my twelve

years working as a user experience consultant and I

thought I’d share my approach.

I’ll be talking about reviewing websites here; you can

adapt the approach for web apps, or mobile or desktop

apps.

WHY CONDUCT A REVIEW

Typically, a client asks for a review to be undertaken by a

trusted and, ideally, detached third party who either

works for an agency or is a freelancer. Often they may ask

a new member of the UX team to complete one, or even

How to Do a UX Review

24 ways 2015 edition 37

http://24ways.org/201503

set it as a task for a job interview. This indicates the client

is looking for an objective view, seen from the outside as a

user would see the website.

I always suggest conducting some user research rather

than a review. Users know their goals and watching them

make (what you might think of as) mistakes on the

website is invaluable. Conducting research with six users

can give you six hours’ worth of review material from six

viewpoints. In short, user research can identify more

problems and show how common those problems might

be.

There are three reasons, though, why a review might

better suit client needs than user research:

1. Quick results: user research and analysis takes at least

three weeks.

2. Limited budget: the £6–10,000 cost to run user

research is about twice the cost of a UX review.

3. Users are hard to reach: in the business-to-business

world, reaching users is difficult, especially if your users

hold senior positions in their organisations. Working with

consumers is much easier as there are often more of

them.

There is some debate about the benefits of user research

over UX review. In my experience you learn far more from

research, but opinions differ.

38 24 ways 2015 edition

http://alistapart.com/article/the-myth-of-usability-testing
http://alistapart.com/article/the-myth-of-usability-testing

BE OBJECTIVE

The number one mistake many UX reviewers make is

reporting back the issues they identify as their opinion.

This can cause credibility problems because you have to

keep justifying why your opinion is correct.

I’ve had the most success when giving bad news in a UX

review and then finally getting things fixed when I have

been as objective as possible, offering evidence for why

something may be a problem.

To be objective we need two sources of data: numbers

from analytics to appeal to reason; and stories from users

in the form of personas to speak to emotions. Highlighting

issues with dispassionate numerical data helps show the

extent of the problem. Making the problems more human

using personas can make the problem feel more real.

NUMBERS FROM ANALYTICS

The majority of clients I work with use Google Analytics,

but if you use a different analytics package the same

concepts apply. I use analytics to find two sets of things.

How to Do a UX Review

24 ways 2015 edition 39

1. Landing pages and search terms

Landing pages are the pages users see first when they visit

a website – more often than not via a Google search.

Landing pages reveal user goals. If a user landed on a page

called ‘Yellow shoes’ their goal may well be to find out

about or buy some yellow shoes.

It would be great to see all the search terms bringing

people to the website but in 2011 Google stopped

providing search term data to (rightly!) protect users’

privacy. You can get some search term data from Google

Webmaster tools, but we must rely on landing pages as a

clue to our users’ goals.

The thing to look for is high-traffic landing pages with a

high bounce rate. Bounce rate is the percentage of visitors

to a website who navigate away from the site after

viewing only one page. A high bounce rate (over 50%) isn’t

good; above 70% is bad.

To get a list of high-traffic landing pages with a high

bounce rate install this bespoke report.

40 24 ways 2015 edition

http://googleblog.blogspot.com/2011/10/making-search-more-secure.html
http://googleblog.blogspot.com/2011/10/making-search-more-secure.html
https://blog.kissmetrics.com/unlock-keyword-not-provided/
https://blog.kissmetrics.com/unlock-keyword-not-provided/
https://support.google.com/analytics/answer/1009409?hl=en
http://www.sitetuners.com/blog/weighted-sort-how-to-use-the-hidden-feature-in-google-analytics-to-find-pages-you-need-to-fix-now/?utm_content=bufferef9a1&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer

3-1. Google Analytics showing landing pages ordered by
popularity and the bounce rate for each.

This is the list of pages with high demand and that have

real problems as the bounce rate is high. This is the main

focus of the UX review.

2. User flows

We have the beginnings of the user journey: search terms

and initial landing pages. Now we can tap into the really

useful bit of Google Analytics. Called behaviour flows, they

show the most common order of pages visited.

How to Do a UX Review

24 ways 2015 edition 41

3-2. Behaviour flows from Google Analytics, showing the routes
users took through the website.

Here we can see the second and third (and so on) pages

users visited. Importantly, we can also see the drop-outs

at each step.

If your client has it set up, you can also set goal pages (for

example, a post-checkout contact us and thank you page).

You can then see a similar view that tracks back from the

goal pages. If your client doesn’t have this, suggest they

set up goal tracking. It’s easy to do.

We now have the remainder of the user journey.

42 24 ways 2015 edition

https://blog.kissmetrics.com/critical-goal-types/

3-3. A user journey

Expect the work in analytics to take up to a day.

We may well identify more than one user journey, starting

from different landing pages and going to different

second- and third-level pages. That’s a good thing and

shows we have different user types. Talking of user types,

we need to define who our users are.

PERSONAS

We have some user journeys and now we need to

understand more about our users’ motivations and goals.

How to Do a UX Review

24 ways 2015 edition 43

I have a love-hate relationship with personas, but used

properly these portraits of users can help bring a human

touch to our UX review.

I suggest using a very cut-down view of a persona. My old

friends Steve Cable and Richard Caddick at cxpartners

have a great free template for personas from their book

Communicating the User Experience.

The first thing to do is find a picture that represents that

persona. Don’t use crappy stock photography – it’s

sometimes hard to relate to perfect-looking people) – use

authentic-looking people. Here’s a good collection of

persona photos.

44 24 ways 2015 edition

https://mrjoe.uk/personas-the-good-the-bad-and-the-ugly/
http://www.cxpartners.co.uk
http://www.cxpartners.co.uk/ux-resources/
http://amzn.to/1jlajMw
http://mlkshk.com/user/jabbett/1

3-4. An example persona.

The personas have three basic attributes:

How to Do a UX Review

24 ways 2015 edition 45

1. Goals: we can complete these drawing on the analytics

data we have (see example).

2. Musts: things we have to do to meet the persona’s

needs.

3. Must nots: a list of things we really shouldn’t do.

Completing points 2 and 3 can often be done during the

writing of the report.

Let’s take an example. We know that the search term

‘yellow shoes’ takes the user to the landing page for

yellow shoes. We also know this page has a high bounce

rate, meaning it doesn’t provide a good experience.

With our expert hat on we can review the page. We will

find two types of problem:

1. Usability issues: ineffective button placement or

incorrect wording, links not looking like links, and so on.

2. Experience issues: for example, if a product is out of

stock we have to contact the business to ask them to

restock.

46 24 ways 2015 edition

3-5. That link is very small and hard to see.

We could identify that the contact button isn’t easy to

find (a usability issue) but that’s not the real problem here.

That the user has to ask the business to restock the item

is a bad user experience. We add this to our personas’

must nots. The big experience problems with the site form

the musts and must nots for our personas.

We now have a story around our user journey that

highlights what is going wrong.

If we’ve identified a number of user journeys, multiple

landing pages and differing second and third pages

visited, we can create more personas to match. A good

rule of thumb is no more than three personas. Any more

and they lose impact, watering down your results.

Expect persona creation to take up to a day to complete.

How to Do a UX Review

24 ways 2015 edition 47

LET’S START THE REVIEW

We take the user journeys and we follow them step by

step, working through the website looking for the reasons

why users drop out at each step. Using Keynote or

PowerPoint, I structure the final report around the user

journey with separate sections for each step.

For each step we’ll find both usability and experience

problems. Split the results into those two groups.

Usability problems are fairly easy to fix as they’re often

quick design changes. As you go along, note the usability

problems in one place: we’ll call this ‘quick wins’. Simple

quick fixes are a reassuring thing for a client to see and

mean they can get started on stuff right away. You can

mark the severity of usability issues. Use a scale from 1 to

3 (if you use 1 to 5 everything ends up being a 3!) where 1

is minor and 3 is serious.

Review the website on the device you’d expect your

persona to use. Are they using the site on a smartphone?

Review it on a smartphone.

I allow one page or slide per problem, which allows me to

explain what is going wrong. For a usability problem I’ll

often make a quick wireframe or sketch to explain how to

address it.

48 24 ways 2015 edition

3-6. A UX review slide displaying all the elements to be
addressed. These slides may be viewed from across the room on
a screen so zoom into areas of discussion.

(Quick tip: if you use Google Chrome, try Awesome Screenshot

to capture screens.)

When it comes to the more severe experience problems –

things like an online shop not offering next day delivery, or

a business that needs to promise to get back to new

customers within a few hours – these will take more than

a tweak to the UI to fix.

Call these something different. I use the terms like

business challenges and customer experience issues as they

show that it will take changes to the organisation and its

How to Do a UX Review

24 ways 2015 edition 49

https://chrome.google.com/webstore/detail/awesome-screenshot-screen/nlipoenfbbikpbjkfpfillcgkoblgpmj

processes to address them. It’s often beyond the remit of

a humble UX consultant to recommend how to fix

organisational issues, so don’t try.

Again, create a page within your document to collect all of

the business challenges together.

Expect the review to take between one and three days to

complete.

The final report should follow this structure:

▪ The approach

▪ Overview of usability quick wins

▪ Overview of experience issues

▪ Overview of Google Analytics findings

▪ The user journeys

▪ The personas

▪ Detailed page-by-page review (broken down by steps

on the user journey)

There are two academic theories to help with the review.

Heuristic evaluation is a set of criteria to organise the

issues you find. They’re great for categorising the usability

issues you identify but in practice they can be quite

cumbersome to apply.

I prefer the more scientific and much simpler cognitive

walkthrough that is focused on goals and actions.

50 24 ways 2015 edition

http://alistapart.com/article/beyond-usability-testing
http://www.usabilityfirst.com/usability-methods/cognitive-walkthroughs/
http://www.usabilityfirst.com/usability-methods/cognitive-walkthroughs/

A WORKSHOP TO GO THROUGH THE FINDINGS

The most important part of the UX review process is to

talk through the issues with your client and their team.

A document can only communicate a certain amount.

Conversations about the findings will help the team

understand the severity of the issues you’ve uncovered

and give them a chance to discuss what to do about them.

Expect the workshop to last around three hours.

When presenting the report, explain the method you used

to conduct the review, the data sources, personas and the

reasoning behind the issues you found. Start by going

through the usability issues. Often these won’t be

contentious and you can build trust and improve your

credibility by making simple, easy to implement changes.

The most valuable part of the workshop is conversation

around each issue, especially the experience problems.

The workshop should include time to talk through each

experience issue and how the team will address it.

I collect actions on index cards throughout the workshop

and make a note of who will take what action with each

problem.

How to Do a UX Review

24 ways 2015 edition 51

3-7. Index cards showing the problem and who is responsible.

When talking through the issues, the person who

designed the site is probably in the room – they may well

feel threatened. So be nice. When I talk through the

report I try to have strong ideas, weakly held.

At the end of the workshop you’ll have talked through

each of the issues and identified who is responsible for

addressing them. To close the workshop I hand out the

cards to the relevant people, giving them a physical

reminder of the next steps they have to take.

That’s my process for conducting a review. I’d love to hear

any tips you have in the comments.

52 24 ways 2015 edition

https://mrjoe.uk/strong-ideas-weakly-held/

ABOUT THE AUTHOR

@MrJoe, Joe to his friends, is the author of the book Psychology

for Designers.

A recovering neuroscientist, then a spell as a elementary school

teacher, Joe started his UX career 12 years ago. He has worked

with organisations like Disney, eBay, Glenfiddich and Marriott.

How to Do a UX Review

24 ways 2015 edition 53

http://twitter.com/mrjoe
http://www.fivesimplesteps.com/products/psychology-for-designers
http://www.fivesimplesteps.com/products/psychology-for-designers

Richard Rutter 24ways.org/201504

4. Get Expressive with
Your Typography

In 1955 Beatrice Warde, an American
communicator on typography, published a
series of essays entitled The Crystal Goblet
in which she wrote, “People who love ideas
must have a love of words. They will take a
vivid interest in the clothes that words
wear.” And with that proposition Warde
introduced the idea that just as we judge
someone based on the clothes they are
wearing, so we make judgements about text
based on the typefaces in which it is set.

54 24 ways 2015 edition

http://24ways.org/201504

4-1. Beatrice Warde. ©1970 Monotype Imaging Inc.

Choosing the same typeface as everyone else, especially if

you’re trying to make a statement, is like turning up to a

party in the same dress; to a meeting in the same suit,

shirt and tie; or to a craft ale dispensary in the same plaid

shirt and turned-up skinny jeans.

But there’s more to your choice of typeface than simply

making an impression. In 2012 Jon Tan wrote on 24 ways

about a scientific study called “The Aesthetics of Reading”

Get Expressive with Your Typography

24 ways 2015 edition 55

https://24ways.org/2012/science/

which concluded that “good quality typography is

responsible for greater engagement during reading and

thus induces a good mood.”

Furthermore, at this year’s Ampersand conference Sarah

Hyndman, an expert in multisensory typography,

discussed how typefaces can communicate with our

subconscious. Sarah showed that different fonts could

have an effect on how food tasted. A rounded font placed

near a bowl of jellybeans would make them taste sweeter,

and a jagged angular font would make them taste more

sour.

The quality of your typography can therefore affect the

mood of your reader, and your font choice directly affect

the senses. This means you can manipulate the way

people feel. You can change their emotional state through

type alone. Now that’s a real superpower!

The effects of your body text design choices are

measurable but subtle. If you really want to have an

impact you need to think big. Literally. Display text and

headings are your attention grabbers. They are your

chance to interrupt, introduce and seduce.

Display text and headings set the scene and draw people

in. Text set large creates an image that visitors see before

they read, and that’s your chance to choose a typeface

that immediately expresses what the text, and indeed the

entire website, stands for. What expectations of the text

56 24 ways 2015 edition

http://2015.ampersandconf.com/speakers#sarah

do you want to set up? Youthful enthusiasm?

Businesslike? Cutting-edge? Hipster? Sensible and

secure? Fun and informal? Authoritarian?

Typography conveys much more than just information. It

imparts feeling, emotion and sentiment, and arouses

preconceived ideas of trust, tone and content. Think

about taking advantage of this by introducing impactful,

expressive typography to your designs on the web. You

can alter the way your reader feels, so what emotion do

you want to provoke?

Maybe you want them to feel inspired like this stop

smoking campaign:

4-2. helsenorge.no

Perhaps they should be moved and intrigued, as with

Makeshift magazine:

Get Expressive with Your Typography

24 ways 2015 edition 57

4-3. mkshft.org

Or calmly reassured:

4-4. www.cleopatra-marina.gr

58 24 ways 2015 edition

Fonts also tap into the complex library of associations that

we’ve been accumulating in our brains all of our lives. You

build up these associations every time you see a font from

the context that you see it in. All of us associate certain

letterforms with topics, times and places.

Retiro is obviously Spanish:

4-5. Retiro by Typofonderie

Bodoni and Eurostile used in this menu couldn’t be much

more Italian:

Get Expressive with Your Typography

24 ways 2015 edition 59

4-6. Bodoni and Eurostile, both designed in Italy

To me, Clarendon gives a sense of the 1960s and 1970s.

I’m not sure if that’s what Costa was going for, but that’s

what it means to me:

60 24 ways 2015 edition

4-7. Costa coffee flier

And Knockout and Gotham really couldn’t be much more

American:

4-8. Knockout and Gotham by Hoefler & Co

Get Expressive with Your Typography

24 ways 2015 edition 61

When it comes to choosing your display typeface, the

type designer Christian Schwartz says there are two

kinds. First are the workhorse typefaces that will do

whatever you want them to do. Helvetica, Proxima Nova

and Futura are good examples. These fonts can be shaped

in many different ways, but this also means they are found

everywhere and take great skill and practice to work with

in a unique and striking manner.

The second kind of typeface is one that does most of the

work for you. Like finely tailored clothing, it’s the detail in

the design that adds interest.

4-9. Setting headings in Bree rather than Helvetica makes a big
difference to the tone of the article

62 24 ways 2015 edition

https://commercialtype.com/about/christian_schwartz

Such typefaces carry much more inherent character, but

are also less malleable and harder to adapt to different

contexts. Good examples are Marr Sans, FS Clerkenwell,

Strangelove and Bree.

PUSH THE BOAT OUT

Remember, all type can have an effect on the reader. Take

advantage of that and allow your type to have its own

vernacular and impact. Be expressive with your type.

Don’t be too reverential, dogmatic – or ordinary. Be brave

and push a few boundaries.

Adapted from Web Typography a book in progress by

Richard Rutter.

Get Expressive with Your Typography

24 ways 2015 edition 63

https://commercialtype.com/catalog/marr_sans
http://www.fontsmith.com/fonts/fs-clerkenwell
http://www.facetype.org/?font=strangelove-next
http://www.type-together.com/Bree
http://book.webtypography.net

ABOUT THE AUTHOR

Richard Rutter is a user experience consultant and director of

Clearleft. In 2009 he cofounded the webfont service, Fontdeck.

He runs an ongoing project called The Elements of Typographic

Style Applied to the Web, where he extols the virtues of good

web typography. Richard occasionally blogs at Clagnut, where

he writes about design, accessibility and web standards issues,

as well as his passion for music and mountain biking.

64 24 ways 2015 edition

http://clearleft.com/
http://fontdeck.com/
http://webtypography.net/
http://webtypography.net/
http://clagnut.com/

Jack Franklin 24ways.org/201505

5. Universal React

One of the libraries to receive a huge
amount of focus in 2015 has been ReactJS, a
library created by Facebook for building user
interfaces and web applications.

More generally we’ve seen an even greater rise in the

number of applications built primarily on the client side

with most of the logic implemented in JavaScript. One of

the main issues with building an app in this way is that you

immediately forgo any customers who might browse with

JavaScript turned off, and you can also miss out on any

robots that might visit your site to crawl it (such as

Google’s search bots). Additionally, we gain a

performance improvement by being able to render from

the server rather than having to wait for all the JavaScript

to be loaded and executed.

The good news is that this problem has been recognised

and it is possible to build a fully featured client-side

application that can be rendered on the server. The way in

which these apps work is as follows:

Universal React

24 ways 2015 edition 65

http://24ways.org/201505

▪ The user visits www.yoursite.com and the server

executes your JavaScript to generate the HTML it needs

to render the page.

▪ In the background, the client-side JavaScript is

executed and takes over the duty of rendering the page.

▪ The next time a user clicks, rather than being sent to

the server, the client-side app is in control.

▪ If the user doesn’t have JavaScript enabled, each click

on a link goes to the server and they get the server-

rendered content again.

This means you can still provide a very quick and snappy

experience for JavaScript users without having to

abandon your non-JS users. We achieve this by writing

JavaScript that can be executed on the server or on the

client (you might have heard this referred to as

isomorphic) and using a JavaScript framework that’s clever

enough handle server- or client-side execution. Currently,

ReactJS is leading the way here, although Ember and

Angular are both working on solutions to this problem.

It’s worth noting that this tutorial assumes some

familiarity with React in general, its syntax and concepts.

If you’d like a refresher, the ReactJS docs are a good place

to start.

66 24 ways 2015 edition

https://facebook.github.io/react/docs/getting-started.html

GETTING STARTED

We’re going to create a tiny ReactJS application that will

work on the server and the client. First we’ll need to

create a new project and install some dependencies. In a

new, blank directory, run:

npm init -y

npm install --save ejs express react react-router

react-dom

That will create a new project and install our

dependencies:

▪ ejs is a templating engine that we’ll use to render our

HTML on the server.

▪ express is a small web framework we’ll run our server

on.

▪ react-router is a popular routing solution for React so

our app can fully support and respect URLs.

▪ react-dom is a small React library used for rendering

React components.

We’re also going to write all our code in ECMAScript 6,

and therefore need to install BabelJS and configure that

too.

npm install --save-dev babel-cli babel-preset-es2015

babel-preset-react

Then, create a .babelrc file that contains the following:

Universal React

24 ways 2015 edition 67

http://babeljs.io

{

"presets": ["es2015", "react"]

}

What we’ve done here is install Babel’s command line

interface (CLI) tool and configured it to transform our

code from ECMAScript 6 (or ES2015) to ECMAScript 5,

which is more widely supported. We’ll need the React

transforms when we start writing JSX when working with

React.

CREATING A SERVER

For now, our ExpressJS server is pretty straightforward.

All we’ll do is render a view that says ‘Hello World’. Here’s

our server code:

import express from 'express';

import http from 'http';

const app = express();

app.use(express.static('public'));

app.set('view engine', 'ejs');

app.get('*', (req, res) => {

res.render('index');

});

const server = http.createServer(app);

68 24 ways 2015 edition

https://facebook.github.io/react/docs/jsx-in-depth.html

server.listen(3003);

server.on('listening', () => {

console.log('Listening on 3003');

});

Here we’re using ES6 modules, which I wrote about on 24

ways last year, if you’d like a reminder. We tell the app to

render the index view on any GET request (that’s what

app.get('*') means, the wildcard matches any route).

We now need to create the index view file, which Express

expects to be defined in views/index.ejs:

<!DOCTYPE html>

<html>

<head>

<title>My App</title>

</head>

<body>

Hello World

</body>

</html>

Finally, we’re ready to run the server. Because we

installed babel-cli earlier we have access to the babel-

node executable, which will transform all your code before

running it through node. Run this command:

./node_modules/.bin/babel-node server.js

And you should now be able to visit http://localhost:3003

and see ‘Hello World’ right there:

Universal React

24 ways 2015 edition 69

https://24ways.org/2014/javascript-modules-the-es6-way/
https://24ways.org/2014/javascript-modules-the-es6-way/
http://localhost:3003

BUILDING THE REACT APP

Now we’ll build the React application entirely on the

server, before adding the client-side JavaScript right at

the end. Our app will have two routes, / and /about which

will both show a small amount of content. This will

demonstrate how to use React Router on the server side

to make sure our React app plays nicely with URLs.

Firstly, let’s update views/index.ejs. Our server will figure

out what HTML it needs to render, and pass that into the

view. We can pass a value into our view when we render

it, and then use EJS syntax to tell it to output that data.

Update the template file so the body looks like so:

70 24 ways 2015 edition

<body>

<%- markup %>

</body>

Next, we’ll define the routes we want our app to have

using React Router. For now we’ll just define the index

route, and not worry about the /about route quite yet. We

could define our routes in JSX, but I think for server-side

rendering it’s clearer to define them as an object. Here’s

what we’re starting with:

const routes = {

path: '',

component: AppComponent,

childRoutes: [

{

path: '/',

component: IndexComponent

}

]

}

These are just placed at the top of server.js, after the

import statements. Later we’ll move these into a separate

file, but for now they are fine where they are.

Notice how I define first that the AppComponent should be

used at the '' path, which effectively means it matches

every single route and becomes a container for all our

other components. Then I give it a child route of /, which

Universal React

24 ways 2015 edition 71

will match the IndexComponent. Before we hook these

routes up with our server, let’s quickly define components/

app.js and components/index.js. app.js looks like so:

import React from 'react';

export default class AppComponent extends

React.Component {

render() {

return (

<div>

<h2>Welcome to my App</h2>

{ this.props.children }

</div>

);

}

}

When a React Router route has child components, they

are given to us in the props under the children key, so we

need to include them in the code we want to render for

this component. The index.js component is pretty bland:

import React from 'react';

export default class IndexComponent extends

React.Component {

render() {

return (

<div>

<p>This is the index page</p>

</div>

72 24 ways 2015 edition

);

}

}

Server-side routing with React Router

Head back into server.js, and firstly we’ll need to add some

new imports:

import React from 'react';

import { renderToString } from 'react-dom/server';

import { match, RoutingContext } from 'react-router';

import AppComponent from './components/app';

import IndexComponent from './components/index';

The ReactDOM package provides react-dom/server

which includes a renderToString method that takes a

React component and produces the HTML string output

of the component. It’s this method that we’ll use to render

the HTML from the server, generated by React. From the

React Router package we use match, a function used to

find a matching route for a URL; and RoutingContext, a

React component provided by React Router that we’ll

need to render. This wraps up our components and

provides some functionality that ties React Router

together with our app. Generally you don’t need to

concern yourself about how this component works, so

don’t worry too much.

Universal React

24 ways 2015 edition 73

Now for the good bit: we can update our app.get('*')

route with the code that matches the URL against the

React routes:

app.get('*', (req, res) => {

// routes is our object of React routes defined above

match({ routes, location: req.url }, (err,

redirectLocation, props) => {

if (err) {

// something went badly wrong, so 500 with a

message

res.status(500).send(err.message);

} else if (redirectLocation) {

// we matched a ReactRouter redirect, so redirect

from the server

res.redirect(302, redirectLocation.pathname +

redirectLocation.search);

} else if (props) {

// if we got props, that means we found a valid

component to render

// for the given route

const markup = renderToString(<RoutingContext

{...props} />);

// render `index.ejs`, but pass in the markup we

want it to display

res.render('index', { markup })

} else {

// no route match, so 404. In a real app you might

render a custom

// 404 view here

res.sendStatus(404);

74 24 ways 2015 edition

}

});

});

We call match, giving it the routes object we defined

earlier and req.url, which contains the URL of the

request. It calls a callback function we give it, with err,

redirectLocation and props as the arguments. The first

two conditionals in the callback function just deal with an

error occuring or a redirect (React Router has built in

redirect support). The most interesting bit is the third

conditional, else if (props). If we got given props and

we’ve made it this far it means we found a matching

component to render and we can use this code to render

it:

...

} else if (props) {

// if we got props, that means we found a valid

component to render

// for the given route

const markup = renderToString(<RoutingContext

{...props} />);

// render `index.ejs`, but pass in the markup we want

it to display

res.render('index', { markup })

} else {

...

}

Universal React

24 ways 2015 edition 75

The renderToString method from ReactDOM takes that

RoutingContext component we mentioned earlier and

renders it with the properties required. Again, you need

not concern yourself with what this specific component

does or what the props are. Most of this is data that React

Router provides for us on top of our components.

Note the {...props}, which is a neat bit of JSX syntax

that spreads out our object into key value properties. To

see this better, note the two pieces of JSX code below,

both of which are equivalent:

<MyComponent a="foo" b="bar" />

// OR:

const props = { a: "foo", b: "bar" };

<MyComponent {...props} />

Running the server again

I know that felt like a lot of work, but the good news is

that once you’ve set this up you are free to focus on

building your React components, safe in the knowledge

that your server-side rendering is working. To check,

restart the server and head to http://localhost:3003 once

more. You should see it all working!

76 24 ways 2015 edition

http://localhost:3003

REFACTORING AND ONE MORE ROUTE

Before we move on to getting this code running on the

client, let’s add one more route and do some tidying up.

First, move our routes object out into routes.js:

import AppComponent from './components/app';

import IndexComponent from './components/index';

const routes = {

path: '',

component: AppComponent,

childRoutes: [

{

path: '/',

component: IndexComponent

}

]

Universal React

24 ways 2015 edition 77

}

export { routes };

And then update server.js. You can remove the two

component imports and replace them with:

import { routes } from './routes';

Finally, let’s add one more route for ./about and links

between them. Create components/about.js:

import React from 'react';

export default class AboutComponent extends

React.Component {

render() {

return (

<div>

<p>A little bit about me.</p>

</div>

);

}

}

And then you can add it to routes.js too:

import AppComponent from './components/app';

import IndexComponent from './components/index';

import AboutComponent from './components/about';

const routes = {

path: '',

component: AppComponent,

78 24 ways 2015 edition

childRoutes: [

{

path: '/',

component: IndexComponent

},

{

path: '/about',

component: AboutComponent

}

]

}

export { routes };

If you now restart the server and head to

http://localhost:3003/about` you’ll see the about page!

Universal React

24 ways 2015 edition 79

http://localhost:3003/about

For the finishing touch we’ll use the React Router link

component to add some links between the pages. Edit

components/app.js to look like so:

import React from 'react';

import { Link } from 'react-router';

export default class AppComponent extends

React.Component {

render() {

return (

<div>

<h2>Welcome to my App</h2>

<Link to='/'>Home</Link>

<Link to='/about'>About</Link>

{ this.props.children }

</div>

);

}

}

You can now click between the pages to navigate.

However, everytime we do so the requests hit the server.

Now we’re going to make our final change, such that after

the app has been rendered on the server once, it gets

rendered and managed in the client, providing that

snappy client-side app experience.

80 24 ways 2015 edition

CLIENT-SIDE RENDERING

First, we’re going to make a small change to views/

index.ejs. React doesn’t like rendering directly into the

body and will give a warning when you do so. To prevent

this we’ll wrap our app in a div:

<body>

<div id="app"><%- markup %></div>

<script src="build.js"></script>

</body>

I’ve also added in a script tag to build.js, which is the file

we’ll generate containing all our client-side code.

Next, create client-render.js. This is going to be the only bit

of JavaScript that’s exclusive to the client side. In it we

need to pull in our routes and render them to the DOM.

import React from 'react';

import ReactDOM from 'react-dom';

import { Router } from 'react-router';

import { routes } from './routes';

import createBrowserHistory from 'history/lib/

createBrowserHistory';

ReactDOM.render(

<Router routes={routes}

history={createBrowserHistory()} />,

document.getElementById('app')

)

Universal React

24 ways 2015 edition 81

The first thing you might notice is the mention of

createBrowserHistory. React Router is built on top of the

history module, a module that listens to the browser’s

address bar and parses the new location. It has many

modes of operation: it can keep track using a hashbang,

such as http://localhost/#!/about (this is the default), or you

can tell it to use the HTML5 history API by calling

createBrowserHistory, which is what we’ve done. This

will keep the URLs nice and neat and make sure the client

and the server are using the same URL structure. You can

read more about React Router and histories in the React

Router documentation.

Finally we use ReactDOM.render and give it the Router

component, telling it about all our routes, and also tell

ReactDOM where to render, the #app element.

Generating build.js

We’re actually almost there! The final thing we need to do

is generate our client side bundle. For this we’re going to

use webpack, a module bundler that can take our

application, follow all the imports and generate one large

bundle from them. We’ll install it and babel-loader, a

webpack plugin for transforming code through Babel.

npm install --save-dev webpack babel-loader

82 24 ways 2015 edition

http://localhost/#!/about
https://github.com/rackt/react-router/blob/master/docs/guides/basics/Histories.md
https://webpack.github.io/

To run webpack we just need to create a configuration file,

called webpack.config.js. Create the file in the root of our

application and add the following code:

var path = require('path');

module.exports = {

entry: path.join(process.cwd(), 'client-render.js'),

output: {

path: './public/',

filename: 'build.js'

},

module: {

loaders: [

{

test: /.js$/,

loader: 'babel'

}

]

}

}

Note first that this file can’t be written in ES6 as it doesn’t

get transformed. The first thing we do is tell webpack the

main entry point for our application, which is client-

render.js. We use process.cwd() because webpack

expects an exact location – if we just gave it the string

‘client-render.js’, webpack wouldn’t be able to find it.

Universal React

24 ways 2015 edition 83

Next, we tell webpack where to output our file, and here

I’m telling it to place the file in public/build.js. Finally we

tell webpack that every time it hits a file that ends in .js, it

should use the babel-loader plugin to transform the code

first.

Now we’re ready to generate the bundle!

./node_modules/.bin/webpack

This will take a fair few seconds to run (on my machine it’s

about seven or eight), but once it has it will have created

public/build.js, a client-side bundle of our application. If

you restart your server once more you’ll see that we can

now navigate around our application without hitting the

server, because React on the client takes over. Perfect!

The first bundle that webpack generates is pretty slow,

but if you run webpack -w it will go into watch mode,

where it watches files for changes and regenerates the

bundle. The key thing is that it only regenerates the small

pieces of the bundle it needs, so while the first bundle is

very slow, the rest are lightning fast. I recommend leaving

webpack constantly running in watch mode when you’re

developing.

84 24 ways 2015 edition

CONCLUSIONS

First, if you’d like to look through this code yourself you

can find it all on GitHub. Feel free to raise an issue there

or tweet me if you have any problems or would like to ask

further questions.

Next, I want to stress that you shouldn’t use this as an

excuse to build all your apps in this way. Some of you

might be wondering whether a static site like the one we

built today is worth its complexity, and you’d be right. I

used it as it’s an easy example to work with but in the

future you should carefully consider your reasons for

wanting to build a universal React application and make

sure it’s a suitable infrastructure for you.

With that, all that’s left for me to do is wish you a very

merry Christmas and best of luck with your React

applications!

Universal React

24 ways 2015 edition 85

https://github.com/jackfranklin/universal-react-example
https://github.com/jackfranklin/universal-react-example
http://twitter.com/Jack_Franklin

ABOUT THE AUTHOR

Jack Franklin is a developer, speaker and author who blogs at

javascriptplayground.com and has authored “Beginning jQuery”.

Jack works as a developer evangelist for Pusher and is also a

Google Developer Expert for the Chrome HTML 5 platform. He

tweets as @jack_franklin and spends far too much time thinking

about JavaScript.

86 24 ways 2015 edition

http://javascriptplayground.com
http://twitter.com/jack_franklin

Ruth John 24ways.org/201506

6. Bringing Your Code to
the Streets

— or
How to Be a Street VJ

Our amazing world of web code is escaping
out of the browser at an alarming rate and
appearing in every aspect of the
environment around us. Over the past few
years we’ve already seen JavaScript used
server-side, hardware coded with JavaScript,
a rise of native style and desktop apps
created with HTML, CSS and JavaScript, and
even virtual reality (VR) is getting its fair
share of front-end goodness.

You can go ahead and play with JavaScript-powered

hardware such as the Tessel or the Espruino to name a

couple. Just check out the Tessel project page to see

JavaScript in the world of coffee roasting or sleep

tracking your pet. With the rise of the internet of things,

JavaScript can be seen collecting information on flooding

Bringing Your Code to the Streets

24 ways 2015 edition 87

http://24ways.org/201506
https://tessel.io/
http://www.espruino.com/
https://tessel.hackster.io/
https://tessel.hackster.io/adkron/coffee-profile-f9db52?ref=platform&ref_id=494_trending___&offset=8
https://tessel.hackster.io/rickyrobinett/a-sleep-tracker-for-your-dog-using-tessel-and-twilio-655dbf?ref=platform&ref_id=494_trending___&offset=12
https://tessel.hackster.io/rickyrobinett/a-sleep-tracker-for-your-dog-using-tessel-and-twilio-655dbf?ref=platform&ref_id=494_trending___&offset=12
http://flood.network/

among other things. And if that’s not enough ‘outside the

browser’ implementations, Node.js servers can even be

found in aircraft!

I previously mentioned VR and with three.js’s extra

StereoEffect.js module it’s relatively simple to get

browser 3D goodness to be Google Cardboard-ready, and

thus set the stage for all things JavaScript and VR. It’s

been pretty popular in the art world too, with interactive

works such as Seb Lee-Delisle’s Lunar Trails installation,

featuring the old arcade game Lunar Lander, which you

can now play in your browser while others watch (it is the

web after all). The Science Museum in London held

Chrome Web Lab, an interactive exhibition featuring five

experiments, showcasing the magic of the web. And it’s not

even the connectivity of the web that’s being showcased;

we can even take things offline and use web code for

amazing things, such as fighting Ebola.

One thing is for sure, JavaScript is awesome. Hell, if you

believe those telly programs (as we all do), JavaScript can

even take down the stock market, purely through the

witchcraft of canvas! Go JavaScript!

NOW IT’S OUR TURN

So I wanted to create a little project influenced by this

theme, and as it’s Christmas, take it to the streets for a

little bit of party fun! Something that could take code

88 24 ways 2015 edition

http://reaktor.com/blog/aircraft-customer-experience-on-a-new-level/
http://reaktor.com/blog/aircraft-customer-experience-on-a-new-level/
http://threejs.org/
http://threejs.org/examples/webgl_effects_stereo.html
http://seb.ly/work/lunar-trails/
http://moonlander.seb.ly/
http://moonlander.seb.ly/viewer/
http://www.chromeweblab.com/
https://www.youtube.com/watch?v=1sLjWlWvCsc&spfreload=10
https://twitter.com/adamdawkins/status/670588991784230912
https://twitter.com/adamdawkins/status/670588991784230912

anywhere. Here’s how I made a portable visual projection

pack, a piece of video mixing software and created some

web-coded street art.

Step one: The equipment

You will need:

▪ One laptop: with HDMI output and a modern browser

installed, such as Google Chrome.

▪ One battery-powered mini projector: I’ve used a Texas

Instruments DLP; for its 120 lumens it was the best cost-

to-lumens ratio I could find.

▪ One MIDI controller (optional): mine is an ICON iDJ as

it suits mixing visuals. However, there is more affordable

hardware on the market such as an Akai LPD8 or a Korg

nanoPAD2. As you’ll see in the article, this is optional as it

can be emulated within the software.

▪ A case to carry it all around in.

Bringing Your Code to the Streets

24 ways 2015 edition 89

Step two: The software

The projected visuals, I imagined, could be anything you

can create within a browser, whether that be simple

HTML and CSS, images, videos, SVG or canvas. The only

requirement I have is that they move or change with

sound and that I can mix any one visual into another.

You may remember a couple of years ago I created a demo

on this very site, allowing audio-triggered visuals from the

ambient sounds your device mic was picking up. That was

a great starting point – I used that exact method to pick

up the audio and thus the first requirement was complete.

If you want to see some more examples of visuals I’ve put

together for this, there’s a showcase on CodePen.

90 24 ways 2015 edition

https://24ways.org/2013/make-your-browser-dance/
https://24ways.org/2013/make-your-browser-dance/
http://codepen.io/collection/XmrQRa/

The second requirement took a little more thought. I

needed two screens, which could at any point show any of

the visuals I had coded, but could be mixed from one into

the other and back again. So let’s start with two divs, both

absolutely positioned so they’re on top of each other, but

at the start the second screen’s opacity is set to zero.

Now all we need is a slider, which when moved from one

side to the other slowly sets the second screen’s opacity

to 1, thereby fading it in.

See the Pen Mixing Screens (Software Version) by Rumyra

(@Rumyra) on CodePen.

6-1. Mixing Screens (CodePen)

As you saw above, I have a MIDI controller and although

the software method works great, I’d quite like to make

use of this nifty piece of kit. That’s easily done with the

Web MIDI API. All I need to do is call it, and when I move

one of the sliders on the controller (I’ve allocated the big

cross fader in the middle for this), pick up on the change of

value and use that to control the opacity instead.

var midi, data;

// start talking to MIDI controller

if (navigator.requestMIDIAccess) {

navigator.requestMIDIAccess({

sysex: false

}).then(onMIDISuccess, onMIDIFailure);

Bringing Your Code to the Streets

24 ways 2015 edition 91

http://codepen.io/Rumyra/pen/XmvJvJ/
http://codepen.io/Rumyra
http://codepen.io
http://codepen.io/Rumyra/pen/XmvJvJ/

} else {

alert(“No MIDI support in your browser.”);

}

// on success

function onMIDISuccess(midiData) {

// this is all our MIDI data

midi = midiData;

var allInputs = midi.allInputs.values();

// loop over all available inputs and listen for any

MIDI input

for (var input = allInputs.next(); input &&

!input.done; input = allInputs.next()) {

// when a MIDI value is received call the

onMIDIMessage function

input.value.onmidimessage = onMIDIMessage;

}

}

function onMIDIMessage(message) {

// data comes in the form [command/channel, note,

velocity]

data = message.data;

// Opacity change for screen. The cross fader values

are [176, 8, {0-127}]

if ((data[0] === 176) && (data[1] === 8)) {

// this value will change as the fader is moved

var opacity = data[2]/127;

screenTwo.style.opacity = opacity;

}

}

92 24 ways 2015 edition

The final code was slightly more complicated than this, as

I decided to switch the two screens based on the

frequencies of the sound that was playing, and use the

cross fader to depict the frequency threshold value. This

meant they flickered in and out of each other, rather than

just faded. There’s a very rough-and-ready first version of

the software on GitHub.

Phew, Great! Now we need to get all this to the streets!

Step three: Portable kit

Did you notice how I mentioned a case to carry it all

around in? I wanted the case to be morphable, so I could

use the equipment from it too, a sort of bag-to-usherette-

tray-type affair. Well, I had an unused laptop bag…

Bringing Your Code to the Streets

24 ways 2015 edition 93

https://github.com/Rumyra/VJing

I strengthened it with some MDF, so when I opened the

bag it would hold like a tray where the laptop and MIDI

controller would sit. The projector was Velcroed to the

external pocket of the bag, so when it was a tray it would

project from underneath. I added two durable straps, one

for my shoulders and one round my waist, both attached

to the bag itself. There was a lot of cutting and trimming.

As it was a laptop bag it was pretty thick to start and

sewing was tricky. However, I only broke one sewing

machine needle; I’ve been known to break more working

with leather, so I figured I was doing well. By the way, you

can actually buy usherette trays, but I just couldn’t resist

hacking my own :)

Step four: Take to the streets

First, make sure everything is charged – everything – a

lot! The laptop has to power both the MIDI controller and

the projector, and although I have a mobile phone battery

booster pack, that’ll only charge the projector should it

run out. I estimated I could get a good hour of visual

artistry before I needed to worry, though.

I had a couple of ideas about time of day and location.

Here in the UK at this time of year, it gets dark around half

past four, so I could easily head out in a city around 5pm

and it would be dark enough for the projections to be seen

pretty well. I chose Bristol, around the waterfront, as

94 24 ways 2015 edition

there were some interesting locations to try it out in. The

best was Millennium Square: busy but not crowded and

plenty of surfaces to try projecting on to.

My first time out with the portable audio/visual pack

(PAVP as it will now be named) was brilliant. I played

music and projected visuals, like a one-woman band of A/

V!

Bringing Your Code to the Streets

24 ways 2015 edition 95

You might be thinking what the point of this was, besides,

of course, it being a bit of fun. Well, this project got me to

look at canvas and SVG more closely. The Web MIDI API

was really interesting; MIDI as a data format has some

great practical uses. I think without our side projects we

may not have all these wonderful uses for our everyday

code. Not only do they remind us coding can, and should,

be fun, they also help us learn and grow as makers.

My favourite part? When I was projecting into a water

feature in Millennium Square. For those who are familiar,

you’ll know it’s like a wall of water so it produced a superb

effect. I drew quite a crowd and a kid came to stand next

to me and all I could hear him say with enthusiasm was,

‘Oh wow! That’s so cool!’

96 24 ways 2015 edition

Yes… yes, kid, it was cool. Making things with code is cool.

Massive thanks to the lovely Drew McLellan for his incredibly

well-directed photography, and also Simon Johnson who took

a great hand in perfecting the kit while it was attached.

ABOUT THE AUTHOR

Bringing Your Code to the Streets

24 ways 2015 edition 97

https://twitter.com/drewm
https://twitter.com/donnyBronson

Ruth John wireframes, designs and codes for The Lab at O2

(Telefonica). She also tweets and blogs a bit too. You can often

find her chatting about web development, building apps and

how an extra div is not the answer to your styling problems.

Either that or the lesser known Thundercats characters.

98 24 ways 2015 edition

https://thelab.o2.com/
https://twitter.com/rumyra
http://rumyrashead.com/

Emma Jane Westby 24ways.org/201507

7. Git Rebasing: An Elfin
Workshop Workflow

This year Santa’s helpers have been tasked
with making a garland. It’s a pretty simple
task: string beads onto yarn in a specific
order. When the garland reaches a specific
length, add it to the main workshop garland.
Each elf has a specific sequence they’re
supposed to chain, which is given to them
via a work order. (This is starting to sound
like one of those horrible calculus problems.
I promise it isn’t. It’s worse; it’s about Git.)

For the most part, the system works really well. The elves

are able to quickly build up a shared chain because each

elf specialises on their own bit of garland, and then links

the garland together. Because of this they’re able to work

independently, but towards the common goal of making a

beautiful garland.

Git Rebasing: An Elfin Workshop Workflow

24 ways 2015 edition 99

http://24ways.org/201507

At first the elves are really careful with each bead they

put onto the garland. They check with one another before

merging their work, and review each new link carefully. As

time crunches on, the elves pour a little more cheer into

the eggnog cooler, and the quality of work starts to

degrade. Tensions rise as mistakes are made and unkind

words are said. The elves quickly realise they’re going to

need a system to change the beads out when mistakes are

made in the chain.

The first common mistake is not looking to see what the

latest chain is that’s been added to the main garland. The

garland is huge, and it sits on a roll in one of the corners of

the workshop. It’s a big workshop, so it is incredibly

impractical to walk all the way to the roll to check what

the last link is on the chain. The elves, being magical, have

set up a monitoring system that allows them to keep a

local copy of the main garland at their workstation. It’s an

imperfect system though, so the elves have to request a

manual refresh to see the latest copy. They can request a

new copy by running the command

git pull --rebase=preserve

(They found that if they ran git pull on its own, they

ended up with weird loops of extra beads off the main

garland, so they’ve opted to use this method.) This keeps

the shared garland up to date, which makes things a lot

easier. A visualisation of the rebase process is available.

100 24 ways 2015 edition

http://emmajane.github.io/rebasing-workflow/#/0/8

The next thing the elves noticed is that if they worked on

the main workshop garland, they were always running

into problems when they tried to share their work back

with the rest of the workshop. It was fine if they were

working late at night by themselves, but in the middle of

the day, it was horrible. (I’ve been asked not to talk about

that time the fight broke out.) Instead of trying to share

everything on their local copy of the main garland, the

elves have realised it’s a lot easier to work on a new string

and then knot this onto the main garland when their

pattern repeat is finished. They generate a new string by

issuing the following commands:

git checkout master

git checkout -b 1234_pattern-name

1234 represents the work order number and pattern-

name describes the pattern they’re adding. Each bead is

then added to the new link (git add bead.txt) and

locked into place (git commit). Each elf repeats this

process until the sequence of beads described in the work

order has been added to their mini garland.

To combine their work with the main garland, the elves

need to make a few decisions. If they’re making a single

strand, they issue the following commands:

git checkout master

git merge --ff-only 1234_pattern-name

Git Rebasing: An Elfin Workshop Workflow

24 ways 2015 edition 101

To share their work they publish the new version of the

main garland to the workshop spool with the command

git push origin master.

Sometimes this fails. Sharing work fails because the

workshop spool has gotten new links added since the elf

last updated their copy of the main workshop spool. This

makes the elves both happy and sad. It makes them happy

because it means the other elves have been working too,

but it makes them sad because they now need to do a bit

of extra work to close their work order.

To update the local copy of the workshop spool, the elf

first unlinks the chain they just linked by running the

command:

git reset --merge ORIG_HEAD

This works because the garland magic notices when the

elves are doing a particularly dangerous thing and places a

temporary, invisible bookmark to the last safe bead in the

chain before the dangerous thing happened. The garland

no longer has the elf’s work, and can be updated safely.

The elf runs the command git pull --rebase=preserve

and the changes all the other elves have made are applied

locally.

With these new beads in place, the elf now has to restring

their own chain so that it starts at the right place. To do

this, the elf turns back to their own chain (git checkout

102 24 ways 2015 edition

1234_pattern-name) and runs the command git rebase

master. Assuming their bead pattern is completely unique,

the process will run and the elf’s beads will be restrung on

the tip of the main workshop garland.

Sometimes the magic fails and the elf has to deal with

merge conflicts. These are kind of annoying, so the elf

uses a special inspector tool to figure things out. The elf

opens the inspector by running the command git

mergetool to work through places where their beads have

been added at the same points as another elf’s beads.

Once all the conflicts are resolved, the elf saves their

work, and quits the inspector. They might need to do this a

few times if there are a lot of new beads, so the elf has

learned to follow this update process regularly instead of

just waiting until they’re ready to close out their work

order.

Once their link is up to date, the elf can now reapply their

chain as before, publish their work to the main workshop

garland, and close their work order:

git checkout master

git merge --ff-only 1234_pattern-name

git push origin master

Generally this process works well for the elves.

Sometimes, though, when they’re tired or bored or a little

drunk on festive cheer, they realise there’s a mistake in

their chain of beads. Fortunately they can fix the beads

Git Rebasing: An Elfin Workshop Workflow

24 ways 2015 edition 103

without anyone else knowing. These tools can be applied

to the whole workshop chain as well, but it causes

problems because the magic assumes that elves are only

ever adding to the main chain, not removing or reordering

beads on the fly. Depending on where the mistake is, the

elf has a few different options.

Let’s pretend the elf has a sequence of five beads she’s

been working on. The work order says the pattern should

be red-blue-red-blue-red.

If the sequence of beads is wrong (for example, blue-blue-

red-red-red), the elf can remove the beads from the chain,

but keep the beads in her workstation using the command

git reset --soft HEAD~5.

104 24 ways 2015 edition

If she’s been using the wrong colours and the wrong

pattern (for example, green-green-yellow-yellow-green),

she can remove the beads from her chain and discard

them from her workstation using the command git reset

--hard HEAD~5.

If one of the beads is missing (for example, red-blue-blue-

red), she can restring the beads using the first method, or

she can use a bit of magic to add the missing bead into the

sequence.

Using a tool that’s a bit like orthoscopic surgery, she first

selects a sequence of beads which contains the problem.

A visualisation of this process is available.

Start the garland surgery process with the command:

git rebase --interactive HEAD~4

Git Rebasing: An Elfin Workshop Workflow

24 ways 2015 edition 105

http://emmajane.github.io/rebasing-workflow/#/0/13

A new screen comes up with the following information

(the oldest bead is on top):

pick c2e4877 Red bead

pick 9b5555e Blue bead

pick 7afd66b Blue bead

pick e1f2537 Red bead

The elf adjusts the list, changing “pick” to “edit” next to

the first blue bead:

pick c2e4877 Red bead

edit 9b5555e Blue bead

pick 7afd66b Blue bead

pick e1f2537 Red bead

She then saves her work and quits the editor. The garland

magic has placed her back in time at the moment just after

she added the first blue bead.

She needs to manually fix up her garland to add the new

red bead. If the beads were files, she might run commands

like vim beads.txt and edit the file to make the necessary

changes.

106 24 ways 2015 edition

Once she’s finished her changes, she needs to add her new

bead to the garland (git add --all) and lock it into place

(git commit). This time she assigns the commit message

“Red bead – added” so she can easily find it.

The garland magic has replaced the bead, but she still

needs to verify the remaining beads on the garland. This is

a mostly automatic process which is started by running

the command git rebase --continue.

The new red bead has been assigned a position formerly

held by the blue bead, and so the elf must deal with a

merge conflict. She opens up a new program to help

resolve the conflict by running git mergetool.

Git Rebasing: An Elfin Workshop Workflow

24 ways 2015 edition 107

She knows she wants both of these beads in place, so the

elf edits the file to include both the red and blue beads.

With the conflict resolved, the elf saves her changes and

quits the mergetool.

Back at the command line, the elf checks the status of her

work using the command git status.

108 24 ways 2015 edition

rebase in progress; onto 4a9cb9d

You are currently rebasing branch '2_RBRBR' on '4a9cb9d'.

(all conflicts fixed: run "git rebase --continue")

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

modified: beads.txt

Untracked files:

(use "git add <file>..." to include in what will be

committed)

beads.txt.orig

She removes the file added by the mergetool with the

command rm beads.txt.orig and commits the edits she

just made to the bead file using the commands:

git add beads.txt

git commit --message "Blue bead -- resolved conflict"

Git Rebasing: An Elfin Workshop Workflow

24 ways 2015 edition 109

With the conflict resolved, the elf is able to continue with

the rebasing process using the command git rebase --

continue. There is one final conflict the elf needs to

resolve. Once again, she opens up the visualisation tool

and takes a look at the two conflicting files.

She incorporates the changes from the left and right

column to ensure her bead sequence is correct.

110 24 ways 2015 edition

Once the merge conflict is resolved, the elf saves the file

and quits the mergetool. Once again, she cleans out the

backup file added by the mergetool (rm beads.txt.orig)

and commits her changes to the garland:

git add beads.txt

git commit --message "Red bead -- resolved conflict"

and then runs the final verification steps in the rebase

process (git rebase --continue).

The verification process runs through to the end, and the

elf checks her work using the command git log --

oneline.

9269914 Red bead -- resolved conflict

4916353 Blue bead -- resolved conflict

aef0d5c Red bead -- added

9b5555e Blue bead

c2e4877 Red bead

She knows she needs to read the sequence from bottom

to top (the oldest bead is on the bottom). Reviewing the

list she sees that the sequence is now correct.

Git Rebasing: An Elfin Workshop Workflow

24 ways 2015 edition 111

Sometimes, late at night, the elf makes new copies of the

workshop garland so she can play around with the bead

sequencer just to see what happens. It’s made her more

confident at restringing beads when she’s found real

mistakes. And she doesn’t mind helping her fellow elves

when they run into trouble with their beads. The sugar

cookies they leave her as thanks don’t hurt either. If you

would also like to play with the bead sequencer, you can

get a copy of the branches the elf worked.

◆◆◆

Our lessons from the workshop:

▪ By using rebase to update your branches, you avoid

merge commits and keep a clean commit history.

▪ If you make a mistake on one of your local branches,

you can use reset to take commits off your branch. If you

want to save the work, but uncommit it, add the

parameter --soft. If you want to completely discard the

work, use the parameter, --hard.

▪ If you have merged working branch changes to the local

copy of your master branch and it is preventing you from

pushing your work to a remote repository, remove these

changes using the command reset with the parameter --

merge ORIG_HEAD before updating your local copy of the

remote master branch.

112 24 ways 2015 edition

https://github.com/gitforteams/elf-beads

▪ If you want to make a change to work that was

committed a little while ago, you can use the command

rebase with the parameter --interactive. You will need

to include how many commits back in time you want to

review.

ABOUT THE AUTHOR

Git Rebasing: An Elfin Workshop Workflow

24 ways 2015 edition 113

Emma Jane Westby is an author, an educator, and a part-time

beekeeper. Her latest book, Git for Teams, is now available from

O’Reilly. You can follow her adventures on Twitter at

@emmajanehw.

114 24 ways 2015 edition

http://gitforteams.com
https://twitter.com/emmajanehw

Lara Hogan 24ways.org/201508

8. Helping VIPs Care
About Performance

Making a site feel super fast is the easy part
of performance work. Getting people around
you to care about site speed is a much bigger
challenge. How do we keep the site fast
beyond the initial performance work?
Keeping very important people like your
upper management or clients invested in
performance work is critical to keeping a
site fast and empowering other designers
and developers to contribute.

The work to get others to care is so meaty that I dedicated

a whole chapter to the topic in my book Designing for

Performance. When I speak at conferences, the majority of

questions during Q&A are on this topic. When I speak to

developers and designers who care about performance,

getting other people at one’s organization or agency to

care becomes the most pressing question.

Helping VIPs Care About Performance

24 ways 2015 edition 115

http://24ways.org/201508
http://designingforperformance.com/changing-culture/
http://designingforperformance.com/changing-culture/

My primary response to folks who raise this issue is the

question: “What metric(s) do your VIPs care about?” This

is often met with blank stares and raised eyebrows. But

it’s also our biggest clue to what we need to do to help

empower others to care about performance and work on

it. Every organization and executive is different. This

means that three major things vary: the primary metrics

VIPs care about; the language they use about measuring

success; and how change is enacted. By clueing in to these

nuances within your organization, you can get a huge leg

up on crafting a successful pitch about performance work.

Let’s start with the metric that we should measure. Sure,

(most) everybody cares about money - but is that really

the metric that your VIPs are looking at each day to

measure the success or efficacy of your site? More likely,

dollars are the end game, but the metrics or key

performance indicators (KPIs) people focus on might be:

▪ rate of new accounts created/signups

▪ cost of acquiring or retaining a customer

▪ visitor return rate

▪ visitor bounce rate

▪ favoriting or another interaction rate

These are just a few examples, but they illustrate how

wide-ranging the options are that people care about. I find

that developers and designers haven’t necessarily

investigated this when trying to get others to care about

116 24 ways 2015 edition

performance. We often reach for the obvious – money! –

but if we don’t use the same kind of language our VIPs are

using, we might not get too far. You need to know this

before you can make the case for performance work.

To find out these metrics or KPIs, start reading through

the emails your VIPs are sending within your company.

What does it say on company wikis? Are there major

dashboards internally that people are looking at where

you could find some good metrics? Listen intently in team

meetings or thoroughly read annual reports to see what

these metrics could be.

The second key here is to pick up on language you can

effectively copy and paste as you make the case for

performance work. You need to be able to reflect back the

metrics that people already find important in a way they’ll

be able to hear. Once you know your key metrics, it’s time

to figure out how to communicate with your VIPs about

performance using language that will resonate with them.

Let’s start with visit traffic as an example metric that a very

important person cares about. Start to dig up research

that other people and companies have done that

correlates performance and your KPI. For example, cite

studies:

Helping VIPs Care About Performance

24 ways 2015 edition 117

“When the home page of Google Maps was
reduced from 100KB to 70–80KB, traffic went
up 10% in the first week, and an additional 25%
in the following three weeks.” (source).

Read through websites like WPOStats, which collects the

spectrum of studies on the impact of performance

optimization on user experience and business metrics.

Tweet and see if others have done similar research that

correlates performance and your site’s main KPI.

Once you have collected some research that touches on

the same kind of language your VIPs use about the

success of your site, it’s time to present it. You can start

with something simple, like a qualitative description of the

work you’re actively doing to improve the site that

translates to improved metrics that your VIPs care about.

It can be helpful to append a performance budget to any

proposal so you can compare the budget to your site’s

reality and how it might positively impact those KPIs folks

care about.

Words and graphs are often only half the battle when it

comes to getting others to care about performance.

Often, videos appeal to folks’ emotions in a way that is

missed when glancing through charts and graphs. On A

List Apart I recently detailed how to create videos of how

118 24 ways 2015 edition

http://www.websiteoptimization.com/speed/tweak/psychology-web-performance/
https://wpostats.com/
https://timkadlec.com/2013/01/setting-a-performance-budget/
http://alistapart.com/article/performance-showing-versus-telling/
http://alistapart.com/article/performance-showing-versus-telling/

fast your site loads. Let’s say that your VIPs care about

how your site loads on mobile devices; it’s time to show

them how your site loads on mobile networks.

Open video

You can use these videos to make a number of different

statements to your VIPs, depending on what they care

about:

▪ Look at how slow our site loads versus our competitor!

▪ Look at how slow our site loads for users in another

country!

▪ Look at how slow our site loads on mobile networks!

Again, you really need to know which metrics your VIPs

care about and tune into the language they’re using. If

they don’t care about the overall user experience of your

site on mobile devices, then showing them how slow your

site loads on 3G isn’t going to work. This will be your sales

pitch; you need to practice and iterate on the language

and highlights that will land best with your audience.

To make your sales pitch as solid as possible, gut-check

your ideas on how to present it with other co-workers to

get their feedback. Read up on how to construct effective

arguments and deliver them; do some research and see

what others have done at your company when pitching to

VIPs. Are slides effective? Memos or emails? Hallway

Helping VIPs Care About Performance

24 ways 2015 edition 119

src/html/images/2015/hogan/mobile-dashboard.mp4

conversations? Sometimes the best way to change

people’s minds is by mentioning it in informal chats over

coffee. Emulate the other leaders in your organization

who are successful at this work.

Every organization and very important person is different.

Learn what metrics folks truly care about, study the

language that they use, and apply what you’ve learned in a

way that’ll land with those individuals. It may take time to

craft your pitch for performance work over time, but it’s

important work to do. If you’re able to figure out how to

mirror back the language and metrics VIPs care about,

and connect the dots to performance for them, you will

have a huge leg up on keeping your site fast in the long

run.

120 24 ways 2015 edition

ABOUT THE AUTHOR

Lara Hogan is a Senior Engineering Manager at Etsy and the

author of Designing for Performance and Building a device lab.

She champions performance as a part of the overall user

experience, striking a balance between aesthetics and speed,

and building performance into company culture. She also

believes it’s important to celebrate career achievements with

donuts.

Helping VIPs Care About Performance

24 ways 2015 edition 121

http://larahogan.me/
http://shop.oreilly.com/product/0636920033578.do
http://www.fivesimplesteps.com/products/building-a-device-lab
http://larahogan.me/donuts/

Val Head 24ways.org/201509

9. Animation in
Responsive Design

Animation and responsive design can
sometimes feel like they’re at odds with
each other. Animation often needs space to
do its thing, but RWD tells us that the
amount of space we’ll have available is
going to change a lot. Balancing that can
lead to some tricky animation situations.

Embracing the squishiness of responsive design doesn’t

have to mean giving up on your creative animation ideas.

There are three general techniques that can help you

balance your web animation creativity with your

responsive design needs. One or all of these approaches

might help you sneak in something just a little extra into

your next project.

FOCUSED ART DIRECTION

Smaller viewports mean a smaller stage for your motion

to play out on, and this tends to amplify any motion in

your animation. Suddenly 100 pixels is really far and

122 24 ways 2015 edition

http://24ways.org/201509

multiple moving parts can start looking like they’re

battling for space. An effect that looked great on big

viewports can become muddled and confusing when it’s

reframed in a smaller space.

Making animated movements smaller will do the trick for

simple motion like a basic move across the screen. But for

more complex animation on smaller viewports, you’ll need

to simplify and reduce the number of moving parts. The

key to this is determining what the vital parts of the

animation are, to zone in on the parts that are most

important to its message. Then remove the less necessary

bits to distill the motion’s message down to the essentials.

For example, Rally Interactive’s navigation folds down

into place with two triangle shapes unfolding each corner

on larger viewports. If this exact motion was just scaled

down for narrower spaces the two corners would overlap

as they unfolded. It would look unnatural and wouldn’t

make much sense.

Open video

The main purpose of this animation is to show an

unfolding action. To simplify the animation, Rally unfolds

only one side for narrower viewports, with a slightly

different animation. The action is still easily interpreted

as unfolding and it’s done in a way that is a better fit for

Animation in Responsive Design

24 ways 2015 edition 123

http://beta.rallyinteractive.com/city-guides/
src/html/images/2015/head/rally-interactive-big.mp4

the available space. The message the motion was meant

to convey has been preserved while the amount of motion

was simplified.

Open video

Si Digital does something similar. The main concept of the

design is to portray the studio as a creative lab. On large

viewports, this is accomplished primarily through an

animated illustration that runs the full length of the site

and triggers its animations based on your scroll position.

The illustration is there to support the laboratory concept

visually, but it doesn’t contain critical content.

Open video

At first, it looks like Si Digital just turned off the animation

of the illustration for smaller viewports. But they’ve

actually been a little cleverer than that. They’ve also

reduced the complexity of the illustration itself. Both the

amount of motion (reduced down to no motion) and the

illustration were simplified to create a result that is much

easier to glean the concept from.

Open video

124 24 ways 2015 edition

src/html/images/2015/head/rally-interactive-small.mp4
http://sidigital.co/
src/html/images/2015/head/si-digital-big.mp4
src/html/images/2015/head/si-digital-small.mp4

The most interesting thing about these two examples is

that they’re solved more with thoughtful art direction

than complex code. Keeping the main concept of the

animations at the forefront allowed each to adapt

creative design solutions to viewports of varying size

without losing the integrity of their design.

RESPONSIVE CHOREOGRAPHY

Static content gets moved around all the time in

responsive design. A three-column layout might line up

from left to right on wide viewports, then stack top to

bottom on narrower viewports. The same approach can

be used to arrange animated content for narrower views,

but the animation’s choreography also needs to be

adjusted for the new layout. Even with static content, just

scaling it down or zooming out to fit it into the available

space is rarely an ideal solution. Rearranging your

animations’ choreography to change which animation

starts when, or even which animations play at all, keeps

your animated content readable on smaller viewports.

In a recent project I had three small animations that

played one after the other, left to right, on wider

viewports but needed to be stacked on narrower

viewports to be large enough to see. On wide viewports,

all three animations could play one right after the other in

Animation in Responsive Design

24 ways 2015 edition 125

sequence because all three were in the viewable area at

the same time. But once these were stacked for the

narrower viewport layouts, that sequence had to change.

Open video

What was essentially one animation on wider viewports

became three separate animations when stacked on

narrower viewports. The layout change meant the

choreography had to change as well. Each animation

starts independently when it comes into view in the

stacked layout instead of playing automatically in

sequence. (I’ve put the animated parts in this demo if you

want to peek under the hood.)

Open video

I choose to use the GreenSock library, with the

choreography defined in two different timelines for this

particular project. But the same goals could be

accomplished with other JavaScript options or even CSS

keyframe animations and media queries.

Even more complex responsive choreography can be

pulled off with SVG. Media queries can be used to change

CSS animations applied to SVG elements at specific

breakpoints for starters. For even more responsive power,

SVG’s viewBox property, and the positioning of the objects

126 24 ways 2015 edition

src/html/images/2015/head/whyy-pensions-big.mp4
http://codepen.io/valhead/pen/zrOWVW
src/html/images/2015/head/whyy-pensions-small.mp4
https://greensock.com/

within it, can be adjusted at JavaScript-defined

breakpoints. This lets you set rules to crop the viewable

area and arrange your animating elements to fit any

space.

Sarah Drasner has some great examples of how to use this

technique with style in this responsive infographic and

this responsive interactive illustration. On the other hand,

if smart scalability is what you’re after, it’s also possible to

make all of an SVG’s shapes and motion scale with the

SVG canvas itself. Sarah covers both these clever

responsive SVG techniques in detail. Creative and

complex animation can easily become responsive thanks

to the power of SVG!

Open video

BAKE PERFORMANCE INTO YOUR DESIGN
DECISIONS

It’s hard to get very far into a responsive design

discussion before performance comes up. Performance

goes hand in hand with responsive design and your

animation decisions can have a big impact on the overall

performance of your site.

The translate3D “hack”, backface-visibility:hidden,

and the will-change property are the heavy hitters of

animation performance. But decisions made earlier in

Animation in Responsive Design

24 ways 2015 edition 127

http://codepen.io/sdras/full/JdJgrB/
http://codepen.io/sdras/full/waXKPw/
https://davidwalsh.name/gsap-svg-responsive-animation
https://davidwalsh.name/gsap-svg-responsive-animation
src/html/images/2015/head/sd-responsive-infographic-demo.mp4
https://aerotwist.com/blog/on-translate3d-and-layer-creation-hacks/
https://dev.opera.com/articles/css-will-change-property/

your animation design process can have a big impact on

rendering performance and your performance budget

too.

Pick a technology that matches your needs

One of the biggest advantages of the current web

animation landscape is the range of tools we have

available to us. We can use CSS animations and

transitions to add just a dash of interface animation to our

work, go all out with webGL to create a 3D experience, or

anywhere in between. All within our browsers! Having

this huge range of options is amazing and wonderful but it

also means you need to be cognizant of what you’re using

to get the job done.

Loading in the full weight of a robust JavaScript animation

library is going to be overkill if you’re only animating a few

small elements here and there. That extra overhead will

have an impact on performance. Performance budgets

will not be pleased.

Always match the complexity of the technology you

choose to the complexity of your animation needs to

avoid unnecessary performance strain. For small amounts

of animation, stick to CSS solutions since it’s the most

lightweight option. As your animations grow in

complexity, or start to require more robust logic, move to

a JavaScript solution that can accomplish what you need.

128 24 ways 2015 edition

Animate the most performant properties

Whether you’re animating in CSS or JavaScript, you’re

affecting specific properties of the animated element.

Browsers can animate some properties more efficiently

than others based on how many steps need to happen

behind the scenes to visually update those properties.

Browsers are particularly efficient at animating opacity,

scale, rotation, and position (when the latter three are

done with transforms). This article from Paul Irish and

Paul Lewis gives the full scoop on why. Conveniently,

those are also the most common properties used in

motion design. There aren’t many animated effects that

can’t be pulled off with this list. Stick to these properties

to set your animations up for the best performance

results from the start. If you find yourself needing to

animate a property outside of this list, check CSS

Triggers… to find out how much of an additional impact it

might have.

Offset animation start times

Offsets (the concept of having a series of similar

movements execute one slightly after the other, creating a

wave-like pattern) are a long-held motion graphics trick

for creating more interesting and organic looking motion.

Employing this trick of the trade can also be smart for

performance. Animating a large number of objects all at

Animation in Responsive Design

24 ways 2015 edition 129

http://www.html5rocks.com/en/tutorials/speed/high-performance-animations/
http://www.html5rocks.com/en/tutorials/speed/high-performance-animations/
http://csstriggers.com/
http://csstriggers.com/

the same time can put a strain on the browser’s rendering

abilities even in the best cases. Adding short delays to

offset these animations in time, so they don’t all start at

once, can improve rendering performance.

GO EXPLORE THE RESPONSIVE ANIMATION
POSSIBILITIES FOR YOURSELF!

With smart art direction, responsive choreography, and

an eye on performance you can create just about any

creative web animation you can think up while still being

responsive. Keep these in mind for your next project and

you’ll pull off your animations with style at any viewport

size!

130 24 ways 2015 edition

ABOUT THE AUTHOR

Val is a designer and web animation consultant with a talent for

getting designers and developers alike excited about the power

of animation. She is the author of The Pocket Guide to CSS

Animations and the upcoming Designing Interface Animations.

She curates the UI Animation Newsletter, hosts the All The

Right Moves screencast, and co-hosts the Motion and Meaning

podcast. Val leads workshops at companies and conferences

around the world on motion design for the web and loves every

minute of it.

Animation in Responsive Design

24 ways 2015 edition 131

http://www.twitter.com/vlh
http://www.fivesimplesteps.com/products/css-animations
http://www.fivesimplesteps.com/products/css-animations
http://rosenfeldmedia.com/books/designing-interface-animations/
http://uianimationnewsletter.com/
http://alltherightmoves.valhead.com/
http://alltherightmoves.valhead.com/
http://motionandmeaning.io/

Ethan Marcotte 24ways.org/201510

10. Putting My Patterns
through Their Paces

Over the last few years, the conversation
around responsive design has shifted subtly,
focusing not on designing pages, but on
patterns: understanding the small, reusable
elements that comprise a larger design
system. And given that many of those
patterns are themselves responsive,
learning to manage these small layout
systems has become a big part of my work.

The thing is, the more pattern-driven work I do, the more I

realize my design process has changed in a number of

subtle, important ways. I suppose you might even say that

pattern-driven design has, in a few ways, redesigned me.

MEET THE TEASER

Here’s a recent example. A few months ago, some friends

and I redesigned The Toast. (It was a really, really fun

project, and we learned a lot.) Each page of the site is, as

you might guess, stitched together from a host of tiny,

132 24 ways 2015 edition

http://24ways.org/201510
http://alistapart.com/article/responsive-web-design
http://the-toast.net/
https://twitter.com/Nicole_Cliffe/status/658696632175734785
https://twitter.com/Nicole_Cliffe/status/652894406853332992
https://twitter.com/mallelis/status/658671532659511296
http://responsivewebdesign.com/toast/

reusable patterns. Some of them, like the search form and

footer, are fairly unique, and used once per page; others

are used more liberally, and built for reuse. The most

prevalent example of these more generic patterns is the

teaser, which is classed as, uh, .teaser. (Look, I never said I

was especially clever.)

In its simplest form, a teaser contains a headline, which

links to an article:

Fairly straightforward, sure. But it’s just the foundation:

from there, teasers can have a byline, a description, a

thumbnail, and a comment count. In other words, we have

a basic building block (.teaser) that contains a few

discrete content types – some required, some not. In fact,

very few of those pieces need to be present; to qualify as a

teaser, all we really need is a link and a headline. But by

adding more elements, we can build slight variations of our

teaser, and make it much, much more versatile.

Putting My Patterns through Their Paces

24 ways 2015 edition 133

10-1. Nearly every element visible on this page is built out of
our generic “teaser” pattern.

But the teaser variation I’d like to call out is the one that

appears on The Toast’s homepage, on search results or on

section fronts. In the main content area, each teaser in the

list features larger images, as well as an interesting visual

treatment: the byline and comment count were the most

prominent elements within each teaser, appearing above

the headline.

134 24 ways 2015 edition

http://the-toast.net/?s=boyfriend
http://the-toast.net/series/ayn-rand-rewrites/

10-2. The approved visual design of our teaser, as it appears on
lists on the homepage and the section fronts.

And this is, as it happens, the teaser variation that gave

me pause. Back in the old days – you know, like six months

ago – I probably would’ve marked this module up to

match the design. In other words, I would’ve looked at the

module’s visual hierarchy (metadata up top, headline and

content below) and written the following HTML:

<div class="teaser">

<p class="article-byline">By Author

Name</p>

126

<i>comments</i>

<h1 class="article-title">Article

Title</h1>

<p class="teaser-excerpt">Lorem ipsum dolor sit amet,

consectetur…</p>

</div>

But then I caught myself, and realized this wasn’t the best

approach.

Putting My Patterns through Their Paces

24 ways 2015 edition 135

MOVING BEYOND LAYOUT

Since I’ve started working responsively, there’s a question

I work into every step of my design process. Whether I’m

working in Sketch, CSSing a thing, or researching a

project, I try to constantly ask myself:

What if someone doesn’t browse the web like I
do?

…Okay, that doesn’t seem especially fancy. (And maybe

you came here for fancy.) But as straightforward as that

question might seem, it’s been invaluable to so many

aspects of my practice. If I’m working on a widescreen

layout, that question helps me remember the constraints

of the small screen; if I’m working on an interface that has

some enhancements for touch, it helps me consider other

input modes as I work. It’s also helpful as a reminder that

many might not see the screen the same way I do, and that

accessibility (in all its forms) should be a throughline for

our work on the web.

And that last point, thankfully, was what caught me here.

While having the byline and comment count at the top

was a lovely visual treatment, it made for a terrible

content hierarchy. For example, it’d be a little weird if the

page was being read aloud in a speaking browser: the

name of the author and the number of comments would

be read aloud before the title of the article with which

they’re associated.

136 24 ways 2015 edition

http://www.mollywatt.com/blog/entry/my-apple-watch-after-5-days
https://the-pastry-box-project.net/anne-gibson/2014-july-31

That’s why I find it’s helpful to begin designing a pattern’s

hierarchy before its layout: to move past the visual

presentation in front of me, and focus on the underlying

content I’m trying to support. In other words, if someone’s

encountering my design without the CSS I’ve written,

what should their experience be?

So I took a step back, and came up with a different

approach:

<div class="teaser">

<h1 class="article-title">Article

Title</h1>

<h2 class="article-byline">By Author

Name</h2>

<p class="teaser-excerpt">

Lorem ipsum dolor sit amet, consectetur…

126

<i>comments</i>

</p>

</div>

Much, much better. This felt like a better match for the

content I was designing: the headline – easily most

important element – was at the top, followed by the

author’s name and an excerpt. And while the comment

count is visually the most prominent element in the teaser,

I decided it was hierarchically the least critical: that’s why

it’s at the very end of the excerpt, the last element within

our teaser. And with some light styling, we’ve got a

respectable-looking hierarchy in place:

Putting My Patterns through Their Paces

24 ways 2015 edition 137

Yeah, you’re right – it’s not our final design. But from this

basic-looking foundation, we can layer on a bit more

complexity. First, we’ll bolster the markup with an extra

element around our title and byline:

<div class="teaser">

<div class="teaser-hed">

<h1 class="article-title">Article

Title</h1>

<h2 class="article-byline">By Author

Name</h2>

</div>

…

</div>

With that in place, we can use flexbox to tweak our layout,

like so:

.teaser-hed {

display: flex;

flex-direction: column-reverse;

}

138 24 ways 2015 edition

https://css-tricks.com/snippets/css/a-guide-to-flexbox/

flex-direction: column-reverse acts a bit like a change

in gravity within our teaser-hed element, vertically

swapping its two children.

Getting closer! But as great as flexbox is, it doesn’t do

anything for elements outside our container, like our little

comment count, which is, as you’ve probably noticed, still

stranded at the very bottom of our teaser.

Flexbox is, as you might already know, wonderful! And

while it enjoys incredibly broad support, there are enough

implementations of old versions of Flexbox (in addition to

plenty of bugs) that I tend to use a feature test to check if

the browser’s using a sufficiently modern version of

flexbox. Here’s the one we used:

var doc = document.body || document.documentElement;

var style = doc.style;

if (style.webkitFlexWrap == '' ||

style.msFlexWrap == '' ||

Putting My Patterns through Their Paces

24 ways 2015 edition 139

http://caniuse.com/#search=flexbox
http://philipwalton.com/articles/normalizing-cross-browser-flexbox-bugs/
http://benfrain.com/flexbox-gotchas-for-android-2-1-4-3-stock-browser/

style.flexWrap == '') {

doc.className += " supports-flex";

}

Eagle-eyed readers will note we could have used

@supports feature queries to ask browsers if they support

certain CSS properties, removing the JavaScript

dependency. But since we wanted to serve the layout to IE

we opted to write a little question in JavaScript, asking

the browser if it supports flex-wrap, a property used

elsewhere in the design. If the browser passes the test,

then a class of supports-flex gets applied to our html

element. And with that class in place, we can safely

quarantine our flexbox-enabled layout from less-capable

browsers, and finish our teaser’s design:

.supports-flex .teaser-hed {

display: flex;

flex-direction: column-reverse;

}

.supports-flex .teaser .comment-count {

position: absolute;

right: 0;

top: 1.1em;

}

If the supports-flex class is present, we can apply our

flexbox layout to the title area, sure – but we can also

safely use absolute positioning to pull our comment count

out of its default position, and anchor it to the top right of

our teaser. In other words, the browsers that don’t meet

140 24 ways 2015 edition

http://www.w3.org/TR/css3-conditional/#at-supports
http://caniuse.com/#feat=css-featurequeries
https://developer.mozilla.org/en-US/docs/Web/CSS/flex-wrap

our threshold for our advanced styles are left with an

attractive design that matches our HTML’s content

hierarchy; but the ones that pass our test receive the

finished, final design.

And with that, our teaser’s complete.

DIVING INTO DEVICE-AGNOSTIC DESIGN

This is, admittedly, a pretty modest application of flexbox.

(For some truly next-level work, I’d recommend Heydon

Pickering’s “Flexbox Grid Finesse”, or anything Zoe

Mickley Gillenwater publishes.) And for such a simple

module, you might feel like this is, well, quite a bit of work.

And you’d be right! In fact, it’s not one layout, but two: a

lightly styled content hierarchy served to everyone, with

the finished design served conditionally to the browsers

that can successfully implement it. But I’ve found that

thinking about my design as existing in broad experience

tiers – in layers – is one of the best ways of designing for

the modern web. And what’s more, it works not just for

simple modules like our teaser, but for more complex or

interactive patterns as well.

Putting My Patterns through Their Paces

24 ways 2015 edition 141

http://www.heydonworks.com/
http://www.heydonworks.com/
http://www.heydonworks.com/article/flexbox-grid-finesse
http://zomigi.com/
http://zomigi.com/
http://zomigi.com/events/
https://vimeo.com/106869929#t=36m02s
https://vimeo.com/106869929#t=36m02s

Open video

10-3. Even a simple search form can be conditionally enhanced,
given a little layered thinking.

This more layered approach to interface design isn’t a new

one, mind you: it’s been championed by everyone from

Filament Group to the BBC. And with all the challenges

we keep uncovering, a more device-agnostic approach is

one of the best ways I’ve found to practice responsive

design. As Trent Walton once wrote,

Like cars designed to perform in extreme heat
or on icy roads, websites should be built to face
the reality of the web’s inherent variability.

We have a weird job, working on the web. We’re designing

for the latest mobile devices, sure, but we’re increasingly

aware that our definition of “smartphone” is much too

narrow. Browsers have started appearing on our wrists

and in our cars’ dashboards, but much of the world’s

mobile data flows over sub-3G networks. After all, the

web’s evolution has never been charted along a straight

line: it’s simultaneously getting slower and faster, with

devices new and old coming online every day. With all the

challenges in front of us, including many we don’t yet

know about, a more device-agnostic, more layered design

process can better prepare our patterns – and ourselves –

for the future.

142 24 ways 2015 edition

src/html/images/2015/marcotte/search-enhanced.mp4
https://www.filamentgroup.com/lab/southstreet-event-apart.html
http://responsivenews.co.uk/post/18948466399/cutting-the-mustard
http://trentwalton.com/2014/03/10/device-agnostic/
http://www.niemanlab.org/2015/11/from-the-bbcs-african-hackathon-come-new-projects-designed-for-the-continents-smartphones/
https://shkspr.mobi/blog/2015/09/migrants-and-mobiles/
https://shkspr.mobi/blog/2015/09/migrants-and-mobiles/
https://www.youtube.com/watch?v=sGo08-SP_Ww
https://www.flickr.com/photos/wfryer/8081551908
https://twitter.com/RWD/status/652133281849196544

(It won’t help you get enough to eat at holiday parties,

though.)

ABOUT THE AUTHOR

Ethan Marcotte is an independent designer and developer, and

the fellow who coined the term “responsive web design”. He is

the author of two books on the topic, Responsive Web Design and

Responsive Design: Patterns and Principles, and has been known to

give a conference talk or two. Ethan is passionate about digital

design, emerging markets, and ensuring global access, and has

been known to link to the odd GIF now and again.

Putting My Patterns through Their Paces

24 ways 2015 edition 143

http://the-toast.net/2015/11/24/eating-tips-for-holiday-parties/
http://alistapart.com/article/responsive-web-design
http://abookapart.com/products/responsive-web-design
http://abookapart.com/products/responsive-design-patterns-principles
http://lanyrd.com/profile/beep/

Guy Podjarny 24ways.org/201511

11. Upping Your Web
Security Game

When I started working in web security
fifteen years ago, web development looked
very different. The few non-static web
applications were built using a waterfall
process and shipped quarterly at best,
making it possible to add security audits
before every release; applications were
deployed exclusively on in-house servers,
allowing Info Sec to inspect their
configuration and setup; and the few third-
party components used came from a small
set of well-known and trusted providers.
And yet, even with these favourable
conditions, security teams were quickly
overwhelmed and called for developers to
build security in.

If the web security game was hard to win before, it’s

doomed to fail now. In today’s web development, every

other page is an application, accepting inputs and private

data from users; software is built continuously, designed

144 24 ways 2015 edition

http://24ways.org/201511
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Waterfall_model

to eliminate manual gates, including security gates;

infrastructure is code, with servers spawned with little

effort and even less security scrutiny; and most of the

code in a typical application is third-party code, pulled in

through open source repositories with rarely a glance at

who provided them.

Security teams, when they exist at all, cannot solve this

problem. They are vastly outnumbered by developers, and

cannot keep up with the application’s pace of change. For

us to have a shot at making the web secure, we must bring

security into the core. We need to give it no less attention

than that we give browser compatibility, mobile design or

web page load times. More broadly, we should see

security as an aspect of quality, expecting both ourselves

and our peers to address it, and taking pride when we do

it well.

WHERE TO START?

Embracing security isn’t something you do overnight.

A good place to start is by reviewing things you’re already

doing – and trying to make them more secure. Here are

three concrete steps you can take to get going.

Upping Your Web Security Game

24 ways 2015 edition 145

https://puppetlabs.com/solutions/infrastructure-as-code

HTTPS

Threats begin when your system interacts with the

outside world, which often means HTTP. As is, HTTP is

painfully insecure, allowing attackers to easily steal and

manipulate data going to or from the server. HTTPS adds

a layer of crypto that ensures the parties know who

they’re talking to, and that the information exchanged can

be neither modified nor sniffed.

HTTPS is relevant to any site. If your non-HTTPS site

holds opinions, reading it may get your users in trouble

with employers or governments. If your users believe

what you say, attackers can modify your non-HTTPS to

take advantage of and abuse that trust. If you want to use

new browser technologies like HTTP2 and service

workers, your site will need to be HTTPS. And if you want

to be discovered on the web, using HTTPS can help your

Google ranking. For more details on why I think you

should make the switch to HTTPS, check out this post,

these slides and this video.

Using HTTPS is becoming easier and cheaper. Here are a

few free tools that can help:

▪ Get free and easy HTTPS delivery from Cloudflare (be

sure to use “Full SSL”!)

▪ Get a free and automation-friendly certificate from

Let’s Encrypt (now in open beta).

▪ Test how well your HTTPS is set up using SSLTest.

146 24 ways 2015 edition

http://newstweek.com/
https://http2.github.io/
http://www.html5rocks.com/en/tutorials/service-worker/introduction/
http://www.html5rocks.com/en/tutorials/service-worker/introduction/
http://googlewebmastercentral.blogspot.co.uk/2014/08/https-as-ranking-signal.html
http://googlewebmastercentral.blogspot.co.uk/2014/08/https-as-ranking-signal.html
https://medium.com/so-now-you-know/10-reasons-to-go-https-a2cba5734bb6
http://www.slideshare.net/guypod/https-what-why-and-how-smashingconf-freiburg-sep-2015
https://vimeo.com/140641363
https://www.cloudflare.com/ssl/
https://support.cloudflare.com/hc/en-us/articles/200170416-What-do-the-SSL-options-Off-Flexible-SSL-Full-SSL-Full-SSL-Strict-SSL-Only-mean-
https://letsencrypt.org/
https://letsencrypt.org/2015/12/03/entering-public-beta.html
https://www.ssllabs.com/ssltest/

Other vendors and platforms are rapidly simplifying and

reducing the cost of their HTTPS offering, as demand and

importance grows.

Two-Factor Authentication

The most sensitive data is usually stored behind a login,

and the authentication process is the primary gate in

front of this data. Making this process secure has many

aspects, including using HTTPS when accepting

credentials, having a strong password policy, never

storing the password, and more.

All of these are important, but the best single step to

boost your authentication security is to introduce two-

factor authentication (2FA). Adding 2FA usually means

prompting users for an additional one-time code when

logging in, which they get via SMS or a mobile app (e.g.

Google Authenticator). This code is short-lived and is

extremely hard for a remote attacker to guess, thus vastly

reducing the risk a leaked or easily guessed password

presents.

The typical algorithm for 2FA is based on an IETF

standard called the time-based one-time password

(TOTP) algorithm, and it isn’t that hard to implement. Joel

Franusic wrote a great post on implementing 2FA;

modules like speakeasy make it even easier; and you can

swap SMS with Google Authenticator or your own app if

Upping Your Web Security Game

24 ways 2015 edition 147

https://en.wikipedia.org/wiki/Two-factor_authentication
https://en.wikipedia.org/wiki/Two-factor_authentication
https://support.google.com/accounts/answer/1066447?hl=en
https://en.wikipedia.org/wiki/Time-based_One-time_Password_Algorithm#Client_implementations
https://en.wikipedia.org/wiki/Time-based_One-time_Password_Algorithm#Client_implementations
https://twitter.com/jf
https://twitter.com/jf
https://www.twilio.com/blog/2013/04/add-two-factor-authentication-to-your-website-with-google-authenticator-and-twilio-sms.html
https://www.npmjs.com/package/speakeasy
https://github.com/google/google-authenticator

you prefer. If you don’t want to build 2FA support yourself,

you can purchase two/multi-factor authentication

services from vendors such as DuoSecurity, Auth0, Clef,

Hypr and others.

If implementing 2FA still feels like too much work, you can

also choose to offload your entire authentication process

to an OAuth-based federated login. Many companies

offer this today, including Facebook, Google, Twitter,

GitHub and others. These bigger players tend to do

authentication well and support 2FA, but you should

consider what data you’re sharing with them in the

process.

Tracking Known Vulnerabilities

Most of the code in a modern application was actually

written by third parties, and pulled into your app as

frameworks, modules and libraries. While using these

components makes us much more productive, along with

their functionality we also adopt their security flaws. To

make things worse, some of these flaws are well-known

vulnerabilities, making it easy for hackers to take

advantage of them in an attack.

This is a real problem and happens on pretty much every

platform. Do you develop in Java? In 2014, over 6% of

Java modules downloaded from Maven had a known

severe security issue, the typical Java applications

148 24 ways 2015 edition

https://www.duosecurity.com/
https://auth0.com/
https://getclef.com/
https://www.hypr.com/
http://oauth.net/
https://developers.facebook.com/docs/facebook-login/web
https://developers.google.com/identity/protocols/OpenIDConnect?hl=en
https://dev.twitter.com/web/sign-in
https://developer.github.com/v3/oauth/
https://cve.mitre.org/
https://cve.mitre.org/
http://www.cio.com/article/2936574/software-applications-have-on-average-24-vulnerabilities-inherited-from-buggy-components.html
http://www.cio.com/article/2936574/software-applications-have-on-average-24-vulnerabilities-inherited-from-buggy-components.html

containing 24 flaws. Are you coding in Node.js? Roughly

14% of npm packages carry a known vulnerability, and

over 60% of dev shops find vulnerabilities in their code.

30% of Docker Hub containers include a high priority

known security hole, and 60% of the top 100,000

websites use client-side libraries with known security

gaps.

To find known security issues, take stock of your

dependencies and match them against language-specific

lists such as Snyk’s vulnerability DB for Node.js, rubysec

for Ruby, victims-db for Python and OWASP’s

Dependency Check for Java. Once found, you can fix most

issues by upgrading the component in question, though

that may be tricky for indirect dependencies.

This process is still way too painful, which means most

teams don’t do it. The Snyk team and I are hoping to

change that by making it as easy as possible to find, fix and

monitor known vulnerabilities in your dependencies.

Snyk’s wizard will help you find and fix these issues

through guided upgrades and patches, and adding Snyk’s

test to your continuous integration and deployment (CI/

CD) will help you stay secure as your code evolves.

Note that newly disclosed vulnerabilities usually impact

old code – the one you’re running in production. This

means you have to stay alert when new vulnerabilities are

disclosed, so you can fix them before attackers can exploit

Upping Your Web Security Game

24 ways 2015 edition 149

https://snyk.io/#try
http://www.banyanops.com/blog/analyzing-docker-hub/
http://erlend.oftedal.no/blog/?blogid=142
http://erlend.oftedal.no/blog/?blogid=142
https://github.com/Snyk/vulndb
http://www.rubysec.com/
https://github.com/victims/victims-cve-db
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://www.owasp.org/index.php/OWASP_Dependency_Check
https://snyk.io/about/
https://snyk.io/?src=24ways
https://snyk.io/?src=24ways
https://snyk.io/docs#wizard
https://snyk.io/docs#test
https://snyk.io/docs#test

them. You can do so by subscribing to vulnerability lists

like US-CERT, OSVDB and NVD. Snyk’s monitor will

proactively let you know about new disclosures relevant

to your code, but only for Node.js for now – you can

register to get updated when we expand.

SECURING YOURSELF

In addition to making your application secure, you should

make the contributors to that application secure –

including you. Earlier this year we’ve seen attackers target

mobile app developers with a malicious Xcode. The real

target, however, wasn’t these developers, but rather the

users of the apps they create. That you create. Securing

your own work environment is a key part of keeping your

apps secure, and your users from being compromised.

There’s no single step that will make you fully secure, but

here are a few steps that can make a big impact:

1. Use 2FA on all the services related to the application,

notably source control (e.g. GitHub), cloud platform (e.g.

AWS), CI/CD, CDN, DNS provider and domain registrar. If

an attacker compromises any one of those, they could

modify or replace your entire application. I’d recommend

using 2FA on all your personal services too.

150 24 ways 2015 edition

https://www.us-cert.gov/
http://osvdb.org/
https://nvd.nist.gov/download.cfm#RSS
https://snyk.io/docs#monitor
https://app.snyk.io/auth/github
http://www.theregister.co.uk/2015/09/23/xcodeghost_ios_app_infection_toll_rises_to_four_thousand/
https://help.github.com/articles/about-two-factor-authentication/
https://aws.amazon.com/iam/details/mfa/
https://medium.com/@guypod/two-factor-auth-your-digital-life-ecdcfeac6306#.5fatktjcq

2. Use a password manager (e.g. 1Password, LastPass) to

ensure you have a separate and complex password for

each service. Some of these services will get hacked, and

passwords will leak. When that happens, don’t let the

attackers access your other systems too.

3. Secure your workstation. Be careful what you

download, lock your screen when you walk away, change

default passwords on services you install, run antivirus

software, etc. Malware on your machine can translate to

malware in your applications.

4. Be very wary of phishing. Smart attackers use ‘spear

phishing’ techniques to gain access to specific systems,

and can trick even security savvy users. There are even

phishing scams targeting users with 2FA. Be alert to

phishy emails.

5. Don’t install things through curl <somewhere-on-curl <somewhere-on-

the-web> | sudo bashthe-web> | sudo bash, especially if the URL is on GitHub,

meaning someone else controls it. Don’t do it on your

machines, and definitely don’t do it in your CI/CD

systems. Seriously.

Staying secure should be important to you personally, but

it’s doubly important when you have privileged access to

an application. Such access makes you a way to reach

many more users, and therefore a more compelling target

for bad actors.

Upping Your Web Security Game

24 ways 2015 edition 151

https://agilebits.com/onepassword
https://lastpass.com/
http://www.wired.com/2015/04/hacker-lexicon-spear-phishing/
http://www.wired.com/2015/04/hacker-lexicon-spear-phishing/
http://labs.ft.com/2013/05/a-sobering-day/
https://citizenlab.org/2015/08/iran_two_factor_phishing/
https://github.com/dmakhno/travis_after_all
https://github.com/dmakhno/travis_after_all
https://speakerdeck.com/barnbarn/security-for-non-unicorns-2?slide=36

A CULTURE OF SECURITY

Using HTTPS, enabling two-factor authentication and

fixing known vulnerabilities are significant steps in

building security at your core. As you implement them,

remember that these are just a few steps in a longer

journey.

The end goal is to embrace security as an aspect of quality,

and accept we all share the responsibility of keeping

ourselves – and our users – safe.

152 24 ways 2015 edition

ABOUT THE AUTHOR

Guy is the CEO & Founder of Snyk.io, a Web Security company.

Before that, he was the CTO of Akamai’s Web Performance

business, following its acquisition of Blaze.io (which he co-

founded). He has spent over a decade working on Web

Application Security, and more specifically the first Web App

Firewall (AppShield) and the market leading Web Application

Security scanner (AppScan).

Upping Your Web Security Game

24 ways 2015 edition 153

http://snyk.io
https://www.akamai.com/

He is also the author of Mobitest, an open-source mobile web

performance testing tool, and is on the programming committee

of the Velocity conference, and wrote Responsive & Fast, a short

book about RWD Performance.

154 24 ways 2015 edition

http://mobitest.akamai.com/
https://github.com/guypod/mobitest-agent
http://velocityconf.com/
http://shop.oreilly.com/product/0636920034667.do

Ros Horner 24ways.org/201512

12. Be Fluid with Your
Design Skills: Build Your
Own Sites

Just five years ago in 2010, when we were all
busy trying to surprise and delight, learning
CSS3 and trying to get whole websites onto
one page, we had a poster on our studio wall.
It was entitled ‘Designers Vs Developers’, an
infographic that showed us the differences
between the men(!) who created websites.

Designers wore skinny jeans and used Macs and

developers wore cargo pants and brought their own

keyboards to work. We began to learn that designers and

developers were not only doing completely different jobs

but were completely different people in every way. This

opinion was backed up by hundreds of memes, millions of

tweets and pages of articles which used words like void

and battle and versus.

Be Fluid with Your Design Skills: Build Your Own Sites

24 ways 2015 edition 155

http://24ways.org/201512

Thankfully, things move quickly in this industry; the wide

world of web design has moved on in the last five years.

There are new devices, technologies, tools – and even a

few women. Designers have been helped along by great

apps, software, open source projects, conferences, and a

community of people who, to my unending pride, love to

share their knowledge and their work.

So the world has moved on, and if Miley Cyrus, Ruby Rose

and Eliot Sumner are identifying as gender fluid (an

identity which refers to a gender which varies over time

or is a combination of identities), then I would like to come

out as discipline fluid!

OK, I will probably never identify as a developer, but I will

identify as fluid! How can we be anything else in an

industry that moves so quickly? That’s how we should

think of our skills, our interests and even our job titles.

After all, Steve Jobs told us that “Design is not just what it

looks like and feels like. Design is how it works.” Sorry

skinny-jean-wearing designers – this means we’re all

designing something together. And it’s not just about

knowing the right words to use: you have to know how it

feels. How it feels when you make something work, when

you fix that bug, when you make it work on IE.

Like anything in life, things run smoothly when you make

the effort to share experiences, empathise and deeply

understand the needs of others. How can designers do

156 24 ways 2015 edition

that if they’ve never built their own site? I’m not talking

the big stuff, I’m talking about your portfolio site, your

mate’s business website, a website for that great idea

you’ve had. I’m talking about doing it yourself to get an

unique insight into how it feels.

We all know that designers and developers alike love an

, so here it is.

TEN REASONS DESIGNERS SHOULD BE FLUID
WITH THEIR SKILLS AND BUILD THEIR OWN
SITES

1. It’s never been easier

Now here’s where the definition of ‘build’ is going to get a

bit loose and people are going to get angry, but when I say

it’s never been easier I mean because of the existence of

apps and software like WordPress, Squarespace, Tumblr,

et al. It’s easy to make something and get it out there into

the world, and these are all gateway drugs to hard coding!

2. You’ll understand how it feels

How it feels to be so proud that something actually works

that you momentarily don’t notice if the kerning is off or

the padding is inconsistent. How it feels to see your site

Be Fluid with Your Design Skills: Build Your Own Sites

24 ways 2015 edition 157

appear when you’ve redirected a URL. How it feels when

you just can’t work out where that one extra space is in a

line of PHP that has killed your whole site.

3. It makes you a designer

Not a better designer, it makes you a designer when you

are designing how things look and how they work.

4. You learn about movement

Photoshop and Sketch just don’t cut it yet. Until you see

your site in a browser or your app on a phone, it’s hard to

imagine how it moves. Building your own sites shows you

that it’s not just about how the content looks on the

screen, but how it moves, interacts and feels.

5. You make techie friends

All the tutorials and forums in the world can’t beat your

network of techie friends. Since I started working in web

design I have worked with, sat next to, and co-created

with some of the greatest developers. Developers who’ve

shared their knowledge, encouraged me to build things,

patiently explained HTML, CSS, servers, divs, web fonts,

iOS development. There has been no void, no versus, very

few battles; just people who share an interest and love of

making things.

158 24 ways 2015 edition

6. You will own domain names

When something is paid for, online and searchable then

it’s real and you’ve got to put the work in. Buying domains

has taught me how to stop procrastinating, but also about

DNS, FTP, email, and how servers work.

7. People will ask you to do things    

Learning about code and development opens a whole new

world of design. When you put your own personal

websites and projects out there people ask you to do

more things. OK, so sometimes those things are “Make me

a website for free”, but more often it’s cool things like

“Come and speak at my conference”, “Write an article for

my magazine” and “Collaborate with me.”

8. The young people are coming!

They love typography, they love print, they love layout,

but they’ve known how to put a website together since

they started their first blog aged five and they show me

clever apps they’ve knocked together over the weekend!

They’re new, they’re fluid, and they’re better than us!

9. Your portfolio is your portfolio

OK, it’s an obvious one, but as designers our work is our

CV, our legacy! We need to show our skill, our attention

to detail and our creativity in the way we showcase our

Be Fluid with Your Design Skills: Build Your Own Sites

24 ways 2015 edition 159

work. Building your portfolio is the best way to start

building your own websites. (And please be that designer

who’s bothered to work out how to change the

Squarespace favicon!)

10. It keeps you fluid!

Building your own websites is tough. You’ll never be

happy with it, you’ll constantly be updating it to keep up

with technology and fashion, and by the time you’ve

finished it you’ll want to start all over again. Perfect for

forcing you to stay up-to-date with what’s going on in the

industry.

160 24 ways 2015 edition

ABOUT THE AUTHOR

Ros Horner is a London based (print turned digital) Design

Director and speaker, working on apps and websites for clients

such as Adidas, Reebok, McLaren, and Volvo.

Be Fluid with Your Design Skills: Build Your Own Sites

24 ways 2015 edition 161

http://www.roshorner.com

Mark Mitchell 24ways.org/201513

13. Designing with
Contrast

When an appetite for aesthetics over
usability becomes the bellwether of user
interface design, it’s time to reconsider who
we’re designing for.

Over the last few years, we have questioned the signifiers

that gave obvious meaning to the function of interface

elements. Strong textures, deep shadows, gradients —

imitations of physical objects — were discarded. And

many, rightfully so. Our audiences are now more

comfortable with an experience that feels native to the

technology, so we should respond in kind.

Yet not all of the changes have benefitted users. Our

efforts to simplify brought with them a trend of ultra-

minimalism where aesthetics have taken priority over

legibility, accessibility and discoverability. The trend

shows no sign of losing popularity — and it is harming our

experience of digital content.

162 24 ways 2015 edition

http://24ways.org/201513

A THIN VENEER

We are in a race to create the most subdued, understated

interface. Visual contrast is out. In its place: the thinnest

weights of a typeface and white text on bright color

backgrounds. Headlines, text, borders, backgrounds,

icons, form controls and inputs: all grey.

While we can look back over the last decade and see

minimalist trends emerging on the web, I think we can

place a fair share of the responsibility for the recent shift

in priorities on Apple. The release of iOS 7 ushered in a

radical change to its user interface. It paired mobile

interaction design to the simplicity and eloquence of

Apple’s marketing and product design. It was a catalyst.

We took what we saw, copied and consumed the

aesthetics like pick-and-mix.

Designing with Contrast

24 ways 2015 edition 163

New technology compounds this trend. Computer

monitors and mobile devices are available with screens of

unprecedented resolutions. Ultra-light type and subtle

hues, difficult to view on older screens, are more legible

on these devices. It would be disingenuous to say that

designers have always worked on machines

representative of their audience’s circumstances, but the

gap has never been as large as it is now. We are running

the risk of designing VIP lounges where the cost of entry

is a Mac with a Retina display.

MINIMALIST EXPECTATIONS

Like progressive enhancement in an age of JavaScript,

many good and sensible accessibility practices are being

overlooked or ignored. We’re driving unilateral design

decisions that threaten accessibility. We’ve approached

every problem with the same solution, grasping on to the

integrity of beauty, focusing on expression over users’

needs and content.

Someone once suggested to me that a client’s website

should include two states. The first state would be the

ideal experience, with low color contrast, light font

weights and no differentiation between links and text. It

would be the default. The second state would be

presented in whatever way was necessary to meet

accessibility standards. Users would have to opt out of the

default state via a toggle if it wasn’t meeting their needs.

164 24 ways 2015 edition

A sort of first-class, upper deck cabin equivalent of

graceful degradation. That this would divide the user base

was irrelevant, as the aesthetics of the brand were

absolute.

It may seem like an unusual anecdote, but it isn’t

uncommon to see this thinking in our industry. Again and

again, we place the burden of responsibility to participate

in a usable experience on others. We view accessibility

and good design as mutually exclusive. Taking for granted

what users will tolerate is usually the forte of

monopolistic services, but increasingly we apply the same

arrogance to our new products and services.

IMITATION WITHOUT REPRESENTATION

All of us are influenced in one way or another by one

another’s work. We are consciously and unconsciously

affected by the visual and audible activity around us. This

is important and unavoidable. We do not produce work in

a vacuum. We respond to technology and culture. We

channel language and geography. We absorb the sights

and sounds of film, television, news. To mimic and copy is

part and parcel of creating something an audience of

Designing with Contrast

24 ways 2015 edition 165

many can comprehend and respond to. Our clients often

look first to their competitors’ products to understand

their success.

However, problems arise when we focus on style without

context; form without function; mimicry as method.

Copied and reused without any of the ethos of the

original, stripped of deliberate and informed decision-

making, the so-called look and feel becomes nothing more

than paint on an empty facade.

The typographic and color choices so in vogue today with

our popular digital products and services have little in

common with the brands they are meant to represent.

166 24 ways 2015 edition

FOR WANT OF GOOD DESIGN, THE MESSAGE
WAS LOST

The question to ask is: does the interface truly reflect the

product? Is it an accurate characterization of the brand

and organizational values? Does the delivery of the

content match the tone of voice?

The answer is: probably not. Because every organization,

every app or service, is unique. Each with its own

personality, its own values and wonderful quirks. Design

is communication. We should do everything in our role as

professionals to use design to give voice to the message.

Our job is to clearly communicate the benefits of a service

and unreservedly allow access to information and

content. To do otherwise, by obscuring with fashionable

styles and elusive information architecture, does a great

disservice to the people who chose to engage with and

trust our products.

We can achieve hierarchy and visual rhythm without

resorting to extreme reduction. We can craft a beautiful

experience with fine detail and curiosity while meeting

fundamental standards of accessibility (and strive to meet

many more).

Designing with Contrast

24 ways 2015 edition 167

STANDARDS OF EXCELLENCE

It isn’t always comfortable to step back and objectively

question our design choices. We get lost in the flow of our

work, using patterns and preferences we’ve tried and

tested before. That our decisions often seem like second

nature is a gift of experience, but sometimes it prevents us

from finding our blind spots.

I was first caught out by my own biases a few years ago,

when designing an interface for the Bank of England.

After deciding on the colors for the typography and

interactive elements, I learned that the site had to meet

AAA accessibility standards. My choices quickly fell apart.

It was eye-opening. I had to start again with restrictions

and use size, weight and placement instead to construct

the visual hierarchy.

Even now, I make mistakes. On a recent project, I used

large photographs on an organization’s website to

promote their products. Knowing that our team had

control over the art direction, I felt confident that we

could compose the photographs to work with text

overlays. Despite our best effort, the cropped images

weren’t always consistent, undermining the text’s

legibility. If I had the chance to do it again, I would

separate the text and image.

So, what practical things can we consider to give our users

the experience they deserve?

168 24 ways 2015 edition

Put guidelines in place

▪ Think about your brand values. Write down keywords

and use them as a framework when choosing a typeface.

Explore colors that convey the organization’s personality

and emotional appeal.

▪ Define a color palette that is web-ready and meets

minimum accessibility standards. Note which colors are

suitable for use with text. Only very dark hues of grey are

consistently legible so keep them for non-essential text

(for example, as placeholders in form inputs).

▪ Find which background colors you can safely use with

white text, and consider integrating contrast checks into

your workflow.

▪ Use roman and medium weights for body copy. Reserve

lighter weights of a typeface for very large text. Thin fonts

are usually the first to break down because of aliasing

differences across platforms and screens.

▪ Check that the size, leading and length of your type is

always legible and readable. Define lower and upper

limits. Small text is best left for captions and words in

uppercase.

▪ Avoid overlaying text on images unless it’s guaranteed

to be legible. If it’s necessary to optimize space in the

layout, give the text a container. Scrims aren’t always

reliable: the text will inevitably overlap a part of the

photograph without a contrasting ground.

Designing with Contrast

24 ways 2015 edition 169

https://24ways.org/2010/calculating-color-contrast/
https://24ways.org/2010/calculating-color-contrast/
https://24ways.org/2014/integrating-contrast-checks-in-your-web-workflow/
https://24ways.org/2014/integrating-contrast-checks-in-your-web-workflow/

Test your work

▪ Review legibility and contrast on different devices. It’s

just as important as testing the layout of a responsive

website. If you have a local device lab, pay it a visit.

▪ Find a computer monitor near a window when the sun

is shining. Step outside the studio and try to read your

content on a mobile device with different brightness

levels.

▪ Ask your friends and family what they use at home and

at work. It’s one way of making sure your feedback isn’t

always coming from a closed loop.

Push your limits

▪ You define what the user sees. If you’ve inherited brand

guidelines, question them. If you don’t agree with the

choices, make the case for why they should change.

▪ Experiment with size, weight and color to find contrast.

Objects with low contrast appear similar to one another

and undermine the visual hierarchy. Weak relationships

between figure and ground diminish visual interest. A

balanced level of contrast removes ambiguity and creates

focal points. It captures and holds our attention.

▪ If you’re lost for inspiration, look to graphic design in

print. We have a wealth of history, full of examples that

excel in using contrast to establish visual hierarchy.

▪ Embrace limitations. Use boundaries as an opportunity

to explore possibilities.

170 24 ways 2015 edition

https://24ways.org/2006/cheating-color/

MORE THAN JUST A FACADE

Designing with standards encourages legibility and helps

to define a strong visual hierarchy. Design without

exclusion (through neither negligence or intent) gets

around discussions of demographics, speaks to a larger

audience and makes good business sense. Following the

latest trends not only weakens usability but also hinders a

cohesive and distinctive brand.

Users will make means when they need to, by increasing

browser font sizes or enabling system features for

accessibility. But we can do our part to take as much of

that burden off of the user and ask less of those who need

it most.

In architecture, it isn’t buildings that mimic what is

fashionable that stand the test of time. Nor do we admire

buildings that tack on separate, poorly constructed

extensions to meet a bare minimum of safety regulations.

We admire architecture that offers well-considered,

remarkable, usable spaces with universal access.

Perhaps we can take inspiration from these spaces. Let’s

give our buildings a bold voice and make sure the doors

are open to everyone.

Designing with Contrast

24 ways 2015 edition 171

ABOUT THE AUTHOR

Mark Mitchell is a freelance digital designer & front-end

developer in London. Find him on Twitter at @withoutnations

and online at withoutnations.com.

172 24 ways 2015 edition

https://twitter.com/withoutnations
http://withoutnations.com

Meagan Fisher 24ways.org/201514

14. What I Learned about
Product Design This Year

2015 was a humbling year for me. In
September of 2014, I joined a tiny but
established startup called SproutVideo as
their third employee and first designer. The
role interests me because it affords the
opportunity to see how design can grow a
solid product with a loyal user-base into
something even better.

The work I do now could also have a real impact on the

brand and user experience of our product for years to

come, which is a thrilling prospect in an industry where

much of what I do feels small and temporary. I got in on

the ground floor of something special: a small, dedicated,

useful company that cares deeply about making video

hosting effortless and rewarding for our users.

What I Learned about Product Design This Year

24 ways 2015 edition 173

http://24ways.org/201514
https://sproutvideo.com/

I had (and still have) grand ideas for what thoughtful

design can do for a product, and the smaller-scale product

design work I’ve done or helped manage over the past few

years gave me enough eager confidence to dive in head

first. Readers who have experience redesigning complex

existing products probably have a knowing smirk on their

face right now. As I said, it’s been humbling. A year of

focused product design, especially on the scale we are

trying to achieve with our small team at SproutVideo, has

taught me more than any projects in recent memory. I’d

like to share a few of those lessons.

PRODUCT DESIGN IS VERY DIFFERENT FROM
MARKETING DESIGN

The majority of my recent work leading up to

SproutVideo has been in marketing design. These projects

are so fun because their aim is to communicate the value

of the product in a compelling and memorable way. In

order to achieve this goal, I spent a lot of time thinking

about content strategy, responsive design, and how to

create striking visuals that tell a story. These are all

pursuits I love.

Product design is a different beast. When designing a

homepage, I can employ powerful imagery, wild gradients,

and somewhat-quirky fonts. When I began redesigning

the SproutVideo product, I wanted to draw on all the

174 24 ways 2015 edition

beautiful assets I’ve created for our marketing materials,

but big gradients, textures, and display fonts made no

sense in this new context.

That’s because the product isn’t about us, and it isn’t

about telling our story. Product design is about getting

out of the way so people can do their job. The visual

design is there to create a pleasant atmosphere for people

to work in, and to help support the user experience.

Learning to take “us” out of the equation took some work

after years of creating gorgeous imagery and content for

the sales-driven side of businesses.

I’ve learned it’s very valuable to design both sides of the

experience, because marketing and product design flex

different muscles. If you’re currently in an environment

where the two are separate, consider switching teams in

2016. Designing for product when you’ve mostly done

marketing, or vice versa, will deepen your knowledge as a

designer overall. You’ll face new unexpected challenges,

which is the only way to grow.

PRODUCT DESIGN CAN NOT START WITH
WHAT LOOKS GOOD ON DRIBBBLE

I have an embarrassing confession: when I began the

redesign, I had a secret goal of making something that

would look gorgeous in my portfolio. I have a collection of

product shots that I admire on Dribbble; examples of

What I Learned about Product Design This Year

24 ways 2015 edition 175

beautiful dashboards and widgets and UI elements that

look good enough to frame. I wanted people to feel the

same way about the final outcome of our redesign.

Mistakenly, this was a factor in my initial work. I opened

Photoshop and crafted pixel-perfect static buttons and

form elements and color palettes that — when applied to

our actual product — looked like a toddler beauty pageant.

It added up to a lot of unusable shininess, noise, and

silliness.

I was disappointed; these elements seemed so lovely in

isolation, but in context, they felt tacky and overblown. I

realized: I’m not here to design the world’s most beautiful

drop down menu. Good design has nothing to do with ego,

but in my experience designers are, at least a little bit,

secret divas. I’m no exception. I had to remind myself that

I am not working in service of a bigger Dribbble following

or to create the most Pinterest-ing work. My function is

solely to serve the users — to make life a little better for

the good people who keep my company in business.

This meant letting go of pixel-level beauty to create

something bigger and harder: a system of elements that

work together in harmony in many contexts. The visual

style exists to guide the users. When done well, it

becomes a language that users understand, so when they

encounter a new feature or have a new goal, they already

feel comfortable navigating it. This meant stripping back

my gorgeous animated menu into something that didn’t

176 24 ways 2015 edition

detract from important neighboring content, and could

easily fit in other parts of the app. In order to know what

visual style would support the users, I had to take a wider

view of the product as a whole.

JUST ACCEPT THAT DESIGNING A GREAT
PRODUCT – LIKE MANY WORTHWHILE
PURSUITS – IS INITIALLY LABORIOUS AND
MESSY

Once I realized I couldn’t start by creating the most

Dribbble-worthy thing, I knew I’d have to begin with the

unglamorous, frustrating, but weirdly wonderful work of

mapping out how the product’s content could better be

structured. Since we’re redesigning an existing product, I

assumed this would be fairly straightforward: the

functionality was already in place, and my job was just to

structure it in a more easily navigable way.

I started by handing off a few wireframes of the key

screens to the developer, and that’s when the questions

began rolling in: “If we move this content into a modal,

how will it affect this similar action here?” “What happens

if they don’t add video tags, but they do add a

description?” “What if the user has a title that is 500

characters long?” “What if they want their video to be

private to some users, but accessible to others?”.

What I Learned about Product Design This Year

24 ways 2015 edition 177

How annoying (but really, fantastic) that people use our

product in so many ways. Turns out, product design isn’t

about laying out elements in the most ideal scenario for

the user that’s most convenient for you. As product

designers, we have to foresee every outcome, and

anticipate every potential user need.

Which brings me to another annoying epiphany: if you

want to do it well, and account for every user, product

design is so much more snarly and tangled than you’d

expect going in. I began with a simple goal: to improve the

experience on just one of our key product pages.

However, every small change impacts every part of the

product to some degree, and that impact has to be

accounted for. Every decision is based on assumptions

that have to be tested; I test my assumptions by observing

users, talking to the team, wireframing, and prototyping.

Many of my assumptions are wrong. There are days when

it’s incredibly frustrating, because an elegant solution for

users with one goal will complicate life for users with

another goal. It’s vital to solve as many scenarios as

possible, even though this is slow, sometimes mind-

bending work.

As a side bonus, wireframing and prototyping every

potential state in a product is tedious, but your

developers will thank you for it. It’s not their job to solve

what happens when there’s an empty state, error, or edge

178 24 ways 2015 edition

case. Showing you’ve accounted for these scenarios will

win a developer’s respect; failing to do so will frustrate

them.

WHEN YOU’VE CREATED AND TESTED A
SYSTEM THAT SUPPORTS USER NEEDS, IT WILL
BE BEAUTIFUL

Remember what I said in the beginning about wanting to

create a Dribbble-worthy product? When I stopped

focusing on the visual details of the design (color, spacing,

light and shadow, font choices) and focused instead on

structuring the content to maximize usability and delight,

a beautiful design began to emerge naturally.

I began with grayscale, flat wireframes as a strategy to

keep me from getting pulled into the visual style before

the user experience was established. As I created a

system of elements that worked in harmony, the visual

style choices became obvious. Some buttons would need

to be brighter and sit off the page to help the user spot

important actions. Some elements would need line

separators to create a hierarchy, where others could

stand on their own as an emphasized piece of content. As

the user experience took shape, the visual style emerged

naturally to support it. The result is a product that feels

beautiful to use, because I was thoughtful about the

experience first.

◆◆◆

What I Learned about Product Design This Year

24 ways 2015 edition 179

A big takeaway from this process has been that my

assumptions will often be proven wrong. My assumptions

about how to design a great product, and how users will

interact with that product, have been tested and revised

repeatedly. At SproutVideo we’re about to undertake the

biggest test of our work; we’re going to launch a small part

of the product redesign to our users. If I’ve learned

anything, it’s that I will continue to be humbled by the

ongoing effort of making the best product I can, which is a

wonderful thing.

Next year, I hope you all get to do work that takes you out

of our comfort zone. Be regularly confounded and

embarrassed by your wrong assumptions, learn from

them, and come back and tell us what you learned in

2016.

180 24 ways 2015 edition

ABOUT THE AUTHOR

Meagan Fisher is passionate about owls, coffee, and web

design. In her ongoing mission to make the web a better place,

she’s partnered with some of the best designers in the industry,

such as SimpleBits, Happy Cog, and Crush + Lovely. When she’s

not creating interfaces, she’s speaking, tweeting, writing on

Owltastic, or posting coffee art photography to Art in my

Coffee.

What I Learned about Product Design This Year

24 ways 2015 edition 181

http://simplebits.com/
http://happycog.com/
http://crushlovely.com/
http://twitter.com/meaganfisher
http://owltastic.com/
http://artinmycoffee.com/
http://artinmycoffee.com/

Rachel Andrew 24ways.org/201515

15. Grid, Flexbox, Box
Alignment: Our New
System for Layout

Three years ago for 24 ways 2012, I wrote an
article about a new CSS layout method I was
excited about. A specification had emerged,
developed by people from the Internet
Explorer team, bringing us a proper grid
system for the web. In 2015, that Internet
Explorer implementation is still the only
public implementation of CSS grid layout.
However, in 2016 we should be seeing it in a
new improved form ready for our use in
browsers.

Grid layout has developed hidden behind a flag in Blink,

and in nightly builds of WebKit and, latterly, Firefox. By

being developed in this way, breaking changes could be

safely made to the specification as no one was relying on

the experimental implementations in production work.

182 24 ways 2015 edition

http://24ways.org/201515
/2012/css3-grid-layout/

Another new layout method has emerged over the past

few years in a more public and perhaps more painful way.

Shipped prefixed in browsers, The flexible box layout

module (flexbox) was far too tempting for developers not

to use on production sites. Therefore, as changes were

made to the specification, we found ourselves with three

different flexboxes, and browser implementations that

did not match one another in completeness or in the

version of specified features they supported.

Owing to the different ways these modules have come

into being, when I present on grid layout it is often the

very first time someone has heard of the specification. A

question I keep being asked is whether CSS grid layout

and flexbox are competing layout systems, as though it

might be possible to back the loser in a CSS layout

competition. The reality, however, is that these two

methods will sit together as one system for doing layout

on the web, each method playing to certain strengths and

serving particular layout tasks.

If there is to be a loser in the battle of the layouts, my

hope is that it will be the layout frameworks that tie our

design to our markup. They have been a necessary

placeholder while we waited for a true web layout system,

but I believe that in a few years time we’ll be easily able to

date a website to circa 2015 by seeing <div

class="row"> or <div class="col-md-3"> in the markup.

Grid, Flexbox, Box Alignment: Our New System for Layout

24 ways 2015 edition 183

In this article, I’m going to take a look at the common

features of our new layout systems, along with a couple of

examples which serve to highlight the differences

between them.

To see the grid layout examples you will need to enable

grid in your browser. The easiest thing to do is to enable

the experimental web platform features flag in Chrome.

Details of current browser support can be found here.

RELATIONSHIP

Items only become flex or grid items if they are a direct

child of the element that has display:flex, display:grid

or display:inline-grid applied. Those direct children

then understand themselves in the context of the

complete layout. This makes many things possible. It’s the

lack of relationship between elements that makes our

existing layout methods difficult to use. If we float two

columns, left and right, we have no way to tell the shorter

column to extend to the height of the taller one. We have

expended a lot of effort trying to figure out the best way

to make full-height columns work, using techniques that

were never really designed for page layout.

At a very simple level, the relationship between elements

means that we can easily achieve full-height columns. In

flexbox:

184 24 ways 2015 edition

http://gridbyexample.com/browsers/

See the Pen Flexbox equal height columns by

rachelandrew (@rachelandrew) on CodePen.

And in grid layout (requires a CSS grid-supporting

browser):

See the Pen Grid equal height columns by rachelandrew

(@rachelandrew) on CodePen.

ALIGNMENT

Full-height columns rely on our flex and grid items

understanding themselves as part of an overall layout.

They also draw on a third new specification: the box

alignment module. If vertical centring is a gift you’d like to

have under your tree this Christmas, then this is the box

you’ll want to unwrap first.

The box alignment module takes the alignment and space

distribution properties from flexbox and applies them to

other layout methods. That includes grid layout, but also

other layout methods. Once implemented in browsers,

this specification will give us true vertical centring of all

the things.

Our examples above achieved full-height columns

because the default value of align-items is stretch. The

value ensured our columns stretched to the height of the

tallest. If we want to use our new vertical centring

Grid, Flexbox, Box Alignment: Our New System for Layout

24 ways 2015 edition 185

http://codepen.io/rachelandrew/pen/d1740516afc286acf242e690e59e9941/
http://codepen.io/rachelandrew
http://codepen.io
http://codepen.io/rachelandrew/pen/82770d9e7cba74b92334b5ec510e3e6a/
http://codepen.io/rachelandrew
http://codepen.io

abilities on all items, we would set align-items:center

on the container. To align one flex or grid item, apply the

align-self property.

The examples below demonstrate these alignment

properties in both grid layout and flexbox. The portrait

image of Widget the cat is aligned with the default

stretch. The other three images are aligned using

different values of align-self.

Take a look at an example in flexbox:

See the Pen Flexbox alignment by rachelandrew

(@rachelandrew) on CodePen.

And also in grid layout (requires a CSS grid-supporting

browser):

See the Pen Grid alignment by rachelandrew

(@rachelandrew) on CodePen.

15-1. The alignment properties used with CSS grid layout.

186 24 ways 2015 edition

http://codepen.io/rachelandrew/pen/deba55225c29d41d54e01553840ece2c/
http://codepen.io/rachelandrew
http://codepen.io
http://codepen.io/rachelandrew/pen/9673b6695bb948a0e698583746e6d4f4/
http://codepen.io/rachelandrew
http://codepen.io

FLUID GRIDS

A cornerstone of responsive design is the concept of fluid

grids.

“[…]every aspect of the grid—and the
elements laid upon it—can be expressed as a
proportion relative to its container.”
—Ethan Marcotte, “Fluid Grids”

The method outlined by Marcotte is to divide the target

width by the context, then use that value as a percentage

value for the width property on our element.

h1 {

margin-left: 14.575%; /* 144px / 988px = 0.14575 */

width: 70.85%; /* 700px / 988px = 0.7085 */

}

In more recent years, we’ve been able to use calc() to

simplify this (at least, for those of us able to drop support

for Internet Explorer 8). However, flexbox and grid layout

make fluid grids simple.

The most basic of flexbox demos shows this fluidity in

action. The justify-content property – another property

defined in the box alignment module – can be used to

create an equal amount of space between or around

items. As the available width increases, more space is

assigned in proportion.

Grid, Flexbox, Box Alignment: Our New System for Layout

24 ways 2015 edition 187

http://alistapart.com/article/fluidgrids
http://webdesign.tutsplus.com/tutorials/calc-grids-are-the-best-grids--cms-22902
http://caniuse.com/#feat=calc
http://caniuse.com/#feat=calc

In this demo, the list items are flex items due to

display:flex being added to the ul. I have given them a

maximum width of 250 pixels. Any remaining space is

distributed equally between the items as the justify-

content property has a value of space-between.

See the Pen Flexbox: justify-content by rachelandrew

(@rachelandrew) on CodePen.

For true fluid grid-like behaviour, your new flexible

friends are flex-grow and flex-shrink. These properties

give us the ability to assign space in proportion.

The flexbox flex property is a shorthand for:

▪ flex-grow

▪ flex-shrink

▪ flex-basis

The flex-basis property sets the default width for an

item. If flex-grow is set to 0, then the item will not grow

larger than the flex-basis value; if flex-shrink is 0, the

item will not shrink smaller than the flex-basis value.

▪ flex: 1 1 200px: a flexible box that can grow and

shrink from a 200px basis.

▪ flex: 0 0 200px: a box that will be 200px and cannot

grow or shrink.

188 24 ways 2015 edition

http://codepen.io/rachelandrew/pen/c71f9f91cc857ea496e1372ae8f494cb/
http://codepen.io/rachelandrew
http://codepen.io

▪ flex: 1 0 200px: a box that can grow bigger than

200px, but not shrink smaller.

In this example, I have a set of boxes that can all grow and

shrink equally from a 100 pixel basis.

See the Pen Flexbox: flex-grow by rachelandrew

(@rachelandrew) on CodePen.

What I would like to happen is for the first element,

containing a portrait image, to take up less width than the

landscape images, thus keeping it more in proportion. I

can do this by changing the flex-grow value. By giving all

the items a value of 1, they all gain an equal amount of the

available space after the 100 pixel basis has been worked

out.

If I give them all a value of 3 and the first box a value of 1,

the other boxes will be assigned three parts of the

available space while box 1 is assigned only one part. You

can see what happens in this demo:

See the Pen Flexbox: flex-grow by rachelandrew

(@rachelandrew) on CodePen.

Once you understand flex-grow, you should easily be

able to grasp how the new fraction unit (fr, defined in the

CSS grid layout specification) works. Like flex-grow, this

Grid, Flexbox, Box Alignment: Our New System for Layout

24 ways 2015 edition 189

http://codepen.io/rachelandrew/pen/c0e5661b6c8ede414716f33bfdf788fa/
http://codepen.io/rachelandrew
http://codepen.io
http://codepen.io/rachelandrew/pen/723ba4448202c72e06b1d39c6e6d1f64/
http://codepen.io/rachelandrew
http://codepen.io

unit allows us to assign available space in proportion. In

this case, we assign the space when defining our track

sizes.

In this demo (which requires a CSS grid-supporting

browser), I create a four-column grid using the fraction

unit to define my track sizes. The first track is 1fr in width,

and the others 2fr.

grid-template-columns: 1fr 2fr 2fr 2fr;

See the Pen Grid fraction units by rachelandrew

(@rachelandrew) on CodePen.

15-2. The four-track grid.

SEPARATION OF CONCERNS

My younger self petitioned my peers to stop using tables

for layout and to move to CSS. One of the rallying cries of

that movement was the concept of separating our source

and content from how they were displayed. It was

something of a failed promise given the tools we had

available: the display leaked into the markup with the

190 24 ways 2015 edition

http://codepen.io/rachelandrew/pen/6baabcc5f32f12897a265bd26f3aeb4c/
http://codepen.io/rachelandrew
http://codepen.io

need for redundant elements to cope with browser bugs,

or visual techniques that just could not be achieved

without supporting markup.

Browsers have improved, but even now we can find

ourselves compromising the ideal document structure so

we can get the layout we want at various breakpoints. In

some ways, the situation has returned to tables-for-layout

days. Many of the current grid frameworks rely on

describing our layout directly in the markup. We add divs

for rows, and classes to describe the number of desired

columns. We nest these constructions of divs inside one

another.

Here is a snippet from the Bootstrap grid examples – two

columns with two nested columns:

<div class="row">

<div class="col-md-8">

.col-md-8

<div class="row">

<div class="col-md-6">

.col-md-6

</div>

<div class="col-md-6">

.col-md-6

</div>

</div>

</div>

<div class="col-md-4">

Grid, Flexbox, Box Alignment: Our New System for Layout

24 ways 2015 edition 191

https://getbootstrap.com/examples/grid/

.col-md-4

</div>

</div>

Not a million miles away from something I might have

written in 1999.

<table>

<tr>

<td class="col-md-8">

.col-md-8

<table>

<tr>

<td class="col-md-6">

.col-md-6

</td>

<td class="col-md-6">

.col-md-6

</td>

</tr>

</table>

</td>

<td class="col-md-4">

.col-md-4

</td>

</tr>

</table>

Grid and flexbox layouts do not need to be described in

markup. The layout description happens entirely in the

CSS, meaning that elements can be moved around from

within the presentation layer.

192 24 ways 2015 edition

Flexbox gives us the ability to reverse the flow of

elements, but also to set the order of elements with the

order property. This is demonstrated here, where Widget

the cat is in position 1 in the source, but I have used the

order property to display him after the things that are

currently unimpressive to him.

See the Pen Flexbox: order by rachelandrew

(@rachelandrew) on CodePen.

Grid layout takes this a step further. Where flexbox lets us

set the order of items in a single dimension, grid layout

gives us the ability to position things in two dimensions:

both rows and columns. Defined in the CSS, this

positioning can be changed at any breakpoint without

needing additional markup. Compare the source order

with the display order in this example (requires a CSS

grid-supporting browser):

See the Pen Grid positioning in two dimensions by

rachelandrew (@rachelandrew) on CodePen.

Grid, Flexbox, Box Alignment: Our New System for Layout

24 ways 2015 edition 193

http://codepen.io/rachelandrew/pen/eec059a9881025fc46b82e9de15fdfb9/
http://codepen.io/rachelandrew
http://codepen.io
http://codepen.io/rachelandrew/pen/500336330e932a6698c4576a96a08695/
http://codepen.io/rachelandrew
http://codepen.io

15-3. Laying out our items in two dimensions using grid layout.

As these demos show, a straightforward way to decide if

you should use grid layout or flexbox is whether you want

to position items in one dimension or two. If two, you

want grid layout.

A note on accessibility and reordering

The issues arising from this powerful ability to change the

way items are ordered visually from how they appear in

the source have been the subject of much discussion. The

current flexbox editor’s draft states

194 24 ways 2015 edition

“Authors must use order only for visual, not
logical, reordering of content. Style sheets that
use order to perform logical reordering are
non-conforming.”
—CSS Flexible Box Layout Module Level 1,
Editor’s Draft (3 December 2015)

This is to ensure that non-visual user agents (a screen

reader, for example) can rely on the document source

order as being correct. Take care when reordering that

you do so from the basis of a sound document that makes

sense in terms of source order. Avoid using visual order to

convey meaning.

AUTOMATIC CONTENT PLACEMENT WITH
RULES

Having control over the order of items, or placing items

on a predefined grid, is nice. However, we can often do

that already with one method or another and we have

frameworks and tools to help us. Tools such as Susy mean

we can even get away from stuffing our markup full of grid

classes. However, our new layout methods give us some

interesting new possibilities.

Something that is useful to be able to do when dealing

with content coming out of a CMS or being pulled from

some other source, is to define a bunch of rules and then

say, “Display this content, using these rules.”

Grid, Flexbox, Box Alignment: Our New System for Layout

24 ways 2015 edition 195

https://drafts.csswg.org/css-flexbox/#order-accessibility
https://drafts.csswg.org/css-flexbox/#order-accessibility
http://susy.oddbird.net/

As an example of this, I will leave you with a Christmas

poem displayed in a document alongside Widget the cat

and some of the decorations that are bringing him no

Christmas cheer whatsoever.

The poem is displayed first in the source as a set of

paragraphs. I’ve added a class identifying each of the four

paragraphs but they are displayed in the source as one

text. Below that are all my images, some landscape and

some portrait; I’ve added a class of landscape to the

landscape ones.

The mobile-first grid is a single column and I use line-

based placement to explicitly position my poem

paragraphs. The grid layout auto-placement rules then

take over and place the images into the empty cells left in

the grid.

At wider screen widths, I declare a four-track grid, and

position my poem around the grid, keeping it in a readable

order.

I also add rules to my landscape class, stating that these

items should span two tracks. Once again the grid layout

auto-placement rules position the rest of my images

without my needing to position them. You will see that

grid layout takes items out of source order to fill gaps in

the grid. It does this because I have set the property grid-

auto-flow to dense. The default is sparse meaning that

grid will not attempt this backfilling behaviour.

196 24 ways 2015 edition

Take a look and play around with the full demo (requires a

CSS grid layout-supporting browser):

See the Pen Grid auto-flow with rules by rachelandrew

(@rachelandrew) on CodePen.

Grid, Flexbox, Box Alignment: Our New System for Layout

24 ways 2015 edition 197

http://codepen.io/rachelandrew/pen/3c47bd9218977b17f4fad2842fc1dccc/
http://codepen.io/rachelandrew
http://codepen.io

198 24 ways 2015 edition

15-4. The final automatic placement example.

MY WISH FOR 2016

I really hope that in 2016, we will see CSS grid layout

finally emerge from behind browser flags, so that we can

start to use these features in production — that we can

start to move away from using the wrong tools for the job.

However, I also hope that we’ll see developers fully

embracing these tools as the new system that they are. I

want to see people exploring the possibilities they give us,

rather than trying to get them to behave like the grid

systems of 2015. As you discover these new modules,

treat them as the new paradigm that they are, get creative

with them. And, as you find the edges of possibility with

them, take that feedback to the CSS Working Group. Help

improve the layout systems that will shape the look of the

future web.

SOME FURTHER READING

▪ I maintain a site of grid layout examples and resources

at Grid by Example.

▪ The three CSS specifications I’ve discussed can be

found as editor’s drafts: CSS grid, flexbox, box alignment.

▪ I wrote about the last three years of my interest in CSS

grid layout, which gives something of a history of the

specification.

Grid, Flexbox, Box Alignment: Our New System for Layout

24 ways 2015 edition 199

http://gridbyexample.com
https://drafts.csswg.org/css-grid-1/
https://drafts.csswg.org/css-flexbox/
https://drafts.csswg.org/css-align/
https://rachelandrew.co.uk/archives/2015/11/03/three-years-with-css-grid-layout/
https://rachelandrew.co.uk/archives/2015/11/03/three-years-with-css-grid-layout/

▪ More examples of box alignment and grid layout.

▪ My presentation at Fronteers earlier this year, in which

I explain more about these concepts.

ABOUT THE AUTHOR

Rachel Andrew is a Director of edgeofmyseat.com, a UK web

development consultancy and creators of the small content

management system, Perch. She is the author of a number of

books, and is a regular columnist for A List Apart.

200 24 ways 2015 edition

https://rachelandrew.co.uk/archives/2015/09/02/css-grid-and-the-box-alignment-module/
https://rachelandrew.co.uk/archives/2015/11/16/but-what-about-old-browsers/
http://grabaperch.com
http://rachelandrew.co.uk/books
http://alistapart.com/author/rachelandrew

She curates a popular email newsletter on CSS Layout, and will

be launching a CSS Layout online workshop in early 2016.

When not writing about business and technology on her blog at

rachelandrew.co.uk or speaking at conferences, you will usually

find Rachel running up and down one of the giant hills in Bristol.

Grid, Flexbox, Box Alignment: Our New System for Layout

24 ways 2015 edition 201

http://csslayout.news
https://thecssworkshop.com
http://rachelandrew.co.uk
http://lanyrd.com/profile/rachelandrew/

Paul Lloyd 24ways.org/201516

16. Beyond the Style
Guide

Much like baking a Christmas cake,
designing for the web involves creating an
experience in layers. Starting with a solid
base that provides the core experience (the
fruit cake), we can add further layers, each
adding refinement (the marzipan) and
delight (the icing).

Don’t worry, this isn’t a misplaced cake recipe, but an

evaluation of modular design and the role style guides can

play in acknowledging these different concerns, be they

presentational or programmatic.

THE AUTEUR’S STYLE GUIDE

Although trained as a graphic designer, it was only when I

encountered the immediacy of the web that I felt truly

empowered as a designer. Given a desire to control every

aspect of the resulting experience, I slowly adopted the

role of an auteur, exploring every part of the web stack:

202 24 ways 2015 edition

http://24ways.org/201516
http://www.bbc.co.uk/food/recipes/apricotandbrandychri_77766
http://styleguides.io/
https://paulrobertlloyd.com/talks/multipack_presents_november_2010
https://paulrobertlloyd.com/talks/multipack_presents_november_2010

front-end to back-end, and everything in between. A few

years ago, I dreaded using the command line. Today, the

terminal is a permanent feature in my Dock.

In straddling the realms of graphic design and

programming, it’s the point at which they meet that I find

most fascinating, with each dicipline valuing the creation

of effective systems, be they for communication or code

efficiency. Front-end style guides live at this intersection,

demonstrating both the modularity of code and the

application of visual design.

PAINTING BY NUMBERS

In our rush to build modular systems, design frameworks

have grown in popularity. While enabling quick assembly,

these come at the cost of originality and creative

expression – perhaps one reason why we’re seeing the

homogenisation of web design.

In editorial design, layouts should accentuate content and

present it in an engaging manner. Yet on the web we see a

practice that seeks templated predictability. In ‘Design

Machines’ Travis Gertz argued that (emphasis added):

Beyond the Style Guide

24 ways 2015 edition 203

http://daverupert.com/2013/04/responsive-deliverables/
http://daverupert.com/2013/04/responsive-deliverables/
http://www.novolume.co.uk/blog/all-websites-look-the-same/
https://louderthanten.com/articles/story/design-machines
https://louderthanten.com/articles/story/design-machines

Design systems still feel like a novelty in
screen-based design. We nerd out over grid
systems and modular scales and obsess over
style guides and pattern libraries. We’re pretty
good at using them to build repeatable
components and site-wide standards, but
that’s sort of where it ends. […] But to stopBut to stop
there is to ignore the true puthere is to ignore the true purpose andrpose and
potential of a design system.potential of a design system.

Unless we consider how interface patterns fully embrace

the design systems they should be built upon, style guides

may exacerbate this paint-by-numbers approach,

encouraging conformance and suppressing creativity.

ANATOMY OF A BUTTON

Let’s take a look at that most canonical of components,

the button, and consider what we might wish to document

and demonstrate in a style guide.

16-1. The different layers of our button component.

204 24 ways 2015 edition

Content

The most variable aspect of any component. Content

guidelines will exert the most influence here, dictating

things like tone of voice (whether we should we use stiff,

formal language like ‘Submit form’, or adopt a more

friendly tone, perhaps ‘Send us your message’) and

appropriate language. For an internationalised interface,

this may also impact word length and text direction or

orientation.

Structure

HTML provides a limited vocabulary which we can use to

structure content and add meaning. For interactive

elements, the choice of element can also affect its

behaviour, such as whether a button submits form data or

links to another page:

<button type="submit">Button text</button>

Button text

Note: One of the reasons I prefer to use <button><button> instead of

<input type=“button”><input type=“button”>, besides allowing the inclusion of

content other than text, is that it has a markup structure

similar to links, therefore keeping implementation differences

to a minimum.

Beyond the Style Guide

24 ways 2015 edition 205

We should also think about each component within the

broader scope of our particular product. For this we can

employ a further vocabulary, which can be expressed by

adding values to the class attribute. For a newspaper, we

might use names like lede, standfirst and headline, while a

social media application might see us reach for words like

stream, action or avatar.

Presentation

The appearance of a component can never be considered

in isolation. Informed by its relationship to other

elements, style guides may document different stylistic

variations of a component, even if the underlying function

remains unchanged: primary and secondary button styles,

for example.

Behaviour

A component can exhibit various states: blank, loading,

partial, error and ideal, and a style guide should reflect

that. Our button component is relatively simple, yet even

here we need to consider hover, focused, active and

disabled states.

Transcending layers

This overview reinforces Ethan’s note from earlier in this

series:

206 24 ways 2015 edition

https://24ways.org/2014/naming-things/
http://scotthurff.com/posts/why-your-user-interface-is-awkward-youre-ignoring-the-ui-stack
https://24ways.org/2015/putting-my-patterns-through-their-paces/

I’ve found that thinking about my design as
existing in broad experience tiers – in layers –
is one of the best ways of designing for the
modern web.

While it’s tempting to describe a component as series of

layers, certain aspects will transcend several of these. The

accessibility of a component, for example, may influence

the choice of language, the legibility of text, colour

contrast and which affordances are provided in different

states.

VISUAL DESIGN LANGUAGE: DOCUMENTING
THE MISSING PIECE

Even given this small, self-contained component, we can

see several concerns at play, and in reviewing our button

it seems we have most things covered. However, a few

questions remain unanswered. Why does it have a blue

background? Why are the borders 2px thick, with a radius

of 4px? Why are we using that font, at that size and with

that weight?

These questions can be answered by our visual design

language. More than a set of type choices and colour

palettes, a design language can dicate common measures,

ratios and the resulting grid(s) these influence. Ideally

governed by a set of broader design principles, it can also

Beyond the Style Guide

24 ways 2015 edition 207

http://alistapart.com/article/content-out-layout

inform an illustration style, the type of photography

sourced or commissioned, and the behaviour of any

animations.

Whereas a style guide ensures conformity, having it

underpinned by an effective design language will allow for

flexibility; only by knowing the rules can you know how to

break them!

16-2. Type pairings in the US Web Design Standards guide.

For a style guide to thoroughly articulate a visual design

system, the spectrum of choices it allows for should be

acknowledged. A fantastic example of this can be found in

208 24 ways 2015 edition

https://24ways.org/2015/animating-your-brand/
https://24ways.org/2015/animating-your-brand/

the US Web Design Standards. By virtue of being a set of

standards designed to apply to a number of different

sites, this guide offers a range of type pairings (that take

into account performance considerations) and provides

primary, secondary and tertiary palette relationships,

with shades and tones thereof:

16-3. Colour palettes in the US Web Design Standards guide.

Beyond the Style Guide

24 ways 2015 edition 209

https://playbook.cio.gov/designstandards/
https://playbook.cio.gov/designstandards/visual-style/#pairings
https://playbook.cio.gov/designstandards/visual-style/#palette

A VISUAL LANGUAGE IN CODE FORM

Properly documenting our design language in a style

guide is a good start, yet even better if it can be expressed

in code. This is where CSS preprocessors become a

powerful ally.

In Sass, methods like mixins and maps can help us

represent relationships between values. Variables (and

CSS variables) extend the vocabulary provided natively by

CSS, meaning we can describe patterns in terms of our

own visual language. These tools effectively become an

interface to our design system. Furthermore, they help

maintain a separation of concerns, with visual

presentation remaining where it should be: in our style

sheets.

Take this simple example, an article summary on a website

counting down the best Christmas movies:

210 24 ways 2015 edition

http://www.w3.org/TR/css-variables/

16-4. The design for our simple component example.

Our markup is as follows, using appropriate semantic

HTML elements and incorporating the vocabulary from

our collection of design patterns (expressed using the

BEM methodology):

<article class="summary">

<h1 class="summary__title">

12

Scrooged (1988)

</h1>

<div class="summary__body">

<p>It’s unlikely that Bill Murray could ever

have got through his career without playing a version of

Scrooge…</p>

</div>

<footer class="summary__meta">

Beyond the Style Guide

24 ways 2015 edition 211

Director: Richard Donner

Stars: Bill Murray, Buddy

Hackett, Karen Allen

</footer>

</article>

We can then describe the presentation of this HTML by

using Sass maps to define our palettes, mixins to include

predefined font metrics, and variables to recall common

measurements:

.summary {

margin-bottom: ($baseline * 4)

}

.summary__title {

@include font-family(display-serif);

@include font-size(title);

color: palette(neutral, dark);

margin-bottom: ($baseline * 4);

border-top: $rule-height solid palette(primary,

purple);

padding-top: ($baseline * 2);

}

.summary__position {

@include font-family(display-sans, 300);

color: palette(neutral, mid);

}

.summary__body {

@include font-family(text-serif);

@include font-size(body);

212 24 ways 2015 edition

http://erskinedesign.com/blog/friendlier-colour-names-sass-maps/

margin-bottom: ($baseline * 2);

}

.summary__meta {

@include font-family(text-sans);

@include font-size(caption);

}

Of course, this is a simplistic example for the purposes of

demonstration. However, such thinking was employed at

a much larger scale at the Guardian. Using a set of Sass

components, complex patterns could be described using a

language familar to everyone on the product team, be

they a designer, developer or product owner:

16-5. The design of a component on the Guardian website,
described in terms of its Sass-powered design system.

Beyond the Style Guide

24 ways 2015 edition 213

https://github.com/guardian/guss
https://github.com/guardian/guss
https://www.youtube.com/watch?v=ciG-A_1FyVg
https://www.youtube.com/watch?v=ciG-A_1FyVg

UNLOCKING POSSIBILITY

Alongside tools like preprocessors, newer CSS layout

modules like flexbox and grid layout mean the friction

we’ve long been accustomed to when creating layouts on

the web is no longer present, and the full separation of

presentation from markup is now possible. Now is the

perfect time for graphic designers to advocate design

systems that these developments empower, and ensure

they’re fully represented in both documentation and

code. That way, together, we can build systems that allow

for greater visual expression. After all, there’s more than

one way to bake a Christmas cake.

ABOUT THE AUTHOR

214 24 ways 2015 edition

http://24ways.org/2015/grid-flexbox-box-alignment-our-new-system-for-layout/
http://24ways.org/2015/grid-flexbox-box-alignment-our-new-system-for-layout/
http://www.bbcgoodfood.com/recipes/collection/christmas-cake
http://www.bbcgoodfood.com/recipes/collection/christmas-cake

Paul Robert Lloyd is an independent designer, writer and

speaker who helps organisations like the Guardian, UNICEF and

Mozilla create purposeful digital products.

If not indulging in his love of train travel, Paul can be found in a

coffee shop, either writing for his blog, or blathering on Twitter.

Beyond the Style Guide

24 ways 2015 edition 215

https://paulrobertlloyd.com/projects/
https://paulrobertlloyd.com/articles/
https://paulrobertlloyd.com/talks/
http://bradshawsguide.org
https://paulrobertlloyd.com/
http://twitter.com/paulrobertlloyd/

Eric Eggert 24ways.org/201517

17. The Accessibility
Mindset

Accessibility is often characterized as
additional work, hard to learn and only
affecting a small number of people. Those
myths have no logical foundation and often
stem from outdated information or
misconceptions.

Indeed, it is an additional skill set to acquire, quite like

learning new JavaScript frameworks, CSS layout

techniques or new HTML elements. But it isn’t

particularly harder to learn than those other skills.

A World Health Organization (WHO) report on

disabilities states that,

[i]ncluding children, over a billion people (or
about 15% of the world’s population) were
estimated to be living with disability.

216 24 ways 2015 edition

http://24ways.org/201517
http://www.who.int/disabilities/world_report/2011/report/en/
http://www.who.int/disabilities/world_report/2011/report/en/

Being disabled is not as unusual as one might think. Due

to chronic health conditions and older people having a

higher risk of disability, we are also currently paving the

cowpath to an internet that we can still use in the future.

Accessibility has a very close relationship with usability,

and advancements in accessibility often yield

improvements in the usability of a website. Websites are

also more adaptable to users’ needs when they are built in

an accessible fashion.

BEYOND THE BARE MINIMUM

In the time of table layouts, web developers could create

code that passed validation rules but didn’t adhere to the

underlying semantic HTML model. We later developed

best practices, like using lists for navigation, and with

HTML5 we started to wrap those lists in nav elements.

Working with accessibility standards is similar. The Web

Content Accessibility Guidelines (WCAG) 2.0 can inform

your decision to make websites accessible and can be

used to test that you met the success criteria. What it

can’t do is measure how well you met them.

W3C developed a long list of techniques that can be used

to make your website accessible, but you might find

yourself in a situation where you need to adapt those

techniques to be the most usable solution for your

particular problem.

The Accessibility Mindset

24 ways 2015 edition 217

http://www.w3.org/WAI/intro/wcag.php
http://www.w3.org/WAI/intro/wcag.php
http://www.w3.org/TR/WCAG20-TECHS/Overview.html

The checkbox below is implemented in an accessible way:

The input element has an id and the label associated

with the checkbox refers to the input using the for

attribute. The hover area is shown with a yellow

background and a black dotted border:

Open video

The label is clickable and the checkbox has an accessible

description. Job done, right? Not really. Take a look at the

space between the label and the checkbox:

Open video

The gutter is created using a right margin which pushes

the label to the right. Users would certainly expect this

space to be clickable as well. The simple solution is to

wrap the label around the checkbox and the text:

Open video

You can also set the label to display:block; to further

increase the clickable area:

Open video

218 24 ways 2015 edition

src/html/images/2015/eggert/checkbox1.mp4
src/html/images/2015/eggert/checkbox1b.mp4
src/html/images/2015/eggert/checkbox2.mp4
src/html/images/2015/eggert/checkbox3.mp4

And while we’re at it, users might expect the whole box to

be clickable anyway. Let’s apply the CSS that was on a

wrapping div element to the label directly:

Open video

The result enhances the usability of your form element

tremendously for people with lower dexterity, using a

voice mouse, or using touch interfaces. And we only used

basic HTML and CSS techniques; no JavaScript was added

and not one extra line of CSS.

<form action="#">

<label for="uniquecheckboxid">

<input type="checkbox" name="checkbox"

id="uniquecheckboxid" />

Checkbox 4

</label>

</form>

Button Example

The button below looks like a typical edit button: a pencil

icon on a real button element. But if you are using a

screen reader or a braille keyboard, the button is just read

as “button” without any indication of what this button is

for.

The Accessibility Mindset

24 ways 2015 edition 219

src/html/images/2015/eggert/checkbox4.mp4
http://www.heydonworks.com/article/reinventing-the-hyperlink

Open video

17-1. A screen reader announcing a button. Contains audio.

The code snippet shows why the button is not properly

announced:

<button>

</button>

An icon font is used to display the icon and no text

alternative is given. A possible solution to this problem is

to use the title or aria-label attributes, which solves

the alternative text use case for screen reader users:

Open video

17-2. A screen reader announcing a button with a title.

However, screen readers are not the only way people with

and without disabilities interact with websites. For

example, users can reset or change font families and sizes

at will. This helps many users make websites easier to

read, including people with dyslexia. Your icon font might

be replaced by a font that doesn’t include the glyphs that

are icons. Additionally, the icon font may not load for

users on slow connections, like on mobile phones inside

220 24 ways 2015 edition

src/html/images/2015/eggert/button1.mp4
src/html/images/2015/eggert/button2.mp4
https://speakerdeck.com/ninjanails/death-to-icon-fonts

trains, or because users decided to block external fonts

altogether. The following screenshots show the mobile

GitHub view with and without external fonts:

17-3. The mobile GitHub view with and without external fonts.

Even if the title/aria-label approach was used, the lack

of visual labels is a barrier for most people under those

circumstances. One way to tackle this is using the old-

fashioned img element with an appropriate alt attribute,

but surprisingly not every browser displays the

alternative text visually when the image doesn’t load.

The Accessibility Mindset

24 ways 2015 edition 221

<button>

</button>

Providing always visible text is an alternative that can

work well if you have the space. It also helps users

understand the meaning of the icons.

<button>

 Edit

</button>

This also reads just fine in screen readers:

Open video

17-4. A screen reader announcing the revised button.

Clever usability enhancements don’t stop at a technical

implementation level. Take the BBC iPlayer pages as an

example: when a user navigates the “captioned videos” or

“audio description” categories and clicks on one of the

videos, captions or audio descriptions are automatically

switched on. Small things like this enhance the usability

and don’t need a lot of engineering resources. It is more

about connecting the usability dots for people with

disabilities. Read more about the BBC iPlayer accessibility

case study.

222 24 ways 2015 edition

src/html/images/2015/eggert/button3.mp4
http://www.smashingmagazine.com/2015/02/bbc-iplayer-accessibility-case-study/
http://www.smashingmagazine.com/2015/02/bbc-iplayer-accessibility-case-study/

MORE INFORMATION

W3C has created several documents that make it easier

to get the gist of what web accessibility is and how it can

benefit everyone. You can find out “How People with

Disabilities Use the Web”, there are “Tips for Getting

Started” for developers, designers and content writers.

And for the more seasoned developer there is a set of

tutorials on web accessibility, including information on

crafting accessible forms and how to use images in an

accessible way.

CONCLUSION

You can only produce a web project with long-lasting

accessibility if accessibility is not an afterthought. Your

organization, your division, your team need to think about

accessibility as something that is the foundation of your

website or project. It needs to be at the same level as

performance, code quality and design, and it needs the

same attention. Users often don’t notice when those

fundamental aspects of good website design and

development are done right. But they’ll always know

when they are implemented poorly.

If you take all this into consideration, you can create

accessibility solutions based on the available data and

bring accessibility to people who didn’t know they’d need

it:

The Accessibility Mindset

24 ways 2015 edition 223

http://www.w3.org/WAI/intro/people-use-web/
http://www.w3.org/WAI/intro/people-use-web/
http://www.w3.org/WAI/gettingstarted/tips/
http://www.w3.org/WAI/gettingstarted/tips/
http://www.w3.org/WAI/tutorials/

Open video

In this video from the latest Apple keynote, the Apple TV

is operated by voice input through a remote. When the

user asks “What did she say?” the video jumps back fifteen

seconds and captions are switched on for a brief time. All

three, the remote, voice input and captions have their

roots in assisting people with disabilities. Now they

benefit everyone.

ABOUT THE AUTHOR

224 24 ways 2015 edition

src/html/images/2015/eggert/appletvsiricaptionsremote.mp4

Eric Eggert is an accessibility advocate living in Essen, Germany,

currently working for the W3C’s Web Accessibility Initiative,

helping the WCAG and EO Working Groups to make

accessibility information easier to find and use. He is co-editor

of the W3C Web Accessibility Tutorials. He also co-owns a

small agency for web development and consulting, called

outline. When he is not working or giving talks about web

topics, he enjoys a game of pool, a festival, or a movie.

The Accessibility Mindset

24 ways 2015 edition 225

http://w3.org/WAI/
http://w3.org/WAI/
http://outlinewebdesign.com

Sally Jenkinson 24ways.org/201518

18. Cooking Up Effective
Technical Writing

Merry Christmas! May your preparations for
this festive season of gluttony be shaping up
beautifully. By the time you read this I hope
you will have ordered your turkey, eaten
twice your weight in Roses/Quality Street
(let’s not get into that argument), and your
Christmas cake has been baked and is now
quietly absorbing regular doses of alcohol.

Some of you may be reading this and scoffing “Of course!

I’ve also made three batches of mince pies, a seasonal

chutney and enough gingerbread men to feed the whole

street!” while others may be laughing “Bake? Oh no, I can’t

cook to save my life.”

For beginners, recipes are the step-by-step instructions

that hand-hold us through the cooking process, but even

as a seasoned expert you’re likely to refer to a recipe at

some point. Recipes tell us what we need, what to do with

it, in what order, and what the outcome will be. It’s the

documentation behind our ideas, and allows us to take the

226 24 ways 2015 edition

http://24ways.org/201518
https://en.wikipedia.org/wiki/Cadbury_Roses
https://en.wikipedia.org/wiki/Quality_Street_%28confectionery%29

blueprint for a tasty morsel and to share it with others so

they can recreate it. In fact, this is a little like the open

source documentation and tutorials that we put out

there, similarly aiming to guide other developers through

our creations.

THE ‘JUST’IFICATION OF DOCUMENTATION

Lately it feels like we’re starting to consider the

importance of our words, and the impact they can have on

others. Brad Frost warned us of the dangers of “Just”

when it comes to offering up solutions to queries:

“JustJust use this software/platform/toolkit/
methodology…”

“Just” makes me feel like an idiot. “Just”
presumes I come from a specific background,
studied certain courses in university, am fluent
in certain technologies, and have read all the
right books, articles, and resources. “Just” is a
dangerous word.

“Just” by Brad Frost

I can really empathise with these sentiments. My

relationship with code started out as many good web tales

do, with good old HTML, CSS and JavaScript. University

years involved some time with Perl, PHP, Java and C. In

my first job I worked primarily with ColdFusion, a bit of

Cooking Up Effective Technical Writing

24 ways 2015 edition 227

https://the-pastry-box-project.net/brad-frost/2014-january-28

ActionScript, some classic ASP and pinch of Java. I’d do a

bit of PHP outside work every now and again. .NET came

in, but we never really got on, and eventually I started

learning some Ruby, Python and Node. It was a broad set

of learnings, and I enjoyed the similarities and differences

that came with new languages. I don’t develop day in, day

out any more, and my interests and work have evolved

over the years, away from full-time development and

more into architecture and strategy. But I still make

things, and I still enjoy learning.

I have often found myself bemoaning the lack of tutorials

or courses that cater for the middle level – someone who

may be learning a new language, but who has enough

programming experience under their belt to not need to

revise the concepts of how loops or objects work, and is

perfectly adept at googling the syntax for getting a

substring. I don’t want snippets out of context; I want an

understanding of architectural principles, of the strengths

and weaknesses, of the type of applications that work well

with the language.

I’m caught in the place between snoozing off when ‘Using

the Instagram API with Ruby’ hand-holds me through

what REST is, and feeling like I’m stupid and need to go

back to dev school when I can’t get my environment and

dependencies set up, let alone work out how I’m meant to

get any code to run.

228 24 ways 2015 edition

It’s seems I’m not alone with this – Erin McKean seems to

have been here too:

“Some tutorials (especially coding tutorials)
like to begin things in media res. Great for a
sense of dramatic action, bad for getting to
“Step 1” without tears. It can be really
discouraging to fire up a fresh terminal window
only to be confronted by error message after
error message because there were obligatory
steps 0.1.0 through 0.9.9 that you didn’t even
know about.”

“Tips for Learning What You Don’t Know You Don’t Know”

by Erin McKean

I’m sure you’ve been here too. Many tutorials suffer badly

from the fabled ‘how to draw an owl’-itis.

Cooking Up Effective Technical Writing

24 ways 2015 edition 229

https://the-pastry-box-project.net/erin-mckean/2015-october-24

It’s the kind of feeling you can easily get when sifting

through recipes as well as with code. Far from being the

simple instructions that let us just follow along, they too

can be a minefield. Fall in too low and you may be skipping

over an explanation of what simmering is, or set your

sights too high and you may get stuck at the point where

you’re trying to sous vide a steak using your bathtub and a

Ziploc bag.

230 24 ways 2015 edition

DON’T BE A TURKEY, USE YOUR LOAF!

My mum is a great cook in my eyes (aren’t all mums?). I

love her handcrafted collection of gathered recipes from

over the years, including the one below, which is a great

example of how something may make complete sense to

the writer, but could be impermeable to a reader.

Depending on your level of baking knowledge, you may

ask: “What’s SR flour? What’s a tsp? Should I use salted or

unsalted butter? Do I use sticks of cinnamon or ground?

Why is chopped chocolate better? How do I cream things?

How big should the balls be? How well is “well spaced”?

How much leeway do I have for “(ish!!)”? Does the “20” on

the other cookie note mean I’ll end up with twenty?” At

Cooking Up Effective Technical Writing

24 ways 2015 edition 231

any point, making a wrong call could lead to rubbish

cookies, and lead to someone heading down the path of an

“I can’t cook” mentality.

You may be able to cook (or follow recipes), but you may

not understand the local terms for ingredients, may not

be able to acquire something and need to know what kind

of substitutes you can use, or may need to actually do

some prep before you jump into the main bit.

However, if we look at good examples of recipes, I think

there’s a lot we can apply when it comes to technical

writing on the web. I’ve written before about the benefit

of breaking documentation into small, reusable parts, and

this will help us, but we can also take it a bit further. Here

are my five top tips for better technical writing.

1. STRUCTURE AND STANDARDISE YOUR
INFORMATION

Think of the structure of a recipe. We very often have

some common elements and they usually follow roughly

the same format. We have standards and conventions

that allow us to understand very quickly what a recipe is

and how it should be used.

232 24 ways 2015 edition

Great recipes help their chefs know what they need to get

ready in advance, both in terms of buying ingredients and

putting together their kit. They then talk through the

process, using appropriate language, and without making

assumptions that the person can fill in any gaps for

themselves; they explain why things are done the way

they are. The best recipes may also suggest how you can

take what you’ve done and put your own spin on it. For

instance, a good recipe for the simple act of boiling an egg

will explain cooking time in relation to your preference for

yolk gooiness. There are also different flavour

combinations to try, accompaniments, or presentation

suggestions.

Cooking Up Effective Technical Writing

24 ways 2015 edition 233

By breaking down your technical writing into similar

sections, you can help your audience understand the

elements they’ll be working with, what they need to do

once they have these, and how they can move on from

your self-contained illustration.

234 24 ways 2015 edition

Title
Ensure your title is suitably descriptive and

representative of the result. Getting Started

with Python perhaps isn’t as helpful as Learn

Python: General Syntax and Basics.

Result
Many recipes include a couple of lines as an

overview of what you’ll end up with, and many

include a photo of the finished dish. With our

technical writing we can do the same:

“In this tutorial we’re going to learn how to set

up our development environment, and we’ll

then undertake some exercises to explore the

general syntax, finishing by building a mini

calculator.”

Ingredients
What are the components we’ll be working

with, whether in terms of versions,

environment, languages or the software

packages and libraries you’ll need along the

way? Listing these up front gives the reader a

great summary of the things they’ll be using,

and any gotchas.

Being able to provide a small amount of

supporting information will also help less

experienced users. Ideally, explain briefly what

things are and why we’re using it.

Cooking Up Effective Technical Writing

24 ways 2015 edition 235

Prep
As we heard from Erin above, not fully

understanding the prep needed can be a huge

source of frustration. Attempting to run a code

snippet without context will often lead to

failure when the prerequisites and process

aren’t clear. Be sure to include information

around any environment set-up, installation or

config you’ll need to have done before you

start.

Stu Robson’s Simple Sass documentation aims

to do this before getting into specifics,

although ideally this would also include setting

up Sass itself.

Instructions
The body of the tutorial itself is the whole

point of our writing. The next four tips will

hopefully make your tutorial much more

successful.

Variations
Like our ingredients section, as important as

explaining why we’re using something in this

context is, it’s also great to explain alternatives

that could be used instead, and the impact of

doing so.

236 24 ways 2015 edition

https://github.com/sturobson/simpleSass

Perhaps go a step further, explaining ways that

people can change what you have done in your

tutorial/readme for use in different situations,

or to provide further reading around next

steps. What happens if they want to change

your static array of demo data to use JSON, for

instance? By giving some thought to follow-up

questions, you can better support your

readers.

While not in a separate section, the source

code for GreenSock’s GSAP JS basics explains:

“We’ll use a window.onload for simplicity, but

typically it is best to use either jQuery’s

$(document).ready() or $(window).load() or

cross-browser event listeners so that you’re

not limited to one.”

Keep in mind to both:

▪ Explain what variations are possible.

▪ Explain why certain options may be

more desirable than others in different

situations.

Cooking Up Effective Technical Writing

24 ways 2015 edition 237

http://greensock.com/jump-start-js#basic-tween

2. SMALL, REUSABLE COMPONENTS

Reusable components are for life, not just for Christmas,

and they’re certainly not just for development. If you start

to apply the structure above to your writing, you’re

probably going to keep coming across the same elements:

“Do I really have to explain how to install Sass and Node.js

again, Sally?” The danger with more clarity is that our

writing becomes bloated and overly convoluted for

advanced readers, those who don’t need to be told how to

beat an egg for the hundredth time.

Instead, by making our writing reusable and modular, and

by creating smaller, central resources, we can provide

context and extra detail where needed without diluting

our core message. These could be references we create,

or those already created well by others.

238 24 ways 2015 edition

This recipe for katsudon makes use of this concept.

Rather than explaining how to make tonkatsu or dashi

stock, these each have their own page. Once familiar,

more advanced readers will likely skip over the

instructions for the component parts.

Cooking Up Effective Technical Writing

24 ways 2015 edition 239

3. PROVIDE CONTEXT TO AID ACCESSIBILITY

Here I’m talking about accessibility in the broadest sense.

Small, isolated snippets can be frustrating to those who

don’t fully understand the wider context of how our

examples work.

Showing an exciting standalone JavaScript function is

great, but giving someone the full picture of how and

when this is called, and how it should be included in

relation to other HTML and CSS is even better. Giving

your readers the ability to view a big picture version, and

ideally the ability to download a full version of the source,

will help to reduce some of the frustrations of trying to

get your component to work in their set-up.

4. BE YOUR OWN TECH EDITOR

A good editor can be invaluable to your work, and

wherever possible I’d recommend that you try to get a

neutral party to read over your writing. This may not

always be possible, though, and you may need to rely on

yourself to cast a critical eye over your work.

There are many tips out there around general editing,

including printing out your work onto paper, or changing

the font size: both will force your eyes to review it in a

new light. Beyond this, I’d like to encourage you to think

about the following:

240 24 ways 2015 edition

▪ Explain what things are. For example, instead of

referencing Grunt, in the first instance perhaps reference

“Grunt (a JavaScript task runner that minimises repetitive

activities through automation).”

▪ Explain how you get things, even if this is a link to

official installers and documentation. Don’t leave your

readers having to search.

▪ Why are you using this approach/technology over

other options?

▪ What happens if I use something else? What depends

on this?

▪ Avoid exclusionary lingo or acronyms.

Airbnb’s JavaScript Style Guide includes useful pointers

around their reasoning:

Use computed property names when creating
objects with dynamic property names.

Why? They allow you to define all the
properties of an object in one place.

The language we use often makes assumptions, as we saw

with “just”. An article titled “ES6 for Beginners” is hugely

ambiguous: is this truly for beginner coders, or actually

for people who have a good pre-existing understanding of

JavaScript but are new to these features? Review your

writing with different types of readers in mind. How might

you confuse or mislead them? How can you better answer

their questions?

Cooking Up Effective Technical Writing

24 ways 2015 edition 241

http://gruntjs.com/
https://github.com/airbnb/javascript

This doesn’t necessarily mean supporting everyone – your

audience may need to have advanced skills – but even if

you’re providing low-level, deep-dive, reference material,

trying not to make assumptions or take shortcuts will

hopefully lead to better, clearer writing.

5. A PICTURE IS WORTH A THOUSAND
WORDS…

…or even better: use a thousand pictures, stitched

together into a quick video or animated GIF. People learn

in different ways. Just as recipes often provide visual

references or a video to work along with, providing your

technical information with alternative demonstrations

can really help get your point across. Your audience will

be able to see exactly what you’re doing, what they should

expect as interaction responses, and what the process

looks like at different points.

There are many, many options for recording your screen,

including QuickTime Player on Mac OS X (File→ New Screen

Recording), GifGrabber, or Giffing Tool on Windows.

Paul Swain, a UX designer, uses GIFs to provide additional

context within his documentation, improving

communication:

242 24 ways 2015 edition

http://www.gifgrabber.com/
http://giffingtool.com

“My colleagues (from across the organisation)
love animated GIFs. Any time an interaction is
referenced, it’s accompanied by a GIF and a
shared understanding of what’s being
designed. The humble GIF is worth so much
more than a thousand words; and it’s great for
cats.”

Paul Swain

◆◆◆

Next time you’re cooking up some instructions for

readers, think back to what we can learn from recipes to

help make your writing as accessible as possible. Use

structure, provide reusable bitesize morsels, give some

context, edit wisely, and don’t scrimp on the GIFs. And

above all, have a great Christmas!

Cooking Up Effective Technical Writing

24 ways 2015 edition 243

ABOUT THE AUTHOR

Sally Jenkinson is a consultant and digital solutions architect

based in the UK, who, through her company Records Sound the

Same, helps businesses from big to small with their discovery,

requirements, and strategic digital decisions.

Central to this are Sally’s views of responsibly using technology

to enhance experiences, improving older systems and processes

through transformation work, and talking about technical

things in a way that isn’t scary or boring to her clients. She has

244 24 ways 2015 edition

worked with people including Inghams, Nokia, Macmillan

Cancer Support, and Electronic Arts, and is also a speaker, an

author, and overenthusiastic jasmine tea drinker.

You can find out more about Sally’s work at

recordssoundthesame.com, and she tweets as @sjenkinson

when she’s not got her head stuck in a comic book or her hands

wrapped around an Xbox One controller.

Cooking Up Effective Technical Writing

24 ways 2015 edition 245

http://recordssoundthesame.com
https://twitter.com/sjenkinson

Jonathan Snook 24ways.org/201519

19. Being Responsive to
the Small Things

It’s that time of the year again to trim the
tree with decorations. Or maybe a DOM tree?

Any web page is made of HTML elements that lay

themselves out in a tree structure. We start at the top and

then have multiple branches with branches that branch

out from there.

246 24 ways 2015 edition

http://24ways.org/201519

To decorate our tree, we use CSS to specify which

branches should receive the tinsel we wish to adorn upon

it. It’s all so lovely.

In years past, this was rather straightforward. But these

days, our trees need to be versatile. They need to be

responsive!

Being Responsive to the Small Things

24 ways 2015 edition 247

Responsive web design is pretty wonderful, isn’t it? Based

on our viewport, we can decide how elements on the page

should change their appearance to accommodate various

constraints using media queries.

19-1. Clearleft have a delightfully clean and responsive site

Alas, it’s not all sunshine, lollipops, and rainbows.

With complex layouts, we may have design chunks — let’s

call them components — that appear in different contexts.

Each context may end up providing its own constraints on

the design, both in its default state and in its possibly

various responsive states.

248 24 ways 2015 edition

Media queries, however, limit us to the context of the

entire viewport, not individual containers on the page. For

every container our component lives in, we need to

specify how to rearrange things in that context. The more

complex the system, the more contexts we need to write

code for.

@media (min-width: 800px) {

.features > .component { }

.sidebar > .component {}

.grid > .component {}

}

Each new component and each new breakpoint just

makes the entire system that much more difficult to

maintain.

@media (min-width: 600px) {

.features > .component { }

.grid > .component {}

}

Being Responsive to the Small Things

24 ways 2015 edition 249

@media (min-width: 800px) {

.features > .component { }

.sidebar > .component {}

.grid > .component {}

}

@media (min-width: 1024px) {

.features > .component { }

}

ENTER CONTAINER QUERIES

Container queries, also known as element queries, allow

you to specify conditional CSS based on the width (or

maybe height) of the container that an element lives in. In

doing so, you no longer have to consider the entire page

and the interplay of all the elements within.

With container queries, you’ll be able to consider the

breakpoints of just the component you’re designing. As a

result, you end up specifying less code and the

components you develop have fewer dependencies on the

things around them. (I guess that makes your components

more independent.)

Awesome, right?

There’s only one catch.

250 24 ways 2015 edition

Browsers can’t do container queries. There’s not even an

official specification for them yet. The Responsive Issues

(née Images) Community Group is looking into solving

how such a thing would actually work.

See, container queries are tricky from an implementation

perspective. The contents of a container can affect the

size of the container. Because of this, you end up with

troublesome circular references.

For example, if the width of the container is under 500px

then the width of the child element should be 600px, and

if the width of the container is over 500px then the width

of the child element should be 400px.

Can you see the dilemma? When the container is under

500px, the child element resizes to 600px and suddenly

the container is 600px. If the container is 600px, then the

child element is 400px! And so on, forever. This is bad.

I guess we should all just go home and sulk about how we

just got a pile of socks when we really wanted the

Millennium Falcon.

OUR SAVIOUR THIS CHRISTMAS: JAVASCRIPT

The three wise men — Tim Berners-Lee, Håkon Wium Lie,

and Brendan Eich — brought us the gifts of HTML, CSS,

and JavaScript.

Being Responsive to the Small Things

24 ways 2015 edition 251

http://ricg.io
http://ricg.io

To date, there are a handful of open source solutions to fill

the gap until a browser implementation sees the light of

day.

▪ Elementary by Scott Jehl

▪ ElementQuery by Tyson Matanich

▪ EQ.js by Sam Richards

▪ CSS Element Queries from Marcj

Using any of these can sometimes feel like your toy broke

within ten minutes of unwrapping it.

Each take their own approach on how to specify the query

conditions. For example, Elementary, the smallest of the

group, only supports min-width declarations made in a

:before selector.

.mod-foo:before {

content: “300 410 500”;

}

The script loops through all the elements that you specify,

reading the content property and then setting an

attribute value on the HTML element, allowing you to use

CSS to style that condition.

.mod-foo[data-minwidth~="300"] {

background: blue;

}

To get the script to run, you’ll need to set up event

handlers for when the page loads and for when it resizes.

252 24 ways 2015 edition

https://github.com/filamentgroup/elementary
https://github.com/tysonmatanich/elementQuery
https://github.com/Snugug/eq.js
https://github.com/marcj/css-element-queries

window.addEventListener("load", window.elementary,

false);

window.addEventListener("resize", window.elementary,

false);

This works okay for static sites but breaks down on pages

where elements can expand or contract, or where new

content is dynamically inserted.

In the case of EQ.js, the implementation requires the

creation of the breakpoints in the HTML. That means that

you have implementation details in HTML, JavaScript, and

CSS. (Although, with the JavaScript, once it’s in the build

system, it shouldn’t ever be much of a concern unless

you’re tracking down a bug.)

Another problem you may run into is the use of content

delivery networks (CDNs) or cross-origin security issues.

The ElementQuery and CSS Element Queries libraries

need to be able to read the CSS file. If you are unable to

set up proper cross-origin resource sharing (CORS)

headers, these libraries won’t help.

At Shopify, for example, we had all of these problems. The

admin that store owners use is very dynamic and the CSS

and JavaScript were being loaded from a CDN that

prevented the JavaScript from reading the CSS.

Being Responsive to the Small Things

24 ways 2015 edition 253

To go responsive, the team built their own solution — one

similar to the other scripts above, in that it loops through

elements and adds or removes classes (instead of data

attributes) based on minimum or maximum width.

The caveat to this particular approach is that the

declaration of breakpoints had to be done in JavaScript.

elements = [

{ ‘module’: “.carousel”, “className”:’alpha’,

minWidth: 768, maxWidth: 1024 },

{ ‘module’: “.button”, “className”:’beta’, minWidth:

768, maxWidth: 1024 } ,

{ ‘module’: “.grid”, “className”:’cappa’, minWidth:

768, maxWidth: 1024 }

]

With that done, the script then had to be set to run during

various events such as inserting new content via Ajax

calls. This sometimes reveals itself in flashes of unstyled

breakpoints (FOUB). An unfortunate side effect but one

largely imperceptible.

Using this approach, however, allowed the Shopify team

to make the admin responsive really quickly. Each

member of the team was able to tackle the responsive

story for a particular component without much concern

for how all the other components would react.

254 24 ways 2015 edition

Each element responds to its own breakpoint that would

amount to dozens of breakpoints using traditional

breakpoints. This approach allows for a truly fluid and

adaptive interface for all screens.

CHRISTMAS IS OVER

I wish I were the bearer of greater tidings and cheer. It’s

not all bad, though. We may one day see browsers

implement container queries natively. At which point, we

shall all rejoice!

Being Responsive to the Small Things

24 ways 2015 edition 255

ABOUT THE AUTHOR

Jonathan Snook writes about tips, tricks, and bookmarks on his

blog at Snook.ca. He has also written for A List Apart and .net

magazine, and has co-authored two books, The Art and Science

of CSS and Accelerated DOM Scripting. He has also authored

and received world-wide acclaim for the self-published book,

Scalable and Modular Architecture for CSS sharing his

experience and best practices on CSS architecture.

Photo: Patrick H. Lauke

256 24 ways 2015 edition

http://snook.ca/
http://snook.ca/archives/writing/art_science_of_css
http://snook.ca/archives/writing/art_science_of_css
http://snook.ca/archives/javascript/accelerated_dom_scripting/
http://smacss.com
http://splintered.co.uk

Rebecca Cottrell 24ways.org/201520

20. Make a Comic

For something slightly different over
Christmas, why not step away from your
computer and make a comic?

Make a Comic

24 ways 2015 edition 257

http://24ways.org/201520

20-1. Definitely not the author working on a comic in the studio,
with the desk displaying some of the things you need to make a
comic on paper.

WHY MAKE A COMIC?

First of all, it’s truly fun and it’s not that difficult. If you’re

a designer, you can use skills you already have, so why not

take some time to indulge your aesthetic whims and make

something for yourself, rather than for a client or your

company. And you can use a computer – or not.

If you’re an interaction designer, it’s likely you’ve already

made a storyboard or flow, or designed some characters

for personas. This is a wee jump away from that, to the

258 24 ways 2015 edition

realm of storytelling and navigating human emotions

through characters who may or may not be human.

Similar medium and skills, different content.

It’s not a client deliverable but something that stands by

itself, and you’ve nobody’s criteria to meet except those

that exist in your imagination!

Thanks to your brain and the alchemy of comics, you can

put nearly anything in a sequence and your brain will find

a way to make sense of it. Scott McCloud wrote about the

non sequitur in comics:

“There is a kind of alchemy at work in the
space between panels which can help us find
meaning or resonance in even the most jarring
of combinations.”

Here’s an example of a non sequitur from Scott McCloud’s

Understanding Comics – the images bear no relation to one

another, but since they’re in a sequence our brains do

their best to understand it:

Make a Comic

24 ways 2015 edition 259

https://en.wikipedia.org/wiki/Understanding_Comics

Once you know this it takes the pressure off somewhat.

It’s a fun thing to keep in mind and experiment with in

your comics!

MATERIALS NEEDED

▪ A4 copy/printing paper

▪ HB pencil for light drawing

▪ Dip pen and waterproof Indian ink

▪ Bristol board (or any good quality card with a smooth,

durable surface)

260 24 ways 2015 edition

https://en.wikipedia.org/wiki/Dip_pen
https://en.wikipedia.org/wiki/Bristol_board

STEP 1: GET IDEAS

You’d be surprised where you can take a small grain of an

idea and develop it into an interesting comic. Think about

a funny conversation you had, or any irrational fears,

habits, dreams or anything else. Just start writing and

drawing. Having ideas is hard, I know, but you will get

some ideas when you start working.

One way to keep track of ideas is to keep a sketch diary,

capturing funny conversations and other events you could

use in comics later.

You might want to just sketch out the whole comic very

roughly if that helps. I tend to sketch the story first, but it

usually changes drastically during step 2.

Make a Comic

24 ways 2015 edition 261

STEP 2: EDIT YOUR STORY USING THUMBNAILS

20-2. How thumbnailing works.

Why use thumbnails? You can move them around or get

rid of them!

Drawings are harder and much slower to edit than words,

so you need to draw something very quick and very rough.

You don’t have to care about drawing quality at this point.

You might already have a drafted comic from the previous

step; now you can split each panel up into a thumbnail like

the image above.

Get an A4 sheet of printing paper and tear it up into

squares. A thumbnail equals a comic panel. Start drawing

one panel per thumbnail. This way you can move scenes

262 24 ways 2015 edition

and parts of the story around as you work on the pacing.

It’s an extremely useful tip if you want to expand a

moment in time or draw out a dialogue, or if you want to

just completely cut scenes.

STEP 3: PLAN A LAYOUT

So you’ve got the story more or less down: you now need

to know how they’ll look on the page. Sketch a layout and

arrange the thumbnails into the layout.

The simplest way to do this is to divide an A4 page into

equal panels — say, nine. But if you want, you can be more

creative than that. The Gigantic Beard That Was Evil by

Stephen Collins is an excellent example of the scope for

using page layout creatively. You can really push the form:

play with layout, scale, story and what you think of as a

comic.

STEP 4: DRAW THE COMIC

I recommend drawing on A4 Bristol board paper since it

has a smooth surface, can tolerate a lot of rubbing out and

holds ink well. You can get it from any art shop.

Using your thumbnails for reference, draw the comic

lightly using an HB pencil. Don’t make the line so heavy

that it can’t be erased (since you’ll ink over the lines later).

Make a Comic

24 ways 2015 edition 263

http://www.theguardian.com/books/2013/may/13/gigantic-beard-evil-collins-review

STEP 5: INK THE COMIC

20-3. Image before colour was added.

You’ve drawn your story. Well done!

Now for the fun part. I recommend using a dip pen and

some waterproof ink. Why waterproof? If you want, you

can add an ink wash later, or even paint it.

If you don’t have a dip pen, you could also use any quality

pen. Carefully go over your pencilled lines with the pen,

working from top left to right and down, to avoid

smudging it. It’s unfortunately easy to smudge the ink

from the dip pen, so I recommend practising first.

264 24 ways 2015 edition

You’ve made a comic!

STEP 6: ADDING COLOUR

Comics traditionally had a limited colour palette before

computers (here’s an in-depth explanation if you’re

curious). You can actually do a huge amount with a

restricted colour palette. Ellice Weaver’s comics show

how very nicely how you can paint your work using a

restricted palette. So for the next step, resist the

temptation to add ALL THE COLOURS and consider using

a limited palette.

Once the ink is completely dry, erase the pencilled lines

and you’ll be left with a beautiful inked black and white

drawing.

You could use a computer for this part. You could also

photocopy it and paint straight on the copy. If you’re

feeling really brave, you could paint straight on the

original. But I’d suggest not doing this if it’s your first try

at painting!

What follows is an extremely basic guide for painting

using Photoshop, but there are hundreds of brilliant

articles out there and different techniques for digital

painting.

Make a Comic

24 ways 2015 edition 265

http://www.comicartistsdirect.com/articles/coloring.html
http://www.comicartistsdirect.com/articles/coloring.html
http://elliceweaver.tumblr.com/

How to paint your comic using Photoshop

▪ Scan the drawing and open it in Photoshop. You can

adjust the levels (Image→ Adjustments→ Levels) to make the

lines darker and crisper, and the paper invisible. At this

stage, you can erase any smudges or mistakes. With a

Wacom tablet, you could even completely redraw parts!

Computers are just amazing. Keep the line art as its own

layer.

▪ Add a new layer on top of the lines, and set the layer

state from normal to multiply. This means you can paint

your comic without obscuring your lines. Rename the

layer something else, so you can keep track.

▪ Start blocking in colour. And once you’re happy with

that, experiment with adding tone and texture.

CHRISTMAS COMIC CHALLENGE!

Why not challenge yourself to make a short comic over

Christmas? If you make one, share it in the comments. Or

show me on Twitter — I’d love to see it.

◆◆◆

Credit: Many of these techniques were learned on the

Royal Drawing School’s brilliant ‘Drawing the Graphic

Novel’ course.

266 24 ways 2015 edition

http://twitter.com/rivalee
http://royaldrawingschool.org/

ABOUT THE AUTHOR

Rebecca Cottrell is an independent interaction designer,

currently working with the Government Digital Service on

GOV.UK. She lives in London, owns two adorable lovebirds, and

likes drawing comics. Some of which you can see on her tumblr.

She is on twitter.

Make a Comic

24 ways 2015 edition 267

http://rcottrell.com/
http://rapturebird.tumblr.com/
http://twitter.com/rivalee

Heather Burns 24ways.org/201521

21. What’s Ahead for
Your Data in 2016?

Who owns your data? Who decides what can
you do with it? Where can you store it? What
guarantee do you have over your data’s
privacy? Where can you publish your work?
Can you adapt software to accommodate
your disability? Is your tiny agency subject to
corporate regulation? Does another country
have rights over your intellectual property?

If you aren’t the kind of person who is interested in

international politics, I hate to break it to you: in 2016 the

legal foundations which underpin our work on the web

are being revisited in not one but three major

international political agreements, and every single one of

those questions is up for grabs. These agreements – the

draft EU Data Protection Regulation (EUDPR), the Trans-

Pacific Partnership (TPP), and the draft Transatlantic

Trade and Investment Partnership (TTIP) – stand poised

to have a major impact on your data, your workflows, and

268 24 ways 2015 edition

http://24ways.org/201521

your digital rights. While some proposed changes could

protect the open web for the future, other provisions

would set the internet back several decades.

In this article we will review the issues you need to be

aware of as a digital professional. While each of these

agreements covers dozens of topics ranging from climate

change to food safety, we will focus solely on the aspects

which pertain to the work we do on the web.

THE TRANS-PACIFIC PARTNERSHIP

The Trans-Pacific Partnership (TPP) is a free trade

agreement between the US, Japan, Malaysia, Vietnam,

Singapore, Brunei, Australia, New Zealand, Canada,

Mexico, Chile and Peru – a bloc comprising 40% of the

world’s economy. The agreement is expected to be signed

by all parties, and thereby to come into effect, in 2016.

This agreement is ostensibly about the bloc and its

members working together for their common interests.

However, the latest draft text of the TPP, which was

formulated entirely in secret, has only been made publicly

available on a Medium blog published by the U.S. Trade

Representative which features a patriotic banner at the

top proclaiming “TPP: Made in America.” The message

sent about who holds the balance of power in this

agreement, and whose interests it will benefit, is clear.

What’s Ahead for Your Data in 2016?

24 ways 2015 edition 269

https://medium.com/the-trans-pacific-partnership

By far the most controversial area of the TPP has centred

around the provisions on intellectual property. These

include copyright terms of up to 120 years, mandatory

takedowns of allegedly infringing content in response to

just one complaint regardless of that complaint’s validity,

heavy and disproportionate penalties for alleged

violations, and – most frightening of all – government

seizures of equipment allegedly used for copyright

violations. All of these provisions have been raised

without regard for the fact that a trade agreement is not

the appropriate venue to negotiate intellectual property

law.

Other draft TPP provisions would restrict the digital

rights of people with disabilities by banning the

workarounds they use every day. These include no

exemptions for the adaptations of copywritten works for

use in accessible technology (such as text-to-speech in

ebook readers), a ban on circumventing DRM or digital

locks in order to convert a file to an accessible format, and

requiring the takedown of adapted works, such as a video

with added subtitles, even if that adaptation would

normally have fallen under the definition of fair use.

The e-commerce provisions would prohibit data

localisation, the practice of requiring data to be physically

stored on servers within a country’s borders. Data

localisation is growing in popularity following the

Snowden revelations, and some of your own personal

270 24 ways 2015 edition

http://medium.com/the-trans-pacific-partnership/intellectual-property-3479efdc7adf
http://medium.com/the-trans-pacific-partnership/electronic-commerce-87766c98a068
http://www.irishexaminer.com/examviral/technology-and-gaming/microsoft-is-opening-data-centres-in-britain-for-the-first-time-ever-364148.html

data may have been recently “localised” in response to the

Safe Harbor verdict. Prohibiting data localisation through

the TPP would address the symptom but not the cause.

The Electronic Frontier Foundation has published an

excellent summary of the digital rights issues raised by the

agreement along with suggested actions American

readers can take to speak out.

TRANSATLANTIC TRADE AND INVESTMENT
PARTNERSHIP

TTIP stands for the Transatlantic Trade and Investment

Partnership, a draft free trade agreement between the

United States and the EU. The plan has been hugely

controversial and divisive, and the internet and digital

provisions of the draft form just a small part of that

contention.

The most striking digital provision of TTIP is an attempt to

circumvent and override European data protection law.

As EDRI, a European digital rights organisation, noted:

What’s Ahead for Your Data in 2016?

24 ways 2015 edition 271

http://www.wsj.com/articles/firms-shift-data-to-europe-as-safe-harbor-pact-ends-1446478648
https://www.eff.org/deeplinks/2015/12/how-tpp-will-affect-you-and-your-digital-rights
https://edri.org/ttip-and-digital-rights-the-booklet/

“the US proposal would authorise the transfer
of EU citizens’ personal data to any country,
trumping the EU data protection framework,
which ensures that this data can only be
transferred in clearly defined circumstances.
For years, the US has been trying to bypass the
default requirement for storage of personal
data in the EU. It is therefore not surprising to
see such a proposal being {introduced} in the
context of the trade negotiations.”

This draft provision was written before the Safe Harbor

data protection agreement between the EU and US was

invalidated by the Court of Justice of the European Union.

In other words, there is no longer any protective

agreement in place, and our data is as vulnerable as this

political situation. However, data protection is a matter of

its own law, the acting Data Protection Directive and the

draft EU Data Protection Reform. A trade agreement, be

it the TTIP or the TPP, is not the appropriate place to

revamp a law on data protection.

Other digital law issues raised by TTIP include the

possibility of renegotiating standards on encryption

(which in practice means lowering them) and

renegotiating intellectual property rights such as

copyright. The spectre of net neutrality has even put in an

appearance, with an attempt to introduce rules on access

to the internet itself being introduced as provisions.

272 24 ways 2015 edition

http://arstechnica.co.uk/tech-policy/2015/10/europes-highest-court-strikes-down-safe-harbour-data-sharing-between-eu-and-us/
http://arstechnica.co.uk/tech-policy/2015/10/europes-highest-court-strikes-down-safe-harbour-data-sharing-between-eu-and-us/
http://trade.ec.europa.eu/doclib/docs/2014/july/tradoc_152666.pdf
https://www.eff.org/deeplinks/2015/01/europe-releases-its-ttip-proposals-intellectual-property
http://data.awp.is/filtrala/2014/12/17/19.html

TTIP is still under discussion, and this month the EU trade

representative said that “we agreed to further intensify

our work during 2016 to help negotiations move forward

rapidly.” This has been cleverly worded: this means the

agreement has little chance of being passed or coming

into effect in 2016, which buys civil society more precious

time to speak out.

THE EU DATA PROTECTION REGULATION

On 15 December 2015 the European Commission

announced their agreement on the text of the draft

General Data Protection Regulation. This law will replace

its predecessor, the EU Data Protection Regulation of

1995, which has done a remarkable job of protecting data

privacy across the continent throughout two decades of

constant internet evolution.

The goal of the reform process has been to return power

over data, and its uses, to citizens. Users will have more

control over what data is captured about them, how it is

used, how it is retained, and how it can be deleted.

Businesses and digital professionals, in turn, will have to

restructure their relationships with client and customer

data. Compliance obligations will increase, and difficult

choices will have to be made. However, this time should

be seen as an opportunity to rethink our relationship with

data. After Snowden, Schrems, and Safe Harbor, it is clear

that we cannot go back to the way things were before. In

What’s Ahead for Your Data in 2016?

24 ways 2015 edition 273

http://trade.ec.europa.eu/doclib/press/index.cfm?id=1413&title=Joint-Statement-by-Commissioner-Malmstr%C3%B6m-and-Ambassador-Froman-on-the-Transatlantic-Trade-and-Investment-Partnership-Negotiations
http://trade.ec.europa.eu/doclib/press/index.cfm?id=1413&title=Joint-Statement-by-Commissioner-Malmstr%C3%B6m-and-Ambassador-Froman-on-the-Transatlantic-Trade-and-Investment-Partnership-Negotiations
http://europa.eu/rapid/press-release_IP-15-6321_en.htm
http://statewatch.org/news/2015/dec/eu-council-dp-reg-draft-final-compromise-15039-15.pdf
http://statewatch.org/news/2015/dec/eu-council-dp-reg-draft-final-compromise-15039-15.pdf
http://www.europarl.europa.eu/news/en/news-room/20151215IPR07597/Data-protection-package-Parliament-and-Council-now-close-to-a-deal
http://www.europarl.europa.eu/news/en/news-room/20151215IPR07597/Data-protection-package-Parliament-and-Council-now-close-to-a-deal

an era of where every one of our heartbeats is recorded

on a wearable device and uploaded to a surveilled data

centre in another country, the need for reform has never

been more acute.

While texts of the draft GDPR are available, there is not

enough mulled wine in the world that will help you get

through them. Instead, the law firm Fieldfisher

Waterhouse has produced this helpful infographic which

will give you a good idea of the changes we can expect to

see (view full size):

The most surprising outcome announced on 15 December

was the new regulation’s teeth. Under the new law,

companies that fail to heed the updated data protection

rules will face fines of up to 4% of their global turnover.

274 24 ways 2015 edition

http://ow.ly/d/47uW
http://privacylawblog.fieldfisher.com/2015/the-directive-is-dead-almost-long-live-the-gdpr
http://privacylawblog.fieldfisher.com/2015/the-directive-is-dead-almost-long-live-the-gdpr
http://privacylawblog.fieldfisher.com/wp-content/uploads/2015/09/here.pdf
http://privacylawblog.fieldfisher.com/wp-content/uploads/2015/09/here.pdf

Additionally, the law expands the liability for data

protection to both the controller (the company hosting

the data) and the data processor (the company using the

data). The new law will also introduce a one-stop shop for

resolving concerns over data misuse. Companies will no

longer be able to headquarter their European operations

in countries which are perceived to have relatively light-

touch data protection enforcement (that means you,

Ireland) as a means of automatically rejecting any

complaints filed by citizens outside that country.

For digital professionals, the most immediate concern is

analytics. In fact, I am going to make a prediction: in 2016

we will begin to see the same misguided war on analytics

that we saw on cookies. By increasing the legal liabilities

for both data processors and controllers – in other words,

the company providing the analytics as well as the site

administrator studying them – the new regulation risks

creating disproportionate burdens as well as the same

“guilt by association” risks we saw in 2012. There have

already been statements made by some within the privacy

community that analytics are tracking, and tracking is

surveillance, therefore analytics are evil. Yet “just don’t

use analytics,” as was suggested by one advocate, is simply

not an option. European regulators should consult with

the web community to gain a clear understanding of why

analytics are vital to everyday site administrators, and

must find a happy medium that protects users’ data

What’s Ahead for Your Data in 2016?

24 ways 2015 edition 275

without criminalising every website by default. No one

wants a repeat of the crisis of consent, as well as the

scaremongering, caused by the cookie law.

Assuming the text is adopted in 2016, the new EU Data

Protection Regulation would not come into effect until

2018. We have a considerable challenge ahead, but we

also have plenty of time to get it right.

ABOUT THE AUTHOR

276 24 ways 2015 edition

Heather Burns is a digital law specialist in Glasgow, Scotland.

Her focus is researching, writing, and speaking about internet

laws and policies which impact the professions of web design

and development. She has been a professional web designer

since 2007 and earned a postgraduate certification in internet

law in 2015.

What’s Ahead for Your Data in 2016?

24 ways 2015 edition 277

http://webdevlaw.uk/

Remy Sharp 24ways.org/201522

22. How Tabs Should
Work

Tabs in browsers (not browser tabs) are one
of the oldest custom UI elements in a
browser that I can think of. They’ve been
done to death. But, sadly, most of the time I
come across them, the tabs have been badly,
or rather partially, implemented.

So this post is my definition of how a tabbing system

should work, and one approach of implementing that.

BUT… TABS ARE EASY, RIGHT?

I’ve been writing code for tabbing systems in JavaScript

for coming up on a decade, and at one point I was pretty

proud of how small I could make the JavaScript for the

tabbing system:

var tabs = $('.tab').click(function () {

tabs.hide().filter(this.hash).show();

}).map(function () {

return $(this.hash)[0];

278 24 ways 2015 edition

http://24ways.org/201522

});

$('.tab:first').click();

Simple, right? Nearly fits in a tweet (ignoring the whole

jQuery library…). Still, it’s riddled with problems that

make it a far from perfect solution.

REQUIREMENTS: WHAT MAKES THE PERFECT
TAB?

1. All content is navigable and available without

JavaScript (crawler-compatible and low JS-compatible).

2. ARIA roles.

3. The tabs are anchor links that:

▪ are clickable

▪ have block layout

▪ have their href pointing to the id of the panel element

▪ use the correct cursor (i.e. cursor: pointer).

4. Since tabs are clickable, the user can open in a new tab/

window and the page correctly loads with the correct tab

open.

5. Right-clicking (and Shift-clicking) doesn’t cause the tab

to be selected.

6. Native browser Back/Forward button correctly

changes the state of the selected tab (think about it

working exactly as if there were no JavaScript in place).

How Tabs Should Work

24 ways 2015 edition 279

http://jsbin.com/metoya/edit?js,output

The first three points are all to do with the semantics of

the markup and how the markup has been styled. I think

it’s easy to do a good job by thinking of tabs as links, and

not as some part of an application. Links are navigable,

and they should work the same way other links on the

page work.

The last three points are JavaScript problems. Let’s

investigate that.

THE SHITMUS TEST

Like a litmus test, here’s a couple of quick ways you can

tell if a tabbing system is poorly implemented:

▪ Change tab, then use the Back button (or keyboard

shortcut) and it breaks

▪ The tab isn’t a link, so you can’t open it in a new tab

These two basic things are, to me, the bare minimum that

a tabbing system should have.

WHY IS THIS IMPORTANT?

The people who push their so-called native apps on users

can’t have more reasons why the web sucks. If something

as basic as a tab doesn’t work, obviously there’s more

ammo to push a closed native app or platform on your

users.

280 24 ways 2015 edition

If you’re going to be a web developer, one of your

responsibilities is to maintain established interactivity

paradigms. This doesn’t mean don’t innovate. But it does

mean: stop fucking up my scrolling experience with your

poorly executed scroll effects. </rant> :breath:

URI FRAGMENT, ABSOLUTE URL OR QUERY
STRING?

A URI fragment (AKA the # hash bit) would be using

mysite.com/config#content to show the content panel. A

fully addressable URL would be mysite.com/config/content.

Using a query string (by way of filtering the page):

mysite.com/config?tab=content.

This decision really depends on the context of your

tabbing system. FOr something like GitHub’s tabs to view

a pull request, it makes sense that the full URL changes.

For our problem though, I want to solve the issue when

the page doesn’t do a full URL update; that is, your regular

run-of-the-mill tabbing system.

I used to be from the school of using the hash to show the

correct tab, but I’ve recently been exploring whether the

query string can be used. The biggest reason is that

multiple hashes don’t work, and comma-separated hash

fragments don’t make any sense to control multiple tabs

(since it doesn’t actually link to anything).

How Tabs Should Work

24 ways 2015 edition 281

https://github.com/remy/remysharp.com/pull/6
https://github.com/remy/remysharp.com/pull/6

For this article, I’ll keep focused on using a single tabbing

system and a hash on the URL to control the tabs.

MARKUP

I’m going to assume subcontent, so my markup would look

like this (yes, this is a cat demo…):

<ul class="tabs">

Dizzy

Ninja

Missy

<div id="dizzy">

<!-- panel content -->

</div>

<div id="ninja">

<!-- panel content -->

</div>

<div id="missy">

<!-- panel content -->

</div>

It’s important to note that in the markup the link used for

an individual tab references its panel content using the

hash, pointing to the id on the panel. This will allow our

content to connect up without JavaScript and give us a

bunch of features for free, which we’ll see once we’re on

to writing the code.

282 24 ways 2015 edition

URL-DRIVEN TABBING SYSTEMS

Instead of making the code responsive to the user’s input,

we’re going to exclusively use the browser URL and the

hashchange event on the window to drive this tabbing

system. This way we get Back button support for free.

With that in mind, let’s start building up our code. I’ll

assume we have the jQuery library, but I’ve also provided

the full code working without a library (vanilla, if you will),

but it depends on relatively new (polyfillable) tech like

classList and dataset (which generally have IE10 and all

other browser support).

Note that I’ll start with the simplest solution, and I’ll refactor

the code as I go along, like in places where I keep calling

jQuery selectors.

function show(id) {

// remove the selected class from the tabs,

// and add it back to the one the user selected

$('.tab').removeClass('selected').filter(function () {

return (this.hash === id);

}).addClass('selected');

// now hide all the panels, then filter to

// the one we're interested in, and show it

$('.panel').hide().filter(id).show();

}

$(window).on('hashchange', function () {

show(location.hash);

How Tabs Should Work

24 ways 2015 edition 283

});

// initialise by showing the first panel

show('#dizzy');

This works pretty well for such little code. Notice that we

don’t have any click handlers for the user and the Back

button works right out of the box.

However, there’s a number of problems we need to fix:

1. The initialised tab is hard-coded to the first panel,

rather than what’s on the URL.

2. If there’s no hash on the URL, all the panels are hidden

(and thus broken).

3. If you scroll to the bottom of the example, you’ll find a

“top” link; clicking that will break our tabbing system.

4. I’ve purposely made the page long, so that when you

click on a tab, you’ll see the page scrolls to the top of the

tab. Not a huge deal, but a bit annoying.

From our criteria at the start of this post, we’ve already

solved items 4 and 5. Not a terrible start. Let’s solve items

1 through 3 next.

Using the URL to initialise correctly and protect from
breakage

Instead of arbitrarily picking the first panel from our

collection, the code should read the current

location.hash and use that if it’s available.

284 24 ways 2015 edition

http://output.jsbin.com/rimone/

The problem is: what if the hash on the URL isn’t actually

for a tab?

The solution here is that we need to cache a list of known

panel IDs. In fact, well-written DOM scripting won’t

continuously search the DOM for nodes. That is, when the

show function kept calling $('.tab').each(...) it was

wasteful. The result of $('.tab') should be cached.

So now the code will collect all the tabs, then find the

related panels from those tabs, and we’ll use that list to

double the values we give the show function (during

initialisation, for instance).

// collect all the tabs

var tabs = $('.tab');

// get an array of the panel ids (from the anchor hash)

var targets = tabs.map(function () {

return this.hash;

}).get();

// use those ids to get a jQuery collection of panels

var panels = $(targets.join(','));

function show(id) {

// if no value was given, let's take the first panel

if (!id) {

id = targets[0];

}

// remove the selected class from the tabs,

// and add it back to the one the user selected

How Tabs Should Work

24 ways 2015 edition 285

tabs.removeClass('selected').filter(function () {

return (this.hash === id);

}).addClass('selected');

// now hide all the panels, then filter to

// the one we're interested in, and show it

panels.hide().filter(id).show();

}

$(window).on('hashchange', function () {

var hash = location.hash;

if (targets.indexOf(hash) !== -1) {

show(hash);

}

});

// initialise

show(targets.indexOf(location.hash) !== -1 ?

location.hash : '');

The core of working out which tab to initialise with is

solved in that last line: is there a location.hash? Is it in

our list of valid targets (panels)? If so, select that tab.

The second breakage we saw in the original demo was

that clicking the “top” link would break our tabs. This was

due to the hashchange event firing and the code didn’t

validate the hash that was passed. Now this happens, the

panels don’t break.

So far we’ve got a tabbing system that:

▪ Works without JavaScript.

286 24 ways 2015 edition

▪ Supports right-click and Shift-click (and doesn’t select

in these cases).

▪ Loads the correct panel if you start with a hash.

▪ Supports native browser navigation.

▪ Supports the keyboard.

The only annoying problem we have now is that the page

jumps when a tab is selected. That’s due to the browser

following the default behaviour of an internal link on the

page. To solve this, things are going to get a little hairy, but

it’s all for a good cause.

Removing the jump to tab

You’d be forgiven for thinking you just need to hook a click

handler and return false. It’s what I started with. Only

that’s not the solution. If we add the click handler, it

breaks all the right-click and Shift-click support.

There may be another way to solve this, but what follows

is the way I found – and it works. It’s just a bit… hairy, as I

said.

We’re going to strip the id attribute off the target panel

when the user tries to navigate to it, and then put it back

on once the show code starts to run. This change will mean

the browser has nowhere to navigate to for that moment,

and won’t jump the page.

The change involves the following:

How Tabs Should Work

24 ways 2015 edition 287

1. Add a click handle that removes the id from the target

panel, and cache this in a target variable that we’ll use

later in hashchange (see point 4).

2. In the same click handler, set the location.hash to the

current link’s hash. This is important because it forces a

hashchange event regardless of whether the URL actually

changed, which prevents the tabs breaking (try it yourself

by removing this line).

3. For each panel, put a backup copy of the id attribute in

a data property (I’ve called it old-id).

4. When the hashchange event fires, if we have a target

value, let’s put the id back on the panel.

These changes result in this final code:

/*global $*/

// a temp value to cache *what* we're about to show

var target = null;

// collect all the tabs

var tabs = $('.tab').on('click', function () {

target = $(this.hash).removeAttr('id');

// if the URL isn't going to change, then hashchange

// event doesn't fire, so we trigger the update

manually

if (location.hash === this.hash) {

// but this has to happen after the DOM update has

// completed, so we wrap it in a setTimeout 0

setTimeout(update, 0);

288 24 ways 2015 edition

}

});

// get an array of the panel ids (from the anchor hash)

var targets = tabs.map(function () {

return this.hash;

}).get();

// use those ids to get a jQuery collection of panels

var panels = $(targets.join(',')).each(function () {

// keep a copy of what the original el.id was

$(this).data('old-id', this.id);

});

function update() {

if (target) {

target.attr('id', target.data('old-id'));

target = null;

}

var hash = window.location.hash;

if (targets.indexOf(hash) !== -1) {

show(hash);

}

}

function show(id) {

// if no value was given, let's take the first panel

if (!id) {

id = targets[0];

}

// remove the selected class from the tabs,

// and add it back to the one the user selected

tabs.removeClass('selected').filter(function () {

How Tabs Should Work

24 ways 2015 edition 289

return (this.hash === id);

}).addClass('selected');

// now hide all the panels, then filter to

// the one we're interested in, and show it

panels.hide().filter(id).show();

}

$(window).on('hashchange', update);

// initialise

if (targets.indexOf(window.location.hash) !== -1) {

update();

} else {

show();

}

This version now meets all the criteria I mentioned in my

original list, except for the ARIA roles and accessibility.

Getting this support is actually very cheap to add.

ARIA roles

This article on ARIA tabs made it very easy to get the

tabbing system working as I wanted.

The tasks were simple:

1. Add aria-role set to tab for the tabs, and panel for

the panels.

2. Set aria-controls on the tabs to point to their related

panel (by id).

290 24 ways 2015 edition

http://output.jsbin.com/xilula/
http://accessibility.athena-ict.com/aria/examples/tabpanel2.shtml

3. I use JavaScript to add tabindex=0 to all the tab

elements.

4. When I add the selected class to the tab, I also set

aria-selected to true and, inversely, when I remove the

selected class I set aria-selected to false.

5. When I hide the panels I add aria-hidden=true, and

when I show the specific panel I set aria-hidden=false.

And that’s it. Very small changes to get full sign-off that

the tabbing system is bulletproof and accessible.

Check out the final version (and the non-jQuery version

as promised).

IN CONCLUSION

There’s a lot of tab implementations out there, but there’s

an equal amount that break the browsing paradigm and

the simple linkability of content. Clearly there’s a special

hell for those tab systems that don’t even use links, but I

think it’s clear that even in something that’s relatively

simple, it’s the small details that make or break the user

experience.

Obviously there are corners I’ve not explored, like when

there’s more than one set of tabs on a page, and equally

whether you should deliver the initial markup with the

How Tabs Should Work

24 ways 2015 edition 291

http://output.jsbin.com/lorovu/
http://jsbin.com/sehuxo/edit?js,output

correct tab selected. I think the answer lies in using query

strings in combination with hashes on the URL, but maybe

that’s for another year!

ABOUT THE AUTHOR

Remy Sharp is the founder and curator of Full Frontal, the UK

based JavaScript conference. He also ran jQuery for Designers,

co-authored Introducing HTML5 (adding all the JavaScripty

bits) and likes to grumble on Twitter.

292 24 ways 2015 edition

http://twitter.com/rem
http://full-frontal.org
http://jqueryfordesigners.com
http://introducinghtml5.com

Whilst he’s not writing articles or running and speaking at

conferences, he runs his own development and training

company in Brighton called Left Logic. And he built these too:

Confwall, jsbin.com, html5demos.com, remote-tilt.com,

responsivepx.com, nodemon, inliner, mit-license.org,

snapbird.org, 5 minute fork and jsconsole.com!

How Tabs Should Work

24 ways 2015 edition 293

http://remysharp.com
http://lanyrd.com/people/rem/
http://lanyrd.com/people/rem/
http://leftlogic.com
https://confwall.com
http://jsbin.com
http://html5demos.com
http://remote-tilt.com
http://responsivepx.com
https://github.com/remy/nodemon
https://github.com/remy/inliner
http://mit-license.org
http://snapbird.org
http://5minfork.com
http://jsconsole.com

Andy Clarke 24ways.org/201523

23. Blow Your Own
Trumpet

Even if your own trumpet’s tiny and fell out
of a Christmas cracker, blowing it isn’t
something that everyone’s good at. Some
people find selling themselves and what
they do difficult. But, you know what? Boo
hoo hoo. If you want people to buy
something, the reality is you’d better get
good at selling, especially if that something
is you.

For web professionals, the best place to tell potential

business customers or possible employers about what you

do is on your own website. You can write what you want

and how you want, but that doesn’t make knowing what to

write any easier. As a matter of fact, writing for yourself

often proves harder than writing for someone else.

I spent this autumn thinking about what I wanted to say

about Stuff & Nonsense on the website we relaunched

recently. While I did that, I spoke to other designers about

how they struggled to write about their businesses.

294 24 ways 2015 edition

http://24ways.org/201523
https://stuffandnonsense.co.uk
https://stuffandnonsense.co.uk/blog/about/its-the-taste.-the-all-new-stuff-and-nonsense

If you struggle to write well, don’t worry. You’re not on

your own. Here are five ways to hit the right notes when

writing about yourself and your work.

BE GENUINE ABOUT WHO YOU ARE

I’ve known plenty of talented people who run a successful

business pretty much single-handed. Somehow they still

feel awkward presenting themselves as individuals. They

wonder whether describing themselves as a company will

give them extra credibility. They especially agonise over

using “we” rather than “I” when describing what they do.

These choices get harder when you’re a one-man band

trading as a limited company or LLC business entity.

If you mainly work alone, don’t describe yourself as

anything other than “I”. You might think that saying “we”

makes you appear larger and will give you a better chance

of landing bigger and better work, but the moment a

prospective client asks, “How many people are you?”

you’ll have some uncomfortable explaining to do. This will

distract them from talking about your work and derail

your sales process. There’s no need to be anything other

than genuine about how you describe yourself. You should

be proud to say “I” because working alone isn’t something

that many people have the ability, business acumen or

talent to do.

Blow Your Own Trumpet

24 ways 2015 edition 295

EXPLAIN WHAT YOU ACTUALLY DO

How many people do precisely the same job as you?

Hundreds? Thousands? The same goes for companies. If

yours is a design studio, development team or UX

consultancy, there are countless others saying exactly

what you’re saying about what you do. Simply stating that

you code, design or – God help me – “handcraft digital

experiences” isn’t enough to make your business sound

different from everyone else. Anyone can and usually

does say that, but people buy more than deliverables.

They buy something that’s unique about you and your

business.

Potentially thousands of companies deliver code and

designs the same way as Stuff & Nonsense, but our clients

don’t just buy page designs, prototypes and websites from

us. They buy our taste for typography, colour and layout,

summed up by our “It’s the taste” tagline and bowler hat

tip to the PG Tips chimps. We hope that potential clients

will understand what’s unique about us. Think beyond

your deliverables to what people actually buy, and sell the

uniqueness of that.

DESCRIBE WORK IN PROGRESS

It’s sad that current design trends have made it almost

impossible to tell one website from another. So many

designers now demonstrate finished responsive website

296 24 ways 2015 edition

https://stuffandnonsense.co.uk/illustration
https://stuffandnonsense.co.uk/illustration

designs by pasting them onto iMac, MacBook, iPad and

iPhone screens that their portfolios don’t fare much

better. Every designer brings their own experience,

perspective and process to a project. In my experience, it’s

understanding those differences which forms a big part of

how a prospective client makes a decision about who to

work with. Don’t simply show a prospective client the end

result of a previous project; explain your process, the

development of your thinking and even the wrong turns

you took.

Traditional case studies, like the one I’ve just written

about Stuff & Nonsense’s work for WWF UK, can take a

lot of time. That’s probably why many portfolios get out of

date very quickly. Designers make new work all the time,

so there must be a better way to show more of it more

often, to give prospective clients a clearer understanding

of what we do. At Stuff & Nonsense our solution was to

create a feed where we could post fragments of design

work throughout a project. This also meant rewriting our

Contract Killer to give us permission to publish work

before someone signs it off.

Blow Your Own Trumpet

24 ways 2015 edition 297

https://stuffandnonsense.co.uk/design/for/wwf-uk
https://stuffandnonsense.co.uk/design
https://stuffandnonsense.co.uk/projects/contract-killer/

OUTLINE A CLIENT’S EXPERIENCE

Recently a client took me to one side and offered some

valuable advice. She told me that our website hadn’t

described anything about the experience she’d had while

working with us. She said that knowing more about how

we work would’ve helped her make her buying decision.

When a client chooses your business, they’re hoping for

more than a successful outcome. They want their project

to run smoothly. They want to feel that they made a

correct decision when they chose you. If they work for an

organisation, they’ll want their good judgement to be

recognised too. Our client didn’t recognise her experience

because we hadn’t made our own website part of it.

Remember, the challenge of creating a memorable user

experience starts with selling to the people paying you for

it.

ADDRESS YOUR IDEAL CLIENT

It’s important to understand that a portfolio’s job isn’t to

document your work, it’s to attract new work from clients

you want. Make sure that work you show reflects the

work you want, because what you include in your

portfolio often leads to more of the same.

When you’re writing for your portfolio and elsewhere on

your website, imagine that you’re addressing your ideal

client. Picture them sitting opposite and answer the

298 24 ways 2015 edition

questions they’d ask as you would in conversation. Be

direct, funny if that’s appropriate and serious when it’s

not. If it helps, ask a friend to read the questions aloud and

record what you say in response. This will help make what

you write sound natural. I’ve found this technique helps

clients write copy too.

TOOT YOUR OWN HORN

Some people confuse expressing confidence in yourself

and your work as boastfulness, but in a competitive world

the reality is that if you are to succeed, you need to show

confidence so that others can show their confidence in

you. If you want people to hear you, pick up your trumpet

and blow it.

Blow Your Own Trumpet

24 ways 2015 edition 299

ABOUT THE AUTHOR

Andy Clarke is an art director and web designer at the UK

website design studio ‘Stuff & Nonsense.’ There he designs

websites and applications for clients from around the world.

Based in North Wales, Andy’s also the author of two web design

books, ‘Transcending CSS’ and the new ‘Hardboiled Web Design

Fifth Anniversary Edition’ and is well known for his many

conference presentations and over ten years of contributions to

the web design industry. Jeffrey Zeldman once called him a

“triple talented bastard.” If you know of Jeffrey, you’ll know how

happy that made him.

300 24 ways 2015 edition

https://stuffandnonsense.co.uk/
https://stuffandnonsense.co.uk/
https://stuffandnonsense.co.uk/buy/hardboiledwebdesign
https://stuffandnonsense.co.uk/buy/hardboiledwebdesign

Drew McLellan 24ways.org/201524

24. Solve the Hard
Problems

So, here we find ourselves on the cusp of
2016. We’ve had a good year – the web is
still alive, no one has switched it off yet.
Clients still have websites, teenagers still
have phone apps, and there continue to be
plenty of online brands to meaningfully
engage with each day. Good job team, high
fives all round.

As it’s the time to make resolutions, I wanted to share

three small ideas to take into the new year.

GET GOOD AT WHAT YOU DO

“How do you get to Carnegie Hall?” the old joke goes.

“Practise, practise, practise.”

Solve the Hard Problems

24 ways 2015 edition 301

http://24ways.org/201524
http://www.carnegiehall.org/

We work in an industry where there is an awful lot to

learn. There’s a lot to learn to get started and then once

you do, there’s a lot more to learn to keep your skills

current. Just when you think you’ve mastered something,

it changes.

This is true of many industries, of course, but the sheer

pace of change for us makes learning not an annual

activity, but daily. Learning takes time, and while I’m not

convinced that every skill takes the fabled ten thousand

hours to master, there is certainly no escaping that to

remain current we must reinvest time in keeping our skills

up to date.

Picking where to spend your time

One of the hardest aspects of this thing of ours is just

choosing what to learn. If you, like me, invested any time in

learning the Less CSS preprocessor over the last few

years, you’ll probably now be spending your time

relearning Sass instead. If you spent time learning Grunt,

chances are you’ll now be thinking about whether you

should switch to Gulp. It’s not just that there are new

types of tools, there are new tools and frameworks to do

the things you’re already doing, but, well, differently.

Deciding what to learn is hard and the costs of backing

the wrong horse can seriously mount up; so much so that

by the time you’ve learned and then relearned the tools

302 24 ways 2015 edition

everyone says you need for your job, there’s rarely

enough time to spend really getting to know how best to

use them.

Practise, practise, practise

Do you know how you don’t get to Carnegie Hall? By

learning a new instrument each week. It takes time and

experience to really learn something well. That goes for a

new JavaScript framework as much as a violin. If you flit

from one shiny new thing to another, you’re destined to

produce amateurish work forever.

Learn the new thing, but then stick with it long enough to

get really good at it – even if Twitter trolls try to convince

you it’s not cool. What’s really not cool is living as a

forevernoob.

If you’re still not sure what to learn, go back to basics.

Considering a new CSS or JavaScript framework? Invest

that time in learning the underlying CSS or JavaScript

really well instead. Those skills will stand the test of time.

AUDIENCE AND PURPOSE

Back when I was in school, my English teacher (a nice

Welsh lady, who I appreciate more now than I did back

then) used to love to remind us that every piece of writing

should have an audience and a purpose. So much so that

audience and purpose almost became her catch phrase. For

Solve the Hard Problems

24 ways 2015 edition 303

every essay, article or letter, we were reminded to

consider who we were writing it for and what we were

trying to achieve.

It’s something I think about a lot; certainly when writing,

but also in almost every other creative endeavour. Asking

who is this for and what am I trying to achieve applies

equally to designing a logo or website, through to

composing music or writing software.

Being productive

It seems like everyone wants to have a product these

days. As someone who used to do client services work and

now has a product company, I often talk with people who

are interested in taking something they’ve built in-house

and turning it into a product. You know the sort of thing: a

design agency with its own CMS or project management

web app; the very logical thought process of: if this helps

our business, maybe others will find it valuable too; the

question that inevitably follows: could we turn this into a

product?

Whether consciously or not, the audience and purpose

influence nearly every aspect of your creative process.

Once written or designed or developed or created,

revising a work to change the audience and purpose can

be quite a challenge. No matter how much you want to

turn the tension-building, atmospheric music for a horror

304 24 ways 2015 edition

film into a catchy chart hit, it’s going to be a struggle. Yes,

it’s music, but that’s neither the audience nor purpose for

which it was created.

The same is absolutely true for your in-house tools –

those were also designed for a specific audience and

purpose. Your in-house CMS would have been designed

with an audience of your own development team, who are

busy implementing sites for clients. The purpose is to

make that team more productive overall, taking into

account considerations of maintaining multiple sites on a

common codebase, training clients, a more mature and

stable platform and all the other benefits of resuing the

same code for each project. The audience is your team and

the purpose increased productivity.

That’s very different from a customer who wants to buy a

polished system to use off-the-shelf. If their needs

perfectly aligned with yours then they wouldn’t be in the

market for your product – they would have built their

own.

Sometimes you hear the advice to “scratch your own itch”

when it comes to product design. I don’t completely agree.

Got an itch? Great. Find other itchy people and sell them a

backscratcher.

Solve the Hard Problems

24 ways 2015 edition 305

Building a product, like designing a website, is a lot of

work. It requires knowing your audience and purpose

inside out. You can’t fudge it and you can’t just hope you’ll

find an audience for some old thing you have lying around.

Always consider the audience and purpose for everything

you create. It’s often the difference between success and

failure.

SOLVE THE HARD PROBLEMS

Human beings have a natural tendency to avoid hard

problems. In digital design (websites, software, whatever)

the received wisdom is often that we can get 80% of the

way towards doing the hard thing by doing something

that’s not very hard.

Do you know what you get at the end of it? Paid. But

nothing really great ever happens that way.

I worked on a client project a while back where one of the

big challenges was making full use of the massive image

library they had built up over the years. The client had

tens of thousands of photographs, along with a fair

amount of video and a large MP3 audio library too. If it

wasn’t managed carefully, storage sizes would get out of

control, content would go unattributed, and everything

would get very messy very quickly.

306 24 ways 2015 edition

I could tell from the outset that this aspect of the project

was going to be a constant problem. So we tackled it

head-on. We designed and built a media management

system to hold and process all the assets, and added an

API so the content management system could talk to it.

Every time the site needed a photo at a new size, it made

an API request to the system and everything was handled

seamlessly.

It was a daunting job to invest all the time and effort in

building that dedicated system and API, but it really paid

off. Instead of having the constant troubles of a vast

library of media, it became one of the strongest parts of

the project.

Turn your hardest problems into your biggest strengths

There’s a funny thing about hard problems. The hardest

problems are the most fun to solve and have the biggest

impact.

Maybe you’re the sort of person who clocks in for work,

does their job and clocks out at 5pm without another

thought. But I don’t think you are, because you’re here

reading this. If you really love what you do, I don’t think

you can be satisfied in your work unless you’re seeking

out and working on those hard problems. That’s where

the magic is.

◆◆◆

Solve the Hard Problems

24 ways 2015 edition 307

The new year is a helpful time to think about breaking bad

habits. Whether it’s smoking a bit less, or going to the gym

a bit more, the ticking over of the calendar can provide

the motivation for a new start. I have some suggestions

for you.

1. Get good at what you do. Practise your skills and don’t

just flit from one shiny thing to the next.

2. Remember who you’re doing it for and why. Consider

the audience and purpose for everything you create.

3. Solve the hard problems. It’s more interesting, more

satisfying, and has a greater impact.

As we move into 2016, these are the things I’m going to

continue to work on. Maybe you’d like to join me.

308 24 ways 2015 edition

ABOUT THE AUTHOR

Drew McLellan is lead developer on your favourite content

management systems, Perch and Perch Runway. He is Director

and Senior Developer at edgeofmyseat.com in Bristol, England,

and is formerly Group Lead at the Web Standards Project.

When not publishing 24 ways, Drew keeps a personal site

covering web development issues and themes, takes photos,

tweets a lot and tries to stay upright on his bicycle.

Solve the Hard Problems

24 ways 2015 edition 309

https://grabaperch.com/
http://allinthehead.com/
http://flickr.com/drewm/
http://twitter.com/drewm

	Credits
	2015
	Animating Your Brand
	Style guides to the rescue
	Living documents
	Adding animation
	Example: Kitman Labs
	Create guidelines
	Prototyping
	Build up a collection
	Logos and brandmarks
	Content transitions
	Page transitions
	Preparing a layout before the content arrives
	Interactions

	Keep animation visible
	Inspiration and resources
	Frameworks

	Learn, evolve and make it your own
	About the author

	Being Customer Supportive
	Who’s TAHT girl
	Leave your message at the sound of the tone
	Catch the ball and throw it back
	Bring in help
	We appreciate your business. Please call again
	Tone, ask, help, thank
	About the author

	How to Do a UX Review
	Why conduct a review
	Be objective
	Numbers from analytics
	1. Landing pages and search terms
	2. User flows

	Personas
	Let’s start the review
	A workshop to go through the findings
	About the author

	Get Expressive with Your Typography
	Push the boat out
	About the author

	Universal React
	Getting started
	Creating a server
	Building the React app
	Server-side routing with React Router
	Running the server again

	Refactoring and one more route
	Client-side rendering
	Generating build.js

	Conclusions
	About the author

	Bringing Your Code to the Streets
	— or How to Be a Street VJ
	Now it’s our turn
	Step one: The equipment
	Step two: The software
	Step three: Portable kit
	Step four: Take to the streets

	About the author

	Git Rebasing: An Elfin Workshop Workflow
	About the author

	Helping VIPs Care About Performance
	About the author

	Animation in Responsive Design
	Focused art direction
	Responsive choreography
	Bake performance into your design decisions
	Pick a technology that matches your needs
	Animate the most performant properties
	Offset animation start times

	Go explore the responsive animation possibilities for yourself!
	About the author

	Putting My Patterns through Their Paces
	Meet the Teaser
	Moving Beyond Layout
	Diving Into Device-Agnostic Design
	About the author

	Upping Your Web Security Game
	Where To Start?
	HTTPS
	Two-Factor Authentication
	Tracking Known Vulnerabilities

	Securing Yourself
	A Culture of Security
	About the author

	Be Fluid with Your Design Skills: Build Your Own Sites
	Ten reasons designers should be fluid with their skills and build their own sites
	1. It’s never been easier
	2. You’ll understand how it feels
	3. It makes you a designer
	4. You learn about movement
	5. You make techie friends
	6. You will own domain names
	7. People will ask you to do things 
	8. The young people are coming!
	9. Your portfolio is your portfolio
	10. It keeps you fluid!

	About the author

	Designing with Contrast
	A thin veneer
	Minimalist expectations
	Imitation without representation
	For want of good design, the message was lost
	Standards of excellence
	Put guidelines in place
	Test your work
	Push your limits

	More than just a facade
	About the author

	What I Learned about Product Design This Year
	Product design is very different from marketing design
	Product design can not start with what looks good on Dribbble
	Just accept that designing a great product – like many worthwhile pursuits – is initially laborious and messy
	When you’ve created and tested a system that supports user needs, it will be beautiful
	About the author

	Grid, Flexbox, Box Alignment: Our New System for Layout
	Relationship
	Alignment
	Fluid grids
	Separation of concerns
	A note on accessibility and reordering

	Automatic content placement with rules
	My wish for 2016
	Some further reading
	About the author

	Beyond the Style Guide
	The auteur’s style guide
	Painting by numbers
	Anatomy of a button
	Content
	Structure
	Presentation
	Behaviour
	Transcending layers

	Visual design language: documenting the missing piece
	A visual language in code form
	Unlocking possibility
	About the author

	The Accessibility Mindset
	Beyond the bare minimum
	Button Example

	More information
	Conclusion
	About the author

	Cooking Up Effective Technical Writing
	The ‘just’ification of documentation
	Don’t be a turkey, use your loaf!
	1. Structure and standardise your information
	2. Small, reusable components
	3. Provide context to aid accessibility
	4. Be your own tech editor
	5. A picture is worth a thousand words…
	About the author

	Being Responsive to the Small Things
	Enter container queries
	Our saviour this Christmas: JavaScript
	Christmas is over
	About the author

	Make a Comic
	Why make a comic?
	Materials needed
	Step 1: Get ideas
	Step 2: Edit your story using thumbnails
	Step 3: Plan a layout
	Step 4: Draw the comic
	Step 5: Ink the comic
	Step 6: Adding colour
	How to paint your comic using Photoshop

	Christmas comic challenge!
	About the author

	What’s Ahead for Your Data in 2016?
	The Trans-Pacific Partnership
	Transatlantic Trade and Investment Partnership
	The EU Data Protection Regulation
	About the author

	How Tabs Should Work
	But… tabs are easy, right?
	Requirements: what makes the perfect tab?
	The shitmus test
	Why is this important?
	URI fragment, absolute URL or query string?
	Markup
	URL-driven tabbing systems
	Using the URL to initialise correctly and protect from breakage
	Removing the jump to tab
	ARIA roles

	In conclusion
	About the author

	Blow Your Own Trumpet
	Be genuine about who you are
	Explain what you actually do
	Describe work in progress
	Outline a client’s experience
	Address your ideal client
	Toot your own horn
	About the author

	Solve the Hard Problems
	Get good at what you do
	Picking where to spend your time
	Practise, practise, practise

	Audience and purpose
	Being productive

	Solve the hard problems
	Turn your hardest problems into your biggest strengths

	About the author

